Properties

Label 1445.2.a.p.1.12
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(-2.35190\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35190 q^{2} -1.56935 q^{3} +3.53144 q^{4} +1.00000 q^{5} -3.69096 q^{6} -3.58212 q^{7} +3.60181 q^{8} -0.537139 q^{9} +2.35190 q^{10} -2.48259 q^{11} -5.54207 q^{12} -1.25948 q^{13} -8.42480 q^{14} -1.56935 q^{15} +1.40821 q^{16} -1.26330 q^{18} -3.63431 q^{19} +3.53144 q^{20} +5.62161 q^{21} -5.83882 q^{22} -8.83293 q^{23} -5.65249 q^{24} +1.00000 q^{25} -2.96218 q^{26} +5.55101 q^{27} -12.6501 q^{28} +8.75919 q^{29} -3.69096 q^{30} -2.44403 q^{31} -3.89165 q^{32} +3.89606 q^{33} -3.58212 q^{35} -1.89688 q^{36} -4.60155 q^{37} -8.54755 q^{38} +1.97657 q^{39} +3.60181 q^{40} +4.32497 q^{41} +13.2215 q^{42} +7.54720 q^{43} -8.76714 q^{44} -0.537139 q^{45} -20.7742 q^{46} -11.3322 q^{47} -2.20997 q^{48} +5.83161 q^{49} +2.35190 q^{50} -4.44779 q^{52} +5.69139 q^{53} +13.0554 q^{54} -2.48259 q^{55} -12.9021 q^{56} +5.70351 q^{57} +20.6008 q^{58} -4.47000 q^{59} -5.54207 q^{60} +0.242871 q^{61} -5.74812 q^{62} +1.92410 q^{63} -11.9692 q^{64} -1.25948 q^{65} +9.16315 q^{66} -7.23278 q^{67} +13.8620 q^{69} -8.42480 q^{70} -1.83778 q^{71} -1.93467 q^{72} +5.47256 q^{73} -10.8224 q^{74} -1.56935 q^{75} -12.8344 q^{76} +8.89296 q^{77} +4.64870 q^{78} +9.03570 q^{79} +1.40821 q^{80} -7.10006 q^{81} +10.1719 q^{82} +7.31575 q^{83} +19.8524 q^{84} +17.7503 q^{86} -13.7462 q^{87} -8.94182 q^{88} -2.19350 q^{89} -1.26330 q^{90} +4.51162 q^{91} -31.1930 q^{92} +3.83554 q^{93} -26.6522 q^{94} -3.63431 q^{95} +6.10736 q^{96} -9.82039 q^{97} +13.7154 q^{98} +1.33350 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 8 q^{3} + 12 q^{4} + 12 q^{5} - 8 q^{6} - 16 q^{7} - 12 q^{8} + 12 q^{9} - 4 q^{10} - 16 q^{11} - 16 q^{12} - 8 q^{13} + 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} + 12 q^{20} + 16 q^{21}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.35190 1.66305 0.831523 0.555490i \(-0.187469\pi\)
0.831523 + 0.555490i \(0.187469\pi\)
\(3\) −1.56935 −0.906065 −0.453032 0.891494i \(-0.649658\pi\)
−0.453032 + 0.891494i \(0.649658\pi\)
\(4\) 3.53144 1.76572
\(5\) 1.00000 0.447214
\(6\) −3.69096 −1.50683
\(7\) −3.58212 −1.35392 −0.676958 0.736022i \(-0.736702\pi\)
−0.676958 + 0.736022i \(0.736702\pi\)
\(8\) 3.60181 1.27343
\(9\) −0.537139 −0.179046
\(10\) 2.35190 0.743737
\(11\) −2.48259 −0.748530 −0.374265 0.927322i \(-0.622105\pi\)
−0.374265 + 0.927322i \(0.622105\pi\)
\(12\) −5.54207 −1.59986
\(13\) −1.25948 −0.349317 −0.174659 0.984629i \(-0.555882\pi\)
−0.174659 + 0.984629i \(0.555882\pi\)
\(14\) −8.42480 −2.25162
\(15\) −1.56935 −0.405205
\(16\) 1.40821 0.352052
\(17\) 0 0
\(18\) −1.26330 −0.297762
\(19\) −3.63431 −0.833768 −0.416884 0.908960i \(-0.636878\pi\)
−0.416884 + 0.908960i \(0.636878\pi\)
\(20\) 3.53144 0.789655
\(21\) 5.62161 1.22674
\(22\) −5.83882 −1.24484
\(23\) −8.83293 −1.84179 −0.920896 0.389808i \(-0.872541\pi\)
−0.920896 + 0.389808i \(0.872541\pi\)
\(24\) −5.65249 −1.15381
\(25\) 1.00000 0.200000
\(26\) −2.96218 −0.580931
\(27\) 5.55101 1.06829
\(28\) −12.6501 −2.39064
\(29\) 8.75919 1.62654 0.813271 0.581885i \(-0.197685\pi\)
0.813271 + 0.581885i \(0.197685\pi\)
\(30\) −3.69096 −0.673874
\(31\) −2.44403 −0.438961 −0.219480 0.975617i \(-0.570436\pi\)
−0.219480 + 0.975617i \(0.570436\pi\)
\(32\) −3.89165 −0.687953
\(33\) 3.89606 0.678217
\(34\) 0 0
\(35\) −3.58212 −0.605489
\(36\) −1.89688 −0.316146
\(37\) −4.60155 −0.756490 −0.378245 0.925705i \(-0.623472\pi\)
−0.378245 + 0.925705i \(0.623472\pi\)
\(38\) −8.54755 −1.38660
\(39\) 1.97657 0.316504
\(40\) 3.60181 0.569495
\(41\) 4.32497 0.675447 0.337724 0.941245i \(-0.390343\pi\)
0.337724 + 0.941245i \(0.390343\pi\)
\(42\) 13.2215 2.04012
\(43\) 7.54720 1.15094 0.575469 0.817824i \(-0.304820\pi\)
0.575469 + 0.817824i \(0.304820\pi\)
\(44\) −8.76714 −1.32170
\(45\) −0.537139 −0.0800720
\(46\) −20.7742 −3.06299
\(47\) −11.3322 −1.65297 −0.826484 0.562961i \(-0.809662\pi\)
−0.826484 + 0.562961i \(0.809662\pi\)
\(48\) −2.20997 −0.318982
\(49\) 5.83161 0.833087
\(50\) 2.35190 0.332609
\(51\) 0 0
\(52\) −4.44779 −0.616797
\(53\) 5.69139 0.781772 0.390886 0.920439i \(-0.372169\pi\)
0.390886 + 0.920439i \(0.372169\pi\)
\(54\) 13.0554 1.77662
\(55\) −2.48259 −0.334753
\(56\) −12.9021 −1.72412
\(57\) 5.70351 0.755448
\(58\) 20.6008 2.70501
\(59\) −4.47000 −0.581945 −0.290972 0.956731i \(-0.593979\pi\)
−0.290972 + 0.956731i \(0.593979\pi\)
\(60\) −5.54207 −0.715478
\(61\) 0.242871 0.0310964 0.0155482 0.999879i \(-0.495051\pi\)
0.0155482 + 0.999879i \(0.495051\pi\)
\(62\) −5.74812 −0.730012
\(63\) 1.92410 0.242414
\(64\) −11.9692 −1.49615
\(65\) −1.25948 −0.156220
\(66\) 9.16315 1.12791
\(67\) −7.23278 −0.883625 −0.441812 0.897108i \(-0.645664\pi\)
−0.441812 + 0.897108i \(0.645664\pi\)
\(68\) 0 0
\(69\) 13.8620 1.66878
\(70\) −8.42480 −1.00696
\(71\) −1.83778 −0.218105 −0.109052 0.994036i \(-0.534782\pi\)
−0.109052 + 0.994036i \(0.534782\pi\)
\(72\) −1.93467 −0.228003
\(73\) 5.47256 0.640515 0.320257 0.947331i \(-0.396231\pi\)
