Properties

Label 1445.2.a.p.1.11
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-2.04505\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.04505 q^{2} -3.19566 q^{3} +2.18224 q^{4} +1.00000 q^{5} -6.53528 q^{6} +1.17743 q^{7} +0.372688 q^{8} +7.21221 q^{9} +2.04505 q^{10} -4.92251 q^{11} -6.97368 q^{12} -2.46296 q^{13} +2.40791 q^{14} -3.19566 q^{15} -3.60231 q^{16} +14.7494 q^{18} +2.04173 q^{19} +2.18224 q^{20} -3.76267 q^{21} -10.0668 q^{22} -0.119023 q^{23} -1.19098 q^{24} +1.00000 q^{25} -5.03689 q^{26} -13.4608 q^{27} +2.56944 q^{28} -1.06541 q^{29} -6.53528 q^{30} -2.79577 q^{31} -8.11229 q^{32} +15.7307 q^{33} +1.17743 q^{35} +15.7388 q^{36} +2.31477 q^{37} +4.17544 q^{38} +7.87078 q^{39} +0.372688 q^{40} -0.717574 q^{41} -7.69485 q^{42} -10.0958 q^{43} -10.7421 q^{44} +7.21221 q^{45} -0.243408 q^{46} -3.39482 q^{47} +11.5117 q^{48} -5.61365 q^{49} +2.04505 q^{50} -5.37477 q^{52} -13.9241 q^{53} -27.5280 q^{54} -4.92251 q^{55} +0.438815 q^{56} -6.52466 q^{57} -2.17882 q^{58} +1.51711 q^{59} -6.97368 q^{60} -8.08120 q^{61} -5.71749 q^{62} +8.49190 q^{63} -9.38544 q^{64} -2.46296 q^{65} +32.1700 q^{66} -4.92534 q^{67} +0.380355 q^{69} +2.40791 q^{70} +6.63635 q^{71} +2.68790 q^{72} +3.66716 q^{73} +4.73382 q^{74} -3.19566 q^{75} +4.45554 q^{76} -5.79593 q^{77} +16.0962 q^{78} -8.18051 q^{79} -3.60231 q^{80} +21.3794 q^{81} -1.46748 q^{82} -6.08874 q^{83} -8.21104 q^{84} -20.6464 q^{86} +3.40468 q^{87} -1.83456 q^{88} +8.46170 q^{89} +14.7494 q^{90} -2.89997 q^{91} -0.259736 q^{92} +8.93431 q^{93} -6.94259 q^{94} +2.04173 q^{95} +25.9241 q^{96} +4.48946 q^{97} -11.4802 q^{98} -35.5022 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 8 q^{3} + 12 q^{4} + 12 q^{5} - 8 q^{6} - 16 q^{7} - 12 q^{8} + 12 q^{9} - 4 q^{10} - 16 q^{11} - 16 q^{12} - 8 q^{13} + 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} + 12 q^{20} + 16 q^{21}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.04505 1.44607 0.723035 0.690811i \(-0.242746\pi\)
0.723035 + 0.690811i \(0.242746\pi\)
\(3\) −3.19566 −1.84501 −0.922506 0.385982i \(-0.873863\pi\)
−0.922506 + 0.385982i \(0.873863\pi\)
\(4\) 2.18224 1.09112
\(5\) 1.00000 0.447214
\(6\) −6.53528 −2.66802
\(7\) 1.17743 0.445028 0.222514 0.974930i \(-0.428574\pi\)
0.222514 + 0.974930i \(0.428574\pi\)
\(8\) 0.372688 0.131765
\(9\) 7.21221 2.40407
\(10\) 2.04505 0.646702
\(11\) −4.92251 −1.48419 −0.742097 0.670293i \(-0.766169\pi\)
−0.742097 + 0.670293i \(0.766169\pi\)
\(12\) −6.97368 −2.01313
\(13\) −2.46296 −0.683103 −0.341551 0.939863i \(-0.610952\pi\)
−0.341551 + 0.939863i \(0.610952\pi\)
\(14\) 2.40791 0.643541
\(15\) −3.19566 −0.825115
\(16\) −3.60231 −0.900578
\(17\) 0 0
\(18\) 14.7494 3.47646
\(19\) 2.04173 0.468405 0.234202 0.972188i \(-0.424752\pi\)
0.234202 + 0.972188i \(0.424752\pi\)
\(20\) 2.18224 0.487963
\(21\) −3.76267 −0.821082
\(22\) −10.0668 −2.14625
\(23\) −0.119023 −0.0248179 −0.0124090 0.999923i \(-0.503950\pi\)
−0.0124090 + 0.999923i \(0.503950\pi\)
\(24\) −1.19098 −0.243108
\(25\) 1.00000 0.200000
\(26\) −5.03689 −0.987815
\(27\) −13.4608 −2.59053
\(28\) 2.56944 0.485578
\(29\) −1.06541 −0.197841 −0.0989207 0.995095i \(-0.531539\pi\)
−0.0989207 + 0.995095i \(0.531539\pi\)
\(30\) −6.53528 −1.19317
\(31\) −2.79577 −0.502135 −0.251067 0.967970i \(-0.580782\pi\)
−0.251067 + 0.967970i \(0.580782\pi\)
\(32\) −8.11229 −1.43406
\(33\) 15.7307 2.73836
\(34\) 0 0
\(35\) 1.17743 0.199022
\(36\) 15.7388 2.62313
\(37\) 2.31477 0.380545 0.190273 0.981731i \(-0.439063\pi\)
0.190273 + 0.981731i \(0.439063\pi\)
\(38\) 4.17544 0.677346
\(39\) 7.87078 1.26033
\(40\) 0.372688 0.0589271
\(41\) −0.717574 −0.112066 −0.0560331 0.998429i \(-0.517845\pi\)
−0.0560331 + 0.998429i \(0.517845\pi\)
\(42\) −7.69485 −1.18734
\(43\) −10.0958 −1.53960 −0.769798 0.638288i \(-0.779643\pi\)
−0.769798 + 0.638288i \(0.779643\pi\)
\(44\) −10.7421 −1.61943
\(45\) 7.21221 1.07513
\(46\) −0.243408 −0.0358885
\(47\) −3.39482 −0.495186 −0.247593 0.968864i \(-0.579640\pi\)
−0.247593 + 0.968864i \(0.579640\pi\)
\(48\) 11.5117 1.66158
\(49\) −5.61365 −0.801950
\(50\) 2.04505 0.289214
\(51\) 0 0
\(52\) −5.37477 −0.745347
\(53\) −13.9241 −1.91262 −0.956310 0.292355i \(-0.905561\pi\)
−0.956310 + 0.292355i \(0.905561\pi\)
\(54\) −27.5280 −3.74609
\(55\) −4.92251 −0.663752
\(56\) 0.438815 0.0586391
\(57\) −6.52466 −0.864213
\(58\) −2.17882 −0.286093
\(59\) 1.51711 0.197511 0.0987555 0.995112i \(-0.468514\pi\)
0.0987555 + 0.995112i \(0.468514\pi\)
\(60\) −6.97368 −0.900299
\(61\) −8.08120 −1.03469 −0.517346 0.855776i \(-0.673080\pi\)
−0.517346 + 0.855776i \(0.673080\pi\)
\(62\) −5.71749 −0.726122
\(63\) 8.49190 1.06988
\(64\) −9.38544 −1.17318
\(65\) −2.46296 −0.305493
\(66\) 32.1700 3.95986
\(67\) −4.92534 −0.601726 −0.300863 0.953667i \(-0.597275\pi\)
−0.300863 + 0.953667i \(0.597275\pi\)
\(68\) 0 0
\(69\) 0.380355 0.0457894
\(70\) 2.40791 0.287800