0.320257 + 0.947331i \(0.396231\pi\)
\(74\) −10.8224 −1.25808
\(75\) −1.56935 −0.181213
\(76\) −12.8344 −1.47220
\(77\) 8.89296 1.01345
\(78\) 4.64870 0.526361
\(79\) 9.03570 1.01660 0.508298 0.861181i \(-0.330275\pi\)
0.508298 + 0.861181i \(0.330275\pi\)
\(80\) 1.40821 0.157442
\(81\) −7.10006 −0.788896
\(82\) 10.1719 1.12330
\(83\) 7.31575 0.803008 0.401504 0.915857i \(-0.368488\pi\)
0.401504 + 0.915857i \(0.368488\pi\)
\(84\) 19.8524 2.16607
\(85\) 0 0
\(86\) 17.7503 1.91406
\(87\) −13.7462 −1.47375
\(88\) −8.94182 −0.953201
\(89\) −2.19350 −0.232510 −0.116255 0.993219i \(-0.537089\pi\)
−0.116255 + 0.993219i \(0.537089\pi\)
\(90\) −1.26330 −0.133163
\(91\) 4.51162 0.472946
\(92\) −31.1930 −3.25209
\(93\) 3.83554 0.397727
\(94\) −26.6522 −2.74896
\(95\) −3.63431 −0.372873
\(96\) 6.10736 0.623330
\(97\) −9.82039 −0.997110 −0.498555 0.866858i \(-0.666136\pi\)
−0.498555 + 0.866858i \(0.666136\pi\)
\(98\) 13.7154 1.38546
\(99\) 1.33350 0.134022
\(100\) 3.53144 0.353144
\(101\) −5.46415 −0.543704 −0.271852 0.962339i \(-0.587636\pi\)
−0.271852 + 0.962339i \(0.587636\pi\)
\(102\) 0 0
\(103\) 7.16074 0.705568 0.352784 0.935705i \(-0.385235\pi\)
0.352784 + 0.935705i \(0.385235\pi\)
\(104\) −4.53641 −0.444832
\(105\) 5.62161 0.548613
\(106\) 13.3856 1.30012
\(107\) 0.623156 0.0602427 0.0301214 0.999546i \(-0.490411\pi\)
0.0301214 + 0.999546i \(0.490411\pi\)
\(108\) 19.6031 1.88631
\(109\) −6.18952 −0.592848 −0.296424 0.955056i \(-0.595794\pi\)
−0.296424 + 0.955056i \(0.595794\pi\)
\(110\) −5.83882 −0.556710
\(111\) 7.22144 0.685429
\(112\) −5.04437 −0.476648
\(113\) −16.0596 −1.51076 −0.755380 0.655287i \(-0.772548\pi\)
−0.755380 + 0.655287i \(0.772548\pi\)
\(114\) 13.4141 1.25635
\(115\) −8.83293 −0.823675
\(116\) 30.9326 2.87202
\(117\) 0.676517 0.0625440
\(118\) −10.5130 −0.967801
\(119\) 0 0
\(120\) −5.65249 −0.516000
\(121\) −4.83672 −0.439702
\(122\) 0.571208 0.0517147
\(123\) −6.78740 −0.611999
\(124\) −8.63096 −0.775083
\(125\) 1.00000 0.0894427
\(126\) 4.52529 0.403145
\(127\) −5.91786 −0.525125 −0.262563 0.964915i \(-0.584568\pi\)
−0.262563 + 0.964915i \(0.584568\pi\)
\(128\) −20.3671 −1.80021
\(129\) −11.8442 −1.04282
\(130\) −2.96218 −0.259800
\(131\) 16.1207 1.40848 0.704238 0.709964i \(-0.251289\pi\)
0.704238 + 0.709964i \(0.251289\pi\)
\(132\) 13.7587 1.19754
\(133\) 13.0186 1.12885
\(134\) −17.0108 −1.46951
\(135\) 5.55101 0.477755
\(136\) 0 0
\(137\) −17.1320 −1.46369 −0.731843 0.681473i \(-0.761339\pi\)
−0.731843 + 0.681473i \(0.761339\pi\)
\(138\) 32.6020 2.77526
\(139\) 2.13307 0.180925 0.0904624 0.995900i \(-0.471165\pi\)
0.0904624 + 0.995900i \(0.471165\pi\)
\(140\) −12.6501 −1.06913
\(141\) 17.7842 1.49770
\(142\) −4.32229 −0.362718
\(143\) 3.12678 0.261475
\(144\) −0.756403 −0.0630335
\(145\) 8.75919 0.727412
\(146\) 12.8709 1.06521
\(147\) −9.15184 −0.754831
\(148\) −16.2501 −1.33575
\(149\) 18.5384 1.51872 0.759362 0.650669i \(-0.225511\pi\)
0.759362 + 0.650669i \(0.225511\pi\)
\(150\) −3.69096 −0.301366
\(151\) 8.91261 0.725298 0.362649 0.931926i \(-0.381872\pi\)
0.362649 + 0.931926i \(0.381872\pi\)
\(152\) −13.0901 −1.06175
\(153\) 0 0
\(154\) 20.9154 1.68541
\(155\) −2.44403 −0.196309
\(156\) 6.98014 0.558859
\(157\) 18.2426 1.45592 0.727960 0.685620i \(-0.240469\pi\)
0.727960 + 0.685620i \(0.240469\pi\)
\(158\) 21.2511 1.69064
\(159\) −8.93178 −0.708337
\(160\) −3.89165 −0.307662
\(161\) 31.6406 2.49363
\(162\) −16.6987 −1.31197
\(163\) −9.36510 −0.733531 −0.366766 0.930313i \(-0.619535\pi\)
−0.366766 + 0.930313i \(0.619535\pi\)
\(164\) 15.2734 1.19265
\(165\) 3.89606 0.303308
\(166\) 17.2059 1.33544
\(167\) 9.28133 0.718211 0.359106 0.933297i \(-0.383082\pi\)
0.359106 + 0.933297i \(0.383082\pi\)
\(168\) 20.2479 1.56216
\(169\) −11.4137 −0.877977
\(170\) 0 0
\(171\) 1.95213 0.149283
\(172\) 26.6525 2.03224
\(173\) −4.29978 −0.326906 −0.163453 0.986551i \(-0.552263\pi\)
−0.163453 + 0.986551i \(0.552263\pi\)
\(174\) −32.3298 −2.45092
\(175\) −3.58212 −0.270783
\(176\) −3.49601 −0.263521
\(177\) 7.01500 0.527280
\(178\) −5.15889 −0.386675
\(179\) −0.117678 −0.00879567 −0.00439783 0.999990i \(-0.501400\pi\)
−0.00439783 + 0.999990i \(0.501400\pi\)
\(180\) −1.89688 −0.141385
\(181\) 2.32364 0.172715 0.0863574 0.996264i \(-0.472477\pi\)
0.0863574 + 0.996264i \(0.472477\pi\)
\(182\) 10.6109 0.786531
\(183\) −0.381149 −0.0281754
\(184\) −31.8145 −2.34539
\(185\) −4.60155 −0.338313
\(186\) 9.02082 0.661438
\(187\) 0 0
\(188\) −40.0189 −2.91868
\(189\) −19.8844 −1.44638
\(190\) −8.54755 −0.620104
\(191\) −14.6622 −1.06092 −0.530461 0.847710i \(-0.677981\pi\)
−0.530461 + 0.847710i \(0.677981\pi\)
\(192\) 18.7838 1.35561
\(193\) 8.39606 0.604362 0.302181 0.953251i \(-0.402285\pi\)
0.302181 + 0.953251i \(0.402285\pi\)
\(194\) −23.0966 −1.65824
\(195\) 1.97657 0.141545
\(196\) 20.5940 1.47100
\(197\) −6.68150 −0.476037 −0.238019 0.971261i \(-0.576498\pi\)
−0.238019 + 0.971261i \(0.576498\pi\)
\(198\) 3.13626 0.222884
\(199\) 18.8718 1.33779 0.668893 0.743359i \(-0.266768\pi\)
0.668893 + 0.743359i \(0.266768\pi\)
\(200\) 3.60181 0.254686