\(71\) 6.63635 0.787590 0.393795 0.919198i \(-0.371162\pi\)
0.393795 + 0.919198i \(0.371162\pi\)
\(72\) 2.68790 0.316773
\(73\) 3.66716 0.429209 0.214605 0.976701i \(-0.431154\pi\)
0.214605 + 0.976701i \(0.431154\pi\)
\(74\) 4.73382 0.550295
\(75\) −3.19566 −0.369003
\(76\) 4.45554 0.511086
\(77\) −5.79593 −0.660507
\(78\) 16.0962 1.82253
\(79\) −8.18051 −0.920380 −0.460190 0.887821i \(-0.652219\pi\)
−0.460190 + 0.887821i \(0.652219\pi\)
\(80\) −3.60231 −0.402751
\(81\) 21.3794 2.37549
\(82\) −1.46748 −0.162056
\(83\) −6.08874 −0.668326 −0.334163 0.942515i \(-0.608454\pi\)
−0.334163 + 0.942515i \(0.608454\pi\)
\(84\) −8.21104 −0.895898
\(85\) 0 0
\(86\) −20.6464 −2.22636
\(87\) 3.40468 0.365020
\(88\) −1.83456 −0.195565
\(89\) 8.46170 0.896938 0.448469 0.893798i \(-0.351969\pi\)
0.448469 + 0.893798i \(0.351969\pi\)
\(90\) 14.7494 1.55472
\(91\) −2.89997 −0.304000
\(92\) −0.259736 −0.0270793
\(93\) 8.93431 0.926445
\(94\) −6.94259 −0.716074
\(95\) 2.04173 0.209477
\(96\) 25.9241 2.64587
\(97\) 4.48946 0.455836 0.227918 0.973680i \(-0.426808\pi\)
0.227918 + 0.973680i \(0.426808\pi\)
\(98\) −11.4802 −1.15968
\(99\) −35.5022 −3.56811
\(100\) 2.18224 0.218224
\(101\) 17.7855 1.76972 0.884861 0.465854i \(-0.154253\pi\)
0.884861 + 0.465854i \(0.154253\pi\)
\(102\) 0 0
\(103\) −11.3352 −1.11689 −0.558445 0.829542i \(-0.688602\pi\)
−0.558445 + 0.829542i \(0.688602\pi\)
\(104\) −0.917916 −0.0900091
\(105\) −3.76267 −0.367199
\(106\) −28.4755 −2.76578
\(107\) −12.8865 −1.24579 −0.622893 0.782307i \(-0.714043\pi\)
−0.622893 + 0.782307i \(0.714043\pi\)
\(108\) −29.3747 −2.82658
\(109\) 11.3210 1.08436 0.542179 0.840263i \(-0.317599\pi\)
0.542179 + 0.840263i \(0.317599\pi\)
\(110\) −10.0668 −0.959832
\(111\) −7.39720 −0.702111
\(112\) −4.24148 −0.400782
\(113\) 5.85089 0.550405 0.275203 0.961386i \(-0.411255\pi\)
0.275203 + 0.961386i \(0.411255\pi\)
\(114\) −13.3433 −1.24971
\(115\) −0.119023 −0.0110989
\(116\) −2.32498 −0.215869
\(117\) −17.7634 −1.64223
\(118\) 3.10257 0.285615
\(119\) 0 0
\(120\) −1.19098 −0.108721
\(121\) 13.2311 1.20283
\(122\) −16.5265 −1.49624
\(123\) 2.29312 0.206764
\(124\) −6.10103 −0.547889
\(125\) 1.00000 0.0894427
\(126\) 17.3664 1.54712
\(127\) −6.80398 −0.603755 −0.301878 0.953347i \(-0.597613\pi\)
−0.301878 + 0.953347i \(0.597613\pi\)
\(128\) −2.96912 −0.262436
\(129\) 32.2627 2.84057
\(130\) −5.03689 −0.441764
\(131\) −1.90025 −0.166026 −0.0830128 0.996548i \(-0.526454\pi\)