\(201\) 11.3508 0.800621
\(202\) −12.8512 −0.904204
\(203\) −31.3765 −2.20220
\(204\) 0 0
\(205\) 4.32497 0.302069
\(206\) 16.8414 1.17339
\(207\) 4.74451 0.329766
\(208\) −1.77361 −0.122978
\(209\) 9.02252 0.624101
\(210\) 13.2215 0.912368
\(211\) −6.61973 −0.455721 −0.227860 0.973694i \(-0.573173\pi\)
−0.227860 + 0.973694i \(0.573173\pi\)
\(212\) 20.0988 1.38039
\(213\) 2.88413 0.197617
\(214\) 1.46560 0.100186
\(215\) 7.54720 0.514715
\(216\) 19.9937 1.36040
\(217\) 8.75482 0.594316
\(218\) −14.5571 −0.985934
\(219\) −8.58836 −0.580348
\(220\) −8.76714 −0.591081
\(221\) 0 0
\(222\) 16.9841 1.13990
\(223\) 2.94266 0.197055 0.0985275 0.995134i \(-0.468587\pi\)
0.0985275 + 0.995134i \(0.468587\pi\)
\(224\) 13.9404 0.931429
\(225\) −0.537139 −0.0358093
\(226\) −37.7706 −2.51246
\(227\) −21.5256 −1.42871 −0.714353 0.699786i \(-0.753279\pi\)
−0.714353 + 0.699786i \(0.753279\pi\)
\(228\) 20.1416 1.33391
\(229\) −11.9409 −0.789075 −0.394537 0.918880i \(-0.629095\pi\)
−0.394537 + 0.918880i \(0.629095\pi\)
\(230\) −20.7742 −1.36981
\(231\) −13.9562 −0.918249
\(232\) 31.5489 2.07129
\(233\) −10.0687 −0.659623 −0.329812 0.944047i \(-0.606985\pi\)
−0.329812 + 0.944047i \(0.606985\pi\)
\(234\) 1.59110 0.104014
\(235\) −11.3322 −0.739230
\(236\) −15.7856 −1.02755
\(237\) −14.1802 −0.921101
\(238\) 0 0
\(239\) −16.6253 −1.07540 −0.537701 0.843135i \(-0.680707\pi\)
−0.537701 + 0.843135i \(0.680707\pi\)
\(240\) −2.20997 −0.142653
\(241\) 5.92200 0.381470 0.190735 0.981642i \(-0.438913\pi\)
0.190735 + 0.981642i \(0.438913\pi\)
\(242\) −11.3755 −0.731245
\(243\) −5.51054 −0.353502
\(244\) 0.857684 0.0549076
\(245\) 5.83161 0.372568
\(246\) −15.9633 −1.01778
\(247\) 4.57735 0.291250
\(248\) −8.80292 −0.558986
\(249\) −11.4810 −0.727577
\(250\) 2.35190 0.148747
\(251\) 7.77270 0.490608 0.245304 0.969446i \(-0.421112\pi\)
0.245304 + 0.969446i \(0.421112\pi\)
\(252\) 6.79484 0.428035
\(253\) 21.9286 1.37864
\(254\) −13.9182 −0.873307
\(255\) 0 0
\(256\) −23.9630 −1.49768
\(257\) −8.06588 −0.503135 −0.251568 0.967840i \(-0.580946\pi\)
−0.251568 + 0.967840i \(0.580946\pi\)
\(258\) −27.8564 −1.73426
\(259\) 16.4833 1.02422
\(260\) −4.44779 −0.275840
\(261\) −4.70491 −0.291226
\(262\) 37.9144 2.34236
\(263\) −21.3252 −1.31497 −0.657483 0.753469i \(-0.728379\pi\)
−0.657483 + 0.753469i \(0.728379\pi\)
\(264\) 14.0329 0.863662
\(265\) 5.69139 0.349619
\(266\) 30.6184 1.87733
\(267\) 3.44237 0.210670
\(268\) −25.5422 −1.56024
\(269\) −4.20185 −0.256191 −0.128096 0.991762i \(-0.540886\pi\)
−0.128096 + 0.991762i \(0.540886\pi\)
\(270\) 13.0554 0.794528
\(271\) 24.7136 1.50124 0.750621 0.660733i \(-0.229755\pi\)
0.750621 + 0.660733i \(0.229755\pi\)
\(272\) 0 0
\(273\) −7.08031 −0.428520
\(274\) −40.2928 −2.43418
\(275\) −2.48259 −0.149706
\(276\) 48.9527 2.94661
\(277\) −20.0627 −1.20545 −0.602725 0.797949i \(-0.705918\pi\)
−0.602725 + 0.797949i \(0.705918\pi\)
\(278\) 5.01678 0.300886
\(279\) 1.31278 0.0785943
\(280\) −12.9021 −0.771049
\(281\) 25.1805 1.50215 0.751073 0.660219i \(-0.229537\pi\)
0.751073 + 0.660219i \(0.229537\pi\)
\(282\) 41.8266 2.49074
\(283\) −8.48659 −0.504476 −0.252238 0.967665i \(-0.581167\pi\)
−0.252238 + 0.967665i \(0.581167\pi\)
\(284\) −6.49003 −0.385112
\(285\) 5.70351 0.337847
\(286\) 7.35389 0.434845
\(287\) −15.4926 −0.914499
\(288\) 2.09036 0.123175
\(289\) 0 0
\(290\) 20.6008 1.20972
\(291\) 15.4116 0.903446
\(292\) 19.3260 1.13097
\(293\) 25.9873 1.51820 0.759098 0.650977i \(-0.225640\pi\)
0.759098 + 0.650977i \(0.225640\pi\)
\(294\) −21.5242 −1.25532
\(295\) −4.47000 −0.260254
\(296\) −16.5739 −0.963338
\(297\) −13.7809 −0.799649
\(298\) 43.6005 2.52571
\(299\) 11.1249 0.643370
\(300\) −5.54207 −0.319972
\(301\) −27.0350 −1.55827
\(302\) 20.9616 1.20620
\(303\) 8.57517 0.492631
\(304\) −5.11786 −0.293529
\(305\) 0.242871 0.0139067
\(306\) 0 0
\(307\) 16.9475 0.967245 0.483622 0.875277i \(-0.339321\pi\)
0.483622 + 0.875277i \(0.339321\pi\)
\(308\) 31.4050 1.78947
\(309\) −11.2377 −0.639291
\(310\) −5.74812 −0.326471
\(311\) 17.1905 0.974782 0.487391 0.873184i \(-0.337949\pi\)
0.487391 + 0.873184i \(0.337949\pi\)
\(312\) 7.11922 0.403046
\(313\) 5.91487 0.334328 0.167164 0.985929i \(-0.446539\pi\)
0.167164 + 0.985929i \(0.446539\pi\)
\(314\) 42.9049 2.42126
\(315\) 1.92410 0.108411
\(316\) 31.9090 1.79502
\(317\) 0.640574 0.0359782 0.0179891 0.999838i \(-0.494274\pi\)
0.0179891 + 0.999838i \(0.494274\pi\)
\(318\) −21.0067 −1.17800
\(319\) −21.7455 −1.21752
\(320\) −11.9692 −0.669098
\(321\) −0.977950 −0.0545838
\(322\) 74.4157 4.14702
\(323\) 0 0
\(324\) −25.0735 −1.39297
\(325\) −1.25948 −0.0698635
\(326\) −22.0258 −1.21990
\(327\) 9.71352 0.537159
\(328\) 15.5777 0.860135
\(329\) 40.5932 2.23798
\(330\) 9.16315 0.504415
\(331\) 11.6609 0.640939 0.320469 0.947259i \(-0.396159\pi\)
0.320469 + 0.947259i \(0.396159\pi\)
\(332\) 25.8352 1.41789
\(333\) 2.47167 0.135447
\(334\) 21.8288 1.19442
\(335\) −7.23278 −0.395169
\(336\) 7.91638 0.431874
\(337\) −30.8806 −1.68217 −0.841087 0.540900i \(-0.818084\pi\)
−0.841087 + 0.540900i \(0.818084\pi\)
\(338\) −26.8439 −1.46012
\(339\) 25.2031 1.36885
\(340\) 0 0
\(341\) 6.06754 0.328576
\(342\) 4.59122 0.248265
\(343\) 4.18533 0.225986
\(344\) 27.1836 1.46564
\(345\) 13.8620 0.746303
\(346\) −10.1127 −0.543660
\(347\) 0.0149992 0.000805197 0 0.000402598 1.00000i \(-0.499872\pi\)
0.000402598 1.00000i \(0.499872\pi\)
\(348\) −48.5441 −2.60224
\(349\) −3.65491 −0.195643 −0.0978215 0.995204i \(-0.531187\pi\)
−0.0978215 + 0.995204i \(0.531187\pi\)
\(350\) −8.42480 −0.450325
\(351\) −6.99140 −0.373173
\(352\) 9.66138 0.514953
\(353\) 3.82333 0.203495 0.101748 0.994810i \(-0.467557\pi\)
0.101748 + 0.994810i \(0.467557\pi\)
\(354\) 16.4986 0.876891
\(355\) −1.83778 −0.0975395
\(356\) −7.74622 −0.410549
\(357\) 0 0
\(358\) −0.276767 −0.0146276
\(359\) −6.69675 −0.353441 −0.176721 0.984261i \(-0.556549\pi\)
−0.176721 + 0.984261i \(0.556549\pi\)
\(360\) −1.93467 −0.101966
\(361\) −5.79178 −0.304830
\(362\) 5.46497 0.287232
\(363\) 7.59052 0.398399
\(364\) 15.9325 0.835092
\(365\) 5.47256 0.286447
\(366\) −0.896426 −0.0468569
\(367\) −23.0276 −1.20203 −0.601015 0.799238i \(-0.705237\pi\)
−0.601015 + 0.799238i \(0.705237\pi\)
\(368\) −12.4386 −0.648406
\(369\) −2.32311 −0.120936
\(370\) −10.8224 −0.562630
\(371\) −20.3873 −1.05845
\(372\) 13.5450 0.702275
\(373\) 23.7303 1.22871 0.614355 0.789030i \(-0.289416\pi\)
0.614355 + 0.789030i \(0.289416\pi\)
\(374\) 0 0
\(375\) −1.56935 −0.0810409
\(376\) −40.8163 −2.10494
\(377\) −11.0320 −0.568179
\(378\) −46.7662 −2.40539
\(379\) −2.97819 −0.152979 −0.0764897 0.997070i \(-0.524371\pi\)
−0.0764897 + 0.997070i \(0.524371\pi\)
\(380\) −12.8344 −0.658389
\(381\) 9.28720 0.475798
\(382\) −34.4841 −1.76436
\(383\) −24.4222 −1.24791 −0.623957 0.781459i \(-0.714476\pi\)
−0.623957 + 0.781459i \(0.714476\pi\)
\(384\) 31.9631 1.63111
\(385\) 8.89296 0.453227
\(386\) 19.7467 1.00508
\(387\) −4.05390 −0.206071
\(388\) −34.6802 −1.76062
\(389\) 1.68867 0.0856191 0.0428095 0.999083i \(-0.486369\pi\)
0.0428095 + 0.999083i \(0.486369\pi\)
\(390\) 4.64870 0.235396
\(391\) 0 0
\(392\) 21.0043 1.06088
\(393\) −25.2991 −1.27617
\(394\) −15.7142 −0.791671
\(395\) 9.03570 0.454635
\(396\) 4.70917 0.236645
\(397\) −31.5256 −1.58222 −0.791112 0.611671i \(-0.790498\pi\)
−0.791112 + 0.611671i \(0.790498\pi\)
\(398\) 44.3846 2.22480
\(399\) −20.4307 −1.02281
\(400\) 1.40821 0.0704103
\(401\) 5.06607 0.252987 0.126494 0.991967i \(-0.459628\pi\)
0.126494 + 0.991967i \(0.459628\pi\)
\(402\) 26.6959 1.33147
\(403\) 3.07821 0.153337
\(404\) −19.2964 −0.960029
\(405\) −7.10006 −0.352805
\(406\) −73.7945 −3.66236
\(407\) 11.4238 0.566256
\(408\) 0 0
\(409\) −26.1178 −1.29144 −0.645722 0.763573i \(-0.723443\pi\)
−0.645722 + 0.763573i \(0.723443\pi\)
\(410\) 10.1719 0.502355
\(411\) 26.8861 1.32619
\(412\) 25.2877 1.24584
\(413\) 16.0121 0.787904
\(414\) 11.1586 0.548416
\(415\) 7.31575 0.359116
\(416\) 4.90146 0.240314
\(417\) −3.34754 −0.163930
\(418\) 21.2201 1.03791
\(419\) −7.29855 −0.356557 −0.178279 0.983980i \(-0.557053\pi\)
−0.178279 + 0.983980i \(0.557053\pi\)
\(420\) 19.8524 0.968697
\(421\) −21.0644 −1.02662 −0.513309 0.858204i \(-0.671580\pi\)
−0.513309 + 0.858204i \(0.671580\pi\)
\(422\) −15.5690 −0.757885
\(423\) 6.08695 0.295958
\(424\) 20.4993 0.995533
\(425\) 0 0
\(426\) 6.78319 0.328646
\(427\) −0.869993 −0.0421019
\(428\) 2.20064 0.106372
\(429\) −4.90702 −0.236913
\(430\) 17.7503 0.855995
\(431\) −21.0432 −1.01362 −0.506809 0.862059i \(-0.669175\pi\)
−0.506809 + 0.862059i \(0.669175\pi\)
\(432\) 7.81697 0.376094
\(433\) 37.1262 1.78417 0.892084 0.451869i \(-0.149242\pi\)
0.892084 + 0.451869i \(0.149242\pi\)
\(434\) 20.5905 0.988375
\(435\) −13.7462 −0.659082
\(436\) −21.8579 −1.04680
\(437\) 32.1016 1.53563
\(438\) −20.1990 −0.965145
\(439\) −0.471326 −0.0224952 −0.0112476 0.999937i \(-0.503580\pi\)
−0.0112476 + 0.999937i \(0.503580\pi\)
\(440\) −8.94182 −0.426285
\(441\) −3.13238 −0.149161
\(442\) 0 0
\(443\) −11.0249 −0.523808 −0.261904 0.965094i \(-0.584350\pi\)
−0.261904 + 0.965094i \(0.584350\pi\)
\(444\) 25.5021 1.21028
\(445\) −2.19350 −0.103982
\(446\) 6.92084 0.327711
\(447\) −29.0932 −1.37606
\(448\) 42.8751 2.02566
\(449\) −17.2633 −0.814703 −0.407352 0.913271i \(-0.633548\pi\)
−0.407352 + 0.913271i \(0.633548\pi\)
\(450\) −1.26330 −0.0595525
\(451\) −10.7372 −0.505593
\(452\) −56.7136 −2.66758
\(453\) −13.9870 −0.657167
\(454\) −50.6262 −2.37600
\(455\) 4.51162 0.211508
\(456\) 20.5429 0.962011
\(457\) 11.2676 0.527078 0.263539 0.964649i \(-0.415110\pi\)
0.263539 + 0.964649i \(0.415110\pi\)
\(458\) −28.0837 −1.31227
\(459\) 0 0
\(460\) −31.1930 −1.45438
\(461\) 30.0075 1.39759 0.698794 0.715323i \(-0.253720\pi\)
0.698794 + 0.715323i \(0.253720\pi\)
\(462\) −32.8235 −1.52709
\(463\) −17.1592 −0.797457 −0.398728 0.917069i \(-0.630548\pi\)
−0.398728 + 0.917069i \(0.630548\pi\)
\(464\) 12.3348 0.572627
\(465\) 3.83554 0.177869
\(466\) −23.6806 −1.09698
\(467\) −26.5914 −1.23051 −0.615253 0.788330i \(-0.710946\pi\)
−0.615253 + 0.788330i \(0.710946\pi\)
\(468\) 2.38908 0.110435