−0.0830128 + 0.996548i \(0.526454\pi\)
\(132\) 34.3281 2.98787
\(133\) 2.40400 0.208453
\(134\) −10.0726 −0.870138
\(135\) −13.4608 −1.15852
\(136\) 0 0
\(137\) 19.3637 1.65435 0.827174 0.561946i \(-0.189947\pi\)
0.827174 + 0.561946i \(0.189947\pi\)
\(138\) 0.777847 0.0662147
\(139\) 8.27692 0.702039 0.351020 0.936368i \(-0.385835\pi\)
0.351020 + 0.936368i \(0.385835\pi\)
\(140\) 2.56944 0.217157
\(141\) 10.8487 0.913624
\(142\) 13.5717 1.13891
\(143\) 12.1240 1.01386
\(144\) −25.9806 −2.16505
\(145\) −1.06541 −0.0884773
\(146\) 7.49954 0.620666
\(147\) 17.9393 1.47961
\(148\) 5.05137 0.415220
\(149\) 4.93485 0.404279 0.202139 0.979357i \(-0.435211\pi\)
0.202139 + 0.979357i \(0.435211\pi\)
\(150\) −6.53528 −0.533604
\(151\) −0.712752 −0.0580029 −0.0290015 0.999579i \(-0.509233\pi\)
−0.0290015 + 0.999579i \(0.509233\pi\)
\(152\) 0.760928 0.0617194
\(153\) 0 0
\(154\) −11.8530 −0.955140
\(155\) −2.79577 −0.224562
\(156\) 17.1759 1.37517
\(157\) 5.88566 0.469727 0.234863 0.972028i \(-0.424536\pi\)
0.234863 + 0.972028i \(0.424536\pi\)
\(158\) −16.7296 −1.33093
\(159\) 44.4966 3.52881
\(160\) −8.11229 −0.641333
\(161\) −0.140141 −0.0110447
\(162\) 43.7220 3.43512
\(163\) −5.89619 −0.461826 −0.230913 0.972974i \(-0.574171\pi\)
−0.230913 + 0.972974i \(0.574171\pi\)
\(164\) −1.56592 −0.122278
\(165\) 15.7307 1.22463
\(166\) −12.4518 −0.966446
\(167\) 10.7684 0.833284 0.416642 0.909071i \(-0.363207\pi\)
0.416642 + 0.909071i \(0.363207\pi\)
\(168\) −1.40230 −0.108190
\(169\) −6.93382 −0.533371
\(170\) 0 0
\(171\) 14.7254 1.12608
\(172\) −22.0315 −1.67988
\(173\) 9.69698 0.737248 0.368624 0.929579i \(-0.379829\pi\)
0.368624 + 0.929579i \(0.379829\pi\)
\(174\) 6.96274 0.527844
\(175\) 1.17743 0.0890055
\(176\) 17.7324 1.33663
\(177\) −4.84816 −0.364410
\(178\) 17.3046 1.29704
\(179\) 15.7156 1.17464 0.587319 0.809356i \(-0.300183\pi\)
0.587319 + 0.809356i \(0.300183\pi\)
\(180\) 15.7388 1.17310
\(181\) 3.98916 0.296512 0.148256 0.988949i \(-0.452634\pi\)
0.148256 + 0.988949i \(0.452634\pi\)
\(182\) −5.93059 −0.439605
\(183\) 25.8247 1.90902
\(184\) −0.0443583 −0.00327014
\(185\) 2.31477 0.170185
\(186\) 18.2711 1.33970
\(187\) 0 0
\(188\) −7.40832 −0.540307
\(189\) −15.8492 −1.15286
\(190\) 4.17544 0.302919
\(191\) 19.2007 1.38931 0.694655 0.719343i \(-0.255557\pi\)
0.694655 + 0.719343i \(0.255557\pi\)
\(192\) 29.9926 2.16453
\(193\) −11.7595 −0.846466 −0.423233 0.906021i \(-0.639105\pi\)