\(469\) 25.9087 1.19635
\(470\) −26.6522 −1.22937
\(471\) −28.6291 −1.31916
\(472\) −16.1001 −0.741066
\(473\) −18.7366 −0.861512
\(474\) −33.3504 −1.53183
\(475\) −3.63431 −0.166754
\(476\) 0 0
\(477\) −3.05707 −0.139974
\(478\) −39.1011 −1.78844
\(479\) −22.9101 −1.04679 −0.523395 0.852090i \(-0.675335\pi\)
−0.523395 + 0.852090i \(0.675335\pi\)
\(480\) 6.10736 0.278761
\(481\) 5.79557 0.264255
\(482\) 13.9280 0.634402
\(483\) −49.6552 −2.25939
\(484\) −17.0806 −0.776392
\(485\) −9.82039 −0.445921
\(486\) −12.9603 −0.587889
\(487\) −15.7135 −0.712048 −0.356024 0.934477i \(-0.615868\pi\)
−0.356024 + 0.934477i \(0.615868\pi\)
\(488\) 0.874773 0.0395991
\(489\) 14.6971 0.664627
\(490\) 13.7154 0.619597
\(491\) −0.859183 −0.0387744 −0.0193872 0.999812i \(-0.506172\pi\)
−0.0193872 + 0.999812i \(0.506172\pi\)
\(492\) −23.9693 −1.08062
\(493\) 0 0
\(494\) 10.7655 0.484362
\(495\) 1.33350 0.0599363
\(496\) −3.44170 −0.154537
\(497\) 6.58317 0.295296
\(498\) −27.0021 −1.20999
\(499\) −22.6396 −1.01349 −0.506744 0.862097i \(-0.669151\pi\)
−0.506744 + 0.862097i \(0.669151\pi\)
\(500\) 3.53144 0.157931
\(501\) −14.5657 −0.650746
\(502\) 18.2806 0.815904
\(503\) 17.1150 0.763121 0.381560 0.924344i \(-0.375387\pi\)
0.381560 + 0.924344i \(0.375387\pi\)
\(504\) 6.93023 0.308697
\(505\) −5.46415 −0.243152
\(506\) 51.5739 2.29274
\(507\) 17.9121 0.795504
\(508\) −20.8986 −0.927225
\(509\) −29.7081 −1.31679 −0.658393 0.752674i \(-0.728764\pi\)
−0.658393 + 0.752674i \(0.728764\pi\)
\(510\) 0 0
\(511\) −19.6034 −0.867203
\(512\) −15.6244 −0.690508
\(513\) −20.1741 −0.890709
\(514\) −18.9701 −0.836737
\(515\) 7.16074 0.315540
\(516\) −41.8271 −1.84134
\(517\) 28.1332 1.23730
\(518\) 38.7672 1.70333
\(519\) 6.74786 0.296198
\(520\) −4.53641 −0.198935
\(521\) 38.6564 1.69357 0.846784 0.531936i \(-0.178535\pi\)
0.846784 + 0.531936i \(0.178535\pi\)
\(522\) −11.0655 −0.484323
\(523\) 0.599508 0.0262147 0.0131073 0.999914i \(-0.495828\pi\)
0.0131073 + 0.999914i \(0.495828\pi\)
\(524\) 56.9295 2.48698
\(525\) 5.62161 0.245347
\(526\) −50.1547 −2.18685
\(527\) 0 0
\(528\) 5.48646 0.238767
\(529\) 55.0206 2.39220
\(530\) 13.3856 0.581433
\(531\) 2.40101 0.104195
\(532\) 45.9743 1.99324
\(533\) −5.44723 −0.235946
\(534\) 8.09611 0.350353
\(535\) 0.623156 0.0269414
\(536\) −26.0511 −1.12523
\(537\) 0.184678 0.00796945
\(538\) −9.88234 −0.426058
\(539\) −14.4775 −0.623591
\(540\) 19.6031 0.843582
\(541\) −39.7072 −1.70715 −0.853573 0.520973i \(-0.825569\pi\)
−0.853573 + 0.520973i \(0.825569\pi\)
\(542\) 58.1239 2.49663
\(543\) −3.64660 −0.156491
\(544\) 0 0
\(545\) −6.18952 −0.265130
\(546\) −16.6522 −0.712649
\(547\) −4.03770 −0.172639 −0.0863197 0.996267i \(-0.527511\pi\)
−0.0863197 + 0.996267i \(0.527511\pi\)
\(548\) −60.5007 −2.58446
\(549\) −0.130455 −0.00556770
\(550\) −5.83882 −0.248968
\(551\) −31.8336 −1.35616
\(552\) 49.9281 2.12508
\(553\) −32.3670 −1.37638
\(554\) −47.1854 −2.00472
\(555\) 7.22144 0.306533
\(556\) 7.53283 0.319463
\(557\) 5.42781 0.229984 0.114992 0.993366i \(-0.463316\pi\)
0.114992 + 0.993366i \(0.463316\pi\)
\(558\) 3.08754 0.130706
\(559\) −9.50557 −0.402043
\(560\) −5.04437 −0.213163
\(561\) 0 0
\(562\) 59.2222 2.49814
\(563\) −5.18858 −0.218673 −0.109336 0.994005i \(-0.534873\pi\)
−0.109336 + 0.994005i \(0.534873\pi\)
\(564\) 62.8037 2.64451
\(565\) −16.0596 −0.675632
\(566\) −19.9596 −0.838966
\(567\) 25.4333 1.06810
\(568\) −6.61934 −0.277741
\(569\) −11.9963 −0.502911 −0.251455 0.967869i \(-0.580909\pi\)
−0.251455 + 0.967869i \(0.580909\pi\)
\(570\) 13.4141 0.561855
\(571\) −43.5118 −1.82091 −0.910456 0.413606i \(-0.864269\pi\)
−0.910456 + 0.413606i \(0.864269\pi\)
\(572\) 11.0421 0.461692
\(573\) 23.0102 0.961263
\(574\) −36.4371 −1.52085
\(575\) −8.83293 −0.368358
\(576\) 6.42912 0.267880
\(577\) −27.7097 −1.15357 −0.576784 0.816897i \(-0.695693\pi\)
−0.576784 + 0.816897i \(0.695693\pi\)
\(578\) 0 0
\(579\) −13.1764 −0.547591
\(580\) 30.9326 1.28441
\(581\) −26.2059 −1.08720
\(582\) 36.2467 1.50247
\(583\) −14.1294 −0.585180
\(584\) 19.7111 0.815651
\(585\) 0.676517 0.0279705
\(586\) 61.1196 2.52483
\(587\) 4.37916 0.180747 0.0903736 0.995908i \(-0.471194\pi\)
0.0903736 + 0.995908i \(0.471194\pi\)
\(588\) −32.3192 −1.33282
\(589\) 8.88237 0.365992
\(590\) −10.5130 −0.432814
\(591\) 10.4856 0.431320
\(592\) −6.47993 −0.266324
\(593\) −35.8783 −1.47335 −0.736673 0.676250i \(-0.763604\pi\)
−0.736673 + 0.676250i \(0.763604\pi\)
\(594\) −32.4114 −1.32985
\(595\) 0 0
\(596\) 65.4673 2.68164
\(597\) −29.6165 −1.21212
\(598\) 26.1647 1.06995
\(599\) 11.1415 0.455230 0.227615 0.973751i \(-0.426907\pi\)
0.227615 + 0.973751i \(0.426907\pi\)
\(600\) −5.65249 −0.230762
\(601\) 20.4505 0.834193 0.417096 0.908862i \(-0.363048\pi\)
0.417096 + 0.908862i \(0.363048\pi\)
\(602\) −63.5837 −2.59148
\(603\) 3.88501 0.158210
\(604\) 31.4744 1.28067
\(605\) −4.83672 −0.196641
\(606\) 20.1680 0.819268
\(607\) 1.57554 0.0639492 0.0319746 0.999489i \(-0.489820\pi\)
0.0319746 + 0.999489i \(0.489820\pi\)
\(608\) 14.1435 0.573593
\(609\) 49.2407 1.99534
\(610\) 0.571208 0.0231275
\(611\) 14.2727 0.577410
\(612\) 0 0
\(613\) −22.4800 −0.907959 −0.453980 0.891012i \(-0.649996\pi\)
−0.453980 + 0.891012i \(0.649996\pi\)
\(614\) 39.8589 1.60857
\(615\) −6.78740 −0.273694
\(616\) 32.0307 1.29055
\(617\) −27.1976 −1.09493 −0.547467 0.836827i \(-0.684408\pi\)
−0.547467 + 0.836827i \(0.684408\pi\)
\(618\) −26.4300 −1.06317
\(619\) −14.3702 −0.577588 −0.288794 0.957391i \(-0.593254\pi\)
−0.288794 + 0.957391i \(0.593254\pi\)
\(620\) −8.63096 −0.346628
\(621\) −49.0317 −1.96757
\(622\) 40.4303 1.62111
\(623\) 7.85738 0.314799
\(624\) 2.78342 0.111426
\(625\) 1.00000 0.0400000
\(626\) 13.9112 0.556003
\(627\) −14.1595 −0.565476
\(628\) 64.4228 2.57075
\(629\) 0 0
\(630\) 4.52529 0.180292
\(631\) −23.2691 −0.926330 −0.463165 0.886272i \(-0.653286\pi\)
−0.463165 + 0.886272i \(0.653286\pi\)
\(632\) 32.5448 1.29456
\(633\) 10.3887 0.412913
\(634\) 1.50657 0.0598334
\(635\) −5.91786 −0.234843
\(636\) −31.5421 −1.25073
\(637\) −7.34480 −0.291012
\(638\) −51.1434 −2.02478
\(639\) 0.987146 0.0390509
\(640\) −20.3671 −0.805079
\(641\) −5.38403 −0.212656 −0.106328 0.994331i \(-0.533909\pi\)
−0.106328 + 0.994331i \(0.533909\pi\)
\(642\) −2.30004 −0.0907754
\(643\) −16.1891 −0.638438 −0.319219 0.947681i \(-0.603420\pi\)
−0.319219 + 0.947681i \(0.603420\pi\)
\(644\) 111.737 4.40306
\(645\) −11.8442 −0.466365
\(646\) 0 0
\(647\) −25.8383 −1.01581 −0.507904 0.861413i \(-0.669580\pi\)
−0.507904 + 0.861413i \(0.669580\pi\)
\(648\) −25.5730 −1.00460
\(649\) 11.0972 0.435604
\(650\) −2.96218 −0.116186
\(651\) −13.7394 −0.538489
\(652\) −33.0723 −1.29521
\(653\) 12.4784 0.488319 0.244159 0.969735i \(-0.421488\pi\)
0.244159 + 0.969735i \(0.421488\pi\)
\(654\) 22.8452 0.893320
\(655\) 16.1207 0.629889
\(656\) 6.09045 0.237792
\(657\) −2.93953 −0.114682
\(658\) 95.4713 3.72186
\(659\) 41.7109 1.62483 0.812413 0.583082i \(-0.198153\pi\)
0.812413 + 0.583082i \(0.198153\pi\)
\(660\) 13.7587 0.535557
\(661\) 18.1720 0.706808 0.353404 0.935471i \(-0.385024\pi\)
0.353404 + 0.935471i \(0.385024\pi\)
\(662\) 27.4252 1.06591
\(663\) 0 0
\(664\) 26.3499 1.02257
\(665\) 13.0186 0.504838
\(666\) 5.81313 0.225254
\(667\) −77.3693 −2.99575
\(668\) 32.7765 1.26816
\(669\) −4.61806 −0.178545
\(670\) −17.0108 −0.657184
\(671\) −0.602949 −0.0232766
\(672\) −21.8773 −0.843936
\(673\) 6.39677 0.246577 0.123289 0.992371i \(-0.460656\pi\)
0.123289 + 0.992371i \(0.460656\pi\)
\(674\) −72.6282 −2.79753
\(675\) 5.55101 0.213659
\(676\) −40.3069 −1.55026
\(677\) 41.8887 1.60991 0.804957 0.593334i \(-0.202189\pi\)
0.804957 + 0.593334i \(0.202189\pi\)
\(678\) 59.2753 2.27645
\(679\) 35.1779 1.35000
\(680\) 0 0
\(681\) 33.7812 1.29450
\(682\) 14.2703 0.546436
\(683\) 30.3064 1.15964 0.579820 0.814744i \(-0.303123\pi\)
0.579820 + 0.814744i \(0.303123\pi\)
\(684\) 6.89384 0.263593
\(685\) −17.1320 −0.654580
\(686\) 9.84348 0.375826
\(687\) 18.7394 0.714953
\(688\) 10.6280 0.405189
\(689\) −7.16820 −0.273087
\(690\) 32.6020 1.24114
\(691\) −5.79281 −0.220369 −0.110184 0.993911i \(-0.535144\pi\)
−0.110184 + 0.993911i \(0.535144\pi\)
\(692\) −15.1844 −0.577225
\(693\) −4.77676 −0.181454
\(694\) 0.0352765 0.00133908
\(695\) 2.13307 0.0809121
\(696\) −49.5113 −1.87672
\(697\) 0 0
\(698\) −8.59600 −0.325363
\(699\) 15.8013 0.597662
\(700\) −12.6501 −0.478128
\(701\) 5.24783 0.198208 0.0991039 0.995077i \(-0.468402\pi\)
0.0991039 + 0.995077i \(0.468402\pi\)
\(702\) −16.4431 −0.620604
\(703\) 16.7235 0.630738
\(704\) 29.7146 1.11991
\(705\) 17.7842 0.669790
\(706\) 8.99209 0.338422
\(707\) 19.5733 0.736129
\(708\) 24.7731 0.931030
\(709\) 41.7572 1.56823 0.784113 0.620618i \(-0.213118\pi\)
0.784113 + 0.620618i \(0.213118\pi\)
\(710\) −4.32229 −0.162213
\(711\) −4.85343 −0.182018
\(712\) −7.90055 −0.296086
\(713\) 21.5879 0.808475
\(714\) 0 0
\(715\) 3.12678 0.116935
\(716\) −0.415573 −0.0155307
\(717\) 26.0910 0.974385
\(718\) −15.7501 −0.587789
\(719\) −10.1819 −0.379719 −0.189860 0.981811i \(-0.560803\pi\)
−0.189860 + 0.981811i \(0.560803\pi\)
\(720\) −0.756403 −0.0281895
\(721\) −25.6506 −0.955280
\(722\) −13.6217 −0.506947
\(723\) −9.29370 −0.345636
\(724\) 8.20580 0.304966
\(725\) 8.75919 0.325308
\(726\) 17.8521 0.662555
\(727\) 46.0182 1.70672 0.853361 0.521321i \(-0.174561\pi\)
0.853361 + 0.521321i \(0.174561\pi\)
\(728\) 16.2500 0.602264
\(729\) 29.9482 1.10919
\(730\) 12.8709 0.476374
\(731\) 0 0
\(732\) −1.34601 −0.0497498
\(733\) −2.55919 −0.0945257 −0.0472629 0.998882i \(-0.515050\pi\)
−0.0472629 + 0.998882i \(0.515050\pi\)
\(734\) −54.1586 −1.99903
\(735\) −9.15184 −0.337571
\(736\) 34.3746 1.26707
\(737\) 17.9561 0.661420
\(738\) −5.46373 −0.201123
\(739\) −2.47667 −0.0911057 −0.0455528 0.998962i \(-0.514505\pi\)
−0.0455528 + 0.998962i \(0.514505\pi\)
\(740\) −16.2501 −0.597366
\(741\) −7.18347 −0.263891
\(742\) −47.9488 −1.76026
\(743\) 1.59477 0.0585064 0.0292532 0.999572i \(-0.490687\pi\)
0.0292532 + 0.999572i \(0.490687\pi\)
\(744\) 13.8149 0.506478
\(745\) 18.5384 0.679194
\(746\) 55.8114 2.04340
\(747\) −3.92957 −0.143776
\(748\) 0 0
\(749\) −2.23222 −0.0815636