−0.423233 + 0.906021i \(0.639105\pi\)
\(194\) 9.18118 0.659170
\(195\) 7.87078 0.563638
\(196\) −12.2503 −0.875024
\(197\) −19.1390 −1.36360 −0.681799 0.731540i \(-0.738802\pi\)
−0.681799 + 0.731540i \(0.738802\pi\)
\(198\) −72.6039 −5.15974
\(199\) −10.4492 −0.740723 −0.370362 0.928888i \(-0.620766\pi\)
−0.370362 + 0.928888i \(0.620766\pi\)
\(200\) 0.372688 0.0263530
\(201\) 15.7397 1.11019
\(202\) 36.3723 2.55914
\(203\) −1.25445 −0.0880449
\(204\) 0 0
\(205\) −0.717574 −0.0501176
\(206\) −23.1811 −1.61510
\(207\) −0.858417 −0.0596641
\(208\) 8.87236 0.615187
\(209\) −10.0504 −0.695204
\(210\) −7.69485 −0.530995
\(211\) −21.7830 −1.49960 −0.749801 0.661663i \(-0.769851\pi\)
−0.749801 + 0.661663i \(0.769851\pi\)
\(212\) −30.3857 −2.08690
\(213\) −21.2075 −1.45311
\(214\) −26.3536 −1.80149
\(215\) −10.0958 −0.688528
\(216\) −5.01667 −0.341341
\(217\) −3.29183 −0.223464
\(218\) 23.1521 1.56806
\(219\) −11.7190 −0.791896
\(220\) −10.7421 −0.724232
\(221\) 0 0
\(222\) −15.1277 −1.01530
\(223\) 20.0185 1.34054 0.670270 0.742117i \(-0.266178\pi\)
0.670270 + 0.742117i \(0.266178\pi\)
\(224\) −9.55167 −0.638198
\(225\) 7.21221 0.480814
\(226\) 11.9654 0.795924
\(227\) 13.7803 0.914630 0.457315 0.889305i \(-0.348811\pi\)
0.457315 + 0.889305i \(0.348811\pi\)
\(228\) −14.2384 −0.942960
\(229\) 3.64022 0.240553 0.120276 0.992740i \(-0.461622\pi\)
0.120276 + 0.992740i \(0.461622\pi\)
\(230\) −0.243408 −0.0160498
\(231\) 18.5218 1.21864
\(232\) −0.397065 −0.0260686
\(233\) −14.1608 −0.927703 −0.463851 0.885913i \(-0.653533\pi\)
−0.463851 + 0.885913i \(0.653533\pi\)
\(234\) −36.3271 −2.37478
\(235\) −3.39482 −0.221454
\(236\) 3.31070 0.215508
\(237\) 26.1421 1.69811
\(238\) 0 0
\(239\) −22.6621 −1.46589 −0.732944 0.680289i \(-0.761854\pi\)
−0.732944 + 0.680289i \(0.761854\pi\)
\(240\) 11.5117 0.743080
\(241\) 6.04498 0.389391 0.194696 0.980864i \(-0.437628\pi\)
0.194696 + 0.980864i \(0.437628\pi\)
\(242\) 27.0584 1.73938
\(243\) −27.9388 −1.79228
\(244\) −17.6351 −1.12897
\(245\) −5.61365 −0.358643
\(246\) 4.68955 0.298995
\(247\) −5.02870 −0.319969
\(248\) −1.04195 −0.0661638
\(249\) 19.4575 1.23307
\(250\) 2.04505 0.129340
\(251\) −0.706952 −0.0446224 −0.0223112 0.999751i \(-0.507102\pi\)
−0.0223112 + 0.999751i \(0.507102\pi\)
\(252\) 18.5313 1.16736
\(253\) 0.585891 0.0368346
\(254\) −13.9145 −0.873073
\(255\) 0 0
\(256\) 12.6989 0.793679
\(257\) −15.0724 −0.940193 −0.470096 0.882615i \(-0.655781\pi\)