\(750\) −3.69096 −0.134775
\(751\) 12.7441 0.465041 0.232520 0.972592i \(-0.425303\pi\)
0.232520 + 0.972592i \(0.425303\pi\)
\(752\) −15.9580 −0.581930
\(753\) −12.1981 −0.444523
\(754\) −25.9463 −0.944908
\(755\) 8.91261 0.324363
\(756\) −70.2207 −2.55390
\(757\) −46.0573 −1.67398 −0.836991 0.547217i \(-0.815687\pi\)
−0.836991 + 0.547217i \(0.815687\pi\)
\(758\) −7.00441 −0.254412
\(759\) −34.4136 −1.24914
\(760\) −13.0901 −0.474827
\(761\) −29.7003 −1.07664 −0.538318 0.842742i \(-0.680940\pi\)
−0.538318 + 0.842742i \(0.680940\pi\)
\(762\) 21.8426 0.791273
\(763\) 22.1716 0.802666
\(764\) −51.7788 −1.87329
\(765\) 0 0
\(766\) −57.4385 −2.07534
\(767\) 5.62989 0.203284
\(768\) 37.6063 1.35700
\(769\) 43.8299 1.58055 0.790273 0.612755i \(-0.209939\pi\)
0.790273 + 0.612755i \(0.209939\pi\)
\(770\) 20.9154 0.753738
\(771\) 12.6582 0.455873
\(772\) 29.6502 1.06713
\(773\) −27.9122 −1.00393 −0.501966 0.864887i \(-0.667390\pi\)
−0.501966 + 0.864887i \(0.667390\pi\)
\(774\) −9.53437 −0.342706
\(775\) −2.44403 −0.0877922
\(776\) −35.3711 −1.26975
\(777\) −25.8681 −0.928013
\(778\) 3.97159 0.142388
\(779\) −15.7183 −0.563167
\(780\) 6.98014 0.249929
\(781\) 4.56247 0.163258
\(782\) 0 0
\(783\) 48.6224 1.73762
\(784\) 8.21211 0.293289
\(785\) 18.2426 0.651107
\(786\) −59.5010 −2.12233
\(787\) −30.0226 −1.07019 −0.535096 0.844792i \(-0.679724\pi\)
−0.535096 + 0.844792i \(0.679724\pi\)
\(788\) −23.5953 −0.840549
\(789\) 33.4667 1.19144
\(790\) 21.2511 0.756079
\(791\) 57.5275 2.04544
\(792\) 4.80300 0.170667
\(793\) −0.305891 −0.0108625
\(794\) −74.1451 −2.63131
\(795\) −8.93178 −0.316778
\(796\) 66.6447 2.36216
\(797\) −5.16206 −0.182850 −0.0914249 0.995812i \(-0.529142\pi\)
−0.0914249 + 0.995812i \(0.529142\pi\)
\(798\) −48.0509 −1.70099
\(799\) 0 0
\(800\) −3.89165 −0.137591
\(801\) 1.17821 0.0416301
\(802\) 11.9149 0.420730
\(803\) −13.5861 −0.479445
\(804\) 40.0846 1.41367
\(805\) 31.6406 1.11519
\(806\) 7.23966 0.255006
\(807\) 6.59417 0.232126
\(808\) −19.6808 −0.692369
\(809\) 22.2343 0.781717 0.390859 0.920451i \(-0.372178\pi\)
0.390859 + 0.920451i \(0.372178\pi\)
\(810\) −16.6987 −0.586731
\(811\) −15.6644 −0.550051 −0.275026 0.961437i \(-0.588686\pi\)
−0.275026 + 0.961437i \(0.588686\pi\)
\(812\) −110.804 −3.88847
\(813\) −38.7842 −1.36022
\(814\) 26.8676 0.941710
\(815\) −9.36510 −0.328045
\(816\) 0 0
\(817\) −27.4289 −0.959615
\(818\) −61.4266 −2.14773
\(819\) −2.42337 −0.0846793
\(820\) 15.2734 0.533370
\(821\) −34.9393 −1.21939 −0.609694 0.792637i \(-0.708708\pi\)
−0.609694 + 0.792637i \(0.708708\pi\)
\(822\) 63.2335 2.20552
\(823\) −2.44416 −0.0851980 −0.0425990 0.999092i \(-0.513564\pi\)
−0.0425990 + 0.999092i \(0.513564\pi\)
\(824\) 25.7916 0.898492
\(825\) 3.89606 0.135643
\(826\) 37.6589 1.31032
\(827\) 50.8219 1.76725 0.883626 0.468194i \(-0.155095\pi\)
0.883626 + 0.468194i \(0.155095\pi\)
\(828\) 16.7550 0.582275
\(829\) 41.5846 1.44429 0.722147 0.691740i \(-0.243156\pi\)
0.722147 + 0.691740i \(0.243156\pi\)
\(830\) 17.2059 0.597226
\(831\) 31.4854 1.09222
\(832\) 15.0750 0.522631
\(833\) 0 0
\(834\) −7.87308 −0.272623
\(835\) 9.28133 0.321194
\(836\) 31.8625 1.10199
\(837\) −13.5668 −0.468939
\(838\) −17.1655 −0.592971
\(839\) 4.44768 0.153551 0.0767755 0.997048i \(-0.475538\pi\)
0.0767755 + 0.997048i \(0.475538\pi\)
\(840\) 20.2479 0.698620
\(841\) 47.7235 1.64564
\(842\) −49.5415 −1.70731
\(843\) −39.5171 −1.36104
\(844\) −23.3772 −0.804676
\(845\) −11.4137 −0.392643
\(846\) 14.3159 0.492191
\(847\) 17.3257 0.595320
\(848\) 8.01465 0.275224
\(849\) 13.3184 0.457088
\(850\) 0 0
\(851\) 40.6451 1.39330
\(852\) 10.1851 0.348937
\(853\) 17.8866 0.612426 0.306213 0.951963i \(-0.400938\pi\)
0.306213 + 0.951963i \(0.400938\pi\)
\(854\) −2.04614 −0.0700174
\(855\) 1.95213 0.0667615
\(856\) 2.24449 0.0767150
\(857\) −38.5585 −1.31713 −0.658566 0.752523i \(-0.728837\pi\)
−0.658566 + 0.752523i \(0.728837\pi\)
\(858\) −11.5408 −0.393997
\(859\) 3.50985 0.119755 0.0598773 0.998206i \(-0.480929\pi\)
0.0598773 + 0.998206i \(0.480929\pi\)
\(860\) 26.6525 0.908843
\(861\) 24.3133 0.828595
\(862\) −49.4916 −1.68569
\(863\) −21.9552 −0.747365 −0.373683 0.927557i \(-0.621905\pi\)
−0.373683 + 0.927557i \(0.621905\pi\)
\(864\) −21.6026 −0.734935
\(865\) −4.29978 −0.146197
\(866\) 87.3171 2.96715
\(867\) 0 0
\(868\) 30.9171 1.04940
\(869\) −22.4320 −0.760952
\(870\) −32.3298 −1.09608
\(871\) 9.10956 0.308666
\(872\) −22.2934 −0.754951
\(873\) 5.27492 0.178529
\(874\) 75.4998 2.55382
\(875\) −3.58212 −0.121098
\(876\) −30.3293 −1.02473
\(877\) 5.65595 0.190988 0.0954939 0.995430i \(-0.469557\pi\)
0.0954939 + 0.995430i \(0.469557\pi\)
\(878\) −1.10851 −0.0374105
\(879\) −40.7832 −1.37558
\(880\) −3.49601 −0.117850
\(881\) −34.3915 −1.15868 −0.579340 0.815086i \(-0.696689\pi\)
−0.579340 + 0.815086i \(0.696689\pi\)
\(882\) −7.36706 −0.248062
\(883\) 58.3115 1.96234 0.981170 0.193148i \(-0.0618697\pi\)
0.981170 + 0.193148i \(0.0618697\pi\)
\(884\) 0 0
\(885\) 7.01500 0.235807
\(886\) −25.9295 −0.871117
\(887\) 44.5012 1.49420 0.747102 0.664710i \(-0.231445\pi\)
0.747102 + 0.664710i \(0.231445\pi\)
\(888\) 26.0102 0.872846
\(889\) 21.1985 0.710975
\(890\) −5.15889 −0.172927
\(891\) 17.6266 0.590513
\(892\) 10.3918 0.347944
\(893\) 41.1847 1.37819
\(894\) −68.4244 −2.28845
\(895\) −0.117678 −0.00393354
\(896\) 72.9573 2.43733
\(897\) −17.4589 −0.582935
\(898\) −40.6015 −1.35489
\(899\) −21.4077 −0.713988
\(900\) −1.89688 −0.0632292
\(901\) 0 0
\(902\) −25.2527 −0.840824
\(903\) 42.4274 1.41190
\(904\) −57.8436 −1.92385
\(905\) 2.32364 0.0772404
\(906\) −32.8961 −1.09290
\(907\) −35.3726 −1.17453 −0.587264 0.809396i \(-0.699795\pi\)
−0.587264 + 0.809396i \(0.699795\pi\)
\(908\) −76.0165 −2.52270
\(909\) 2.93501 0.0973482
\(910\) 10.6109 0.351748
\(911\) −49.1810 −1.62944 −0.814719 0.579856i \(-0.803109\pi\)
−0.814719 + 0.579856i \(0.803109\pi\)
\(912\) 8.03172 0.265957
\(913\) −18.1620 −0.601076
\(914\) 26.5004 0.876554
\(915\) −0.381149 −0.0126004
\(916\) −42.1685 −1.39329
\(917\) −57.7465 −1.90696
\(918\) 0 0
\(919\) 49.6635 1.63825 0.819123 0.573618i \(-0.194460\pi\)
0.819123 + 0.573618i \(0.194460\pi\)
\(920\) −31.8145 −1.04889
\(921\) −26.5966 −0.876387
\(922\) 70.5747 2.32425
\(923\) 2.31466 0.0761878
\(924\) −49.2854 −1.62137
\(925\) −4.60155 −0.151298
\(926\) −40.3568 −1.32621
\(927\) −3.84631 −0.126329
\(928\) −34.0877 −1.11898
\(929\) 34.1165 1.11933 0.559664 0.828720i \(-0.310930\pi\)
0.559664 + 0.828720i \(0.310930\pi\)
\(930\) 9.02082 0.295804
\(931\) −21.1939 −0.694601
\(932\) −35.5571 −1.16471
\(933\) −26.9779 −0.883216
\(934\) −62.5405 −2.04639
\(935\) 0 0
\(936\) 2.43668 0.0796455
\(937\) −38.5275 −1.25864 −0.629319 0.777147i \(-0.716666\pi\)
−0.629319 + 0.777147i \(0.716666\pi\)
\(938\) 60.9347 1.98959
\(939\) −9.28250 −0.302923
\(940\) −40.0189 −1.30527
\(941\) 37.1363 1.21061 0.605305 0.795994i \(-0.293051\pi\)
0.605305 + 0.795994i \(0.293051\pi\)
\(942\) −67.3328 −2.19382
\(943\) −38.2022 −1.24403
\(944\) −6.29469 −0.204875
\(945\) −19.8844 −0.646840
\(946\) −44.0667 −1.43273
\(947\) −2.23113 −0.0725021 −0.0362510 0.999343i \(-0.511542\pi\)
−0.0362510 + 0.999343i \(0.511542\pi\)
\(948\) −50.0765 −1.62641
\(949\) −6.89259 −0.223743
\(950\) −8.54755 −0.277319
\(951\) −1.00528 −0.0325986
\(952\) 0 0
\(953\) 25.8280 0.836651 0.418326 0.908297i \(-0.362617\pi\)
0.418326 + 0.908297i \(0.362617\pi\)
\(954\) −7.18992 −0.232782
\(955\) −14.6622 −0.474458
\(956\) −58.7114 −1.89886
\(957\) 34.1264 1.10315
\(958\) −53.8823 −1.74086
\(959\) 61.3689 1.98171
\(960\) 18.7838 0.606246
\(961\) −25.0267 −0.807313
\(962\) 13.6306 0.439469
\(963\) −0.334721 −0.0107862
\(964\) 20.9132 0.673569
\(965\) 8.39606 0.270279
\(966\) −116.784 −3.75747
\(967\) −31.4013 −1.00980 −0.504899 0.863178i \(-0.668470\pi\)
−0.504899 + 0.863178i \(0.668470\pi\)
\(968\) −17.4209 −0.559930
\(969\) 0 0
\(970\) −23.0966 −0.741587
\(971\) 41.1265 1.31981 0.659906 0.751348i \(-0.270596\pi\)
0.659906 + 0.751348i \(0.270596\pi\)
\(972\) −19.4602 −0.624185
\(973\) −7.64093 −0.244957
\(974\) −36.9567 −1.18417
\(975\) 1.97657 0.0633009
\(976\) 0.342012 0.0109475
\(977\) 27.8890 0.892250 0.446125 0.894971i \(-0.352804\pi\)
0.446125 + 0.894971i \(0.352804\pi\)
\(978\) 34.5662 1.10530
\(979\) 5.44557 0.174041
\(980\) 20.5940 0.657851
\(981\) 3.32463 0.106147
\(982\) −2.02071 −0.0644836
\(983\) 56.6933 1.80824 0.904118 0.427283i \(-0.140529\pi\)
0.904118 + 0.427283i \(0.140529\pi\)
\(984\) −24.4469 −0.779338
\(985\) −6.68150 −0.212890
\(986\) 0 0
\(987\) −63.7050 −2.02775
\(988\) 16.1647 0.514266
\(989\) −66.6639 −2.11979
\(990\) 3.13626 0.0996768
\(991\) 35.8868 1.13998 0.569991 0.821651i \(-0.306947\pi\)
0.569991 + 0.821651i \(0.306947\pi\)
\(992\) 9.51130 0.301984
\(993\) −18.3000 −0.580732
\(994\) 15.4830 0.491090
\(995\) 18.8718 0.598276
\(996\) −40.5444 −1.28470
\(997\) −32.9550 −1.04370 −0.521848 0.853038i \(-0.674757\pi\)
−0.521848 + 0.853038i \(0.674757\pi\)
\(998\) −53.2461 −1.68548
\(999\) −25.5433 −0.808153
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.p.1.12 12
5.4 even 2 7225.2.a.bs.1.1 12
17.3 odd 16 85.2.l.a.26.6 24
17.4 even 4 1445.2.d.j.866.1 24
17.6 odd 16 85.2.l.a.36.6 yes 24
17.13 even 4 1445.2.d.j.866.2 24
17.16 even 2 1445.2.a.q.1.12 12
51.20 even 16 765.2.be.b.451.1 24
51.23 even 16 765.2.be.b.631.1 24
85.3 even 16 425.2.n.c.349.1 24
85.23 even 16 425.2.n.f.274.6 24
85.37 even 16 425.2.n.f.349.6 24
85.54 odd 16 425.2.m.b.26.1 24
85.57 even 16 425.2.n.c.274.1 24
85.74 odd 16 425.2.m.b.376.1 24
85.84 even 2 7225.2.a.bq.1.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.6 24 17.3 odd 16
85.2.l.a.36.6 yes 24 17.6 odd 16
425.2.m.b.26.1 24 85.54 odd 16
425.2.m.b.376.1 24 85.74 odd 16
425.2.n.c.274.1 24 85.57 even 16
425.2.n.c.349.1 24 85.3 even 16
425.2.n.f.274.6 24 85.23 even 16
425.2.n.f.349.6 24 85.37 even 16
765.2.be.b.451.1 24 51.20 even 16
765.2.be.b.631.1 24 51.23 even 16
1445.2.a.p.1.12 12 1.1 even 1 trivial
1445.2.a.q.1.12 12 17.16 even 2
1445.2.d.j.866.1 24 17.4 even 4
1445.2.d.j.866.2 24 17.13 even 4
7225.2.a.bq.1.1 12 85.84 even 2
7225.2.a.bs.1.1 12 5.4 even 2