−0.470096 + 0.882615i \(0.655781\pi\)
\(258\) 65.9789 4.10767
\(259\) 2.72548 0.169353
\(260\) −5.37477 −0.333329
\(261\) −7.68395 −0.475625
\(262\) −3.88611 −0.240085
\(263\) −14.5292 −0.895911 −0.447955 0.894056i \(-0.647848\pi\)
−0.447955 + 0.894056i \(0.647848\pi\)
\(264\) 5.86262 0.360820
\(265\) −13.9241 −0.855349
\(266\) 4.91630 0.301438
\(267\) −27.0407 −1.65486
\(268\) −10.7483 −0.656555
\(269\) 28.3603 1.72916 0.864579 0.502497i \(-0.167585\pi\)
0.864579 + 0.502497i \(0.167585\pi\)
\(270\) −27.5280 −1.67530
\(271\) 9.29673 0.564736 0.282368 0.959306i \(-0.408880\pi\)
0.282368 + 0.959306i \(0.408880\pi\)
\(272\) 0 0
\(273\) 9.26731 0.560883
\(274\) 39.5997 2.39230
\(275\) −4.92251 −0.296839
\(276\) 0.830026 0.0499617
\(277\) −22.4063 −1.34627 −0.673133 0.739522i \(-0.735052\pi\)
−0.673133 + 0.739522i \(0.735052\pi\)
\(278\) 16.9267 1.01520
\(279\) −20.1637 −1.20717
\(280\) 0.438815 0.0262242
\(281\) 31.2511 1.86428 0.932142 0.362093i \(-0.117938\pi\)
0.932142 + 0.362093i \(0.117938\pi\)
\(282\) 22.1861 1.32117
\(283\) −11.7455 −0.698197 −0.349098 0.937086i \(-0.613512\pi\)
−0.349098 + 0.937086i \(0.613512\pi\)
\(284\) 14.4821 0.859355
\(285\) −6.52466 −0.386488
\(286\) 24.7941 1.46611
\(287\) −0.844895 −0.0498726
\(288\) −58.5076 −3.44759
\(289\) 0 0
\(290\) −2.17882 −0.127944
\(291\) −14.3468 −0.841023
\(292\) 8.00263 0.468318
\(293\) −26.5905 −1.55344 −0.776718 0.629848i \(-0.783117\pi\)
−0.776718 + 0.629848i \(0.783117\pi\)
\(294\) 36.6868 2.13962
\(295\) 1.51711 0.0883296
\(296\) 0.862685 0.0501426
\(297\) 66.2609 3.84485
\(298\) 10.0920 0.584616
\(299\) 0.293148 0.0169532
\(300\) −6.97368 −0.402626
\(301\) −11.8871 −0.685163
\(302\) −1.45761 −0.0838763
\(303\) −56.8363 −3.26516
\(304\) −7.35495 −0.421835
\(305\) −8.08120 −0.462728
\(306\) 0 0
\(307\) 18.6981 1.06715 0.533577 0.845751i \(-0.320847\pi\)
0.533577 + 0.845751i \(0.320847\pi\)
\(308\) −12.6481 −0.720692
\(309\) 36.2234 2.06068
\(310\) −5.71749 −0.324732
\(311\) 7.96633 0.451729 0.225865 0.974159i \(-0.427479\pi\)
0.225865 + 0.974159i \(0.427479\pi\)
\(312\) 2.93334 0.166068
\(313\) −7.98760 −0.451486 −0.225743 0.974187i \(-0.572481\pi\)
−0.225743 + 0.974187i \(0.572481\pi\)
\(314\) 12.0365 0.679258
\(315\) 8.49190 0.478464
\(316\) −17.8518 −1.00424
\(317\) −15.6320 −0.877981 −0.438991 0.898492i \(-0.644664\pi\)
−0.438991 + 0.898492i \(0.644664\pi\)
\(318\) 90.9978 5.10290
\(319\) 5.24449 0.293635
\(320\) −9.38544 −0.524662
\(321\) 41.1809 2.29849
\(322\) −0.286596 −0.0159714
\(323\) 0 0
\(324\) 46.6550 2.59194
\(325\) −2.46296 −0.136621
\(326\) −12.0580 −0.667832
\(327\) −36.1781 −2.00065
\(328\) −0.267431 −0.0147664
\(329\) −3.99718 −0.220371
\(330\) 32.1700 1.77090
\(331\) −4.43051 −0.243523 −0.121761 0.992559i \(-0.538854\pi\)
−0.121761 + 0.992559i \(0.538854\pi\)
\(332\) −13.2871 −0.729223
\(333\) 16.6946 0.914858
\(334\) 22.0219 1.20499
\(335\) −4.92534 −0.269100
\(336\) 13.5543 0.739448
\(337\) −6.03607 −0.328806 −0.164403 0.986393i \(-0.552570\pi\)
−0.164403 + 0.986393i \(0.552570\pi\)
\(338\) −14.1800 −0.771291
\(339\) −18.6974 −1.01550
\(340\) 0 0
\(341\) 13.7622 0.745266
\(342\) 30.1142 1.62839
\(343\) −14.8517 −0.801918
\(344\) −3.76258 −0.202865
\(345\) 0.380355 0.0204776
\(346\) 19.8308 1.06611
\(347\) 0.0930963 0.00499767 0.00249883 0.999997i \(-0.499205\pi\)
0.00249883 + 0.999997i \(0.499205\pi\)
\(348\) 7.42982 0.398280
\(349\) 9.54221 0.510783 0.255391 0.966838i \(-0.417796\pi\)
0.255391 + 0.966838i \(0.417796\pi\)
\(350\) 2.40791 0.128708
\(351\) 33.1534 1.76960
\(352\) 39.9329 2.12843
\(353\) 17.2138 0.916197 0.458099 0.888901i \(-0.348531\pi\)
0.458099 + 0.888901i \(0.348531\pi\)
\(354\) −9.91475 −0.526963
\(355\) 6.63635 0.352221
\(356\) 18.4655 0.978667
\(357\) 0 0
\(358\) 32.1392 1.69861
\(359\) −17.7449 −0.936538 −0.468269 0.883586i \(-0.655122\pi\)
−0.468269 + 0.883586i \(0.655122\pi\)
\(360\) 2.68790 0.141665
\(361\) −14.8313 −0.780597
\(362\) 8.15803 0.428777
\(363\) −42.2822 −2.21924
\(364\) −6.32843 −0.331700
\(365\) 3.66716 0.191948
\(366\) 52.8129 2.76058
\(367\) 36.3041 1.89506 0.947529 0.319669i \(-0.103572\pi\)
0.947529 + 0.319669i \(0.103572\pi\)
\(368\) 0.428757 0.0223505
\(369\) −5.17530 −0.269415
\(370\) 4.73382 0.246100
\(371\) −16.3947 −0.851169
\(372\) 19.4968 1.01086
\(373\) 5.89146 0.305048 0.152524 0.988300i \(-0.451260\pi\)
0.152524 + 0.988300i \(0.451260\pi\)
\(374\) 0 0
\(375\) −3.19566 −0.165023
\(376\) −1.26521 −0.0652482
\(377\) 2.62406 0.135146
\(378\) −32.4124 −1.66711
\(379\) 29.2735 1.50368 0.751838 0.659347i \(-0.229167\pi\)
0.751838 + 0.659347i \(0.229167\pi\)
\(380\) 4.45554 0.228564
\(381\) 21.7432 1.11394
\(382\) 39.2663 2.00904
\(383\) 12.3062 0.628816 0.314408 0.949288i \(-0.398194\pi\)
0.314408 + 0.949288i \(0.398194\pi\)
\(384\) 9.48830 0.484198
\(385\) −5.79593 −0.295388
\(386\) −24.0488 −1.22405
\(387\) −72.8131 −3.70130
\(388\) 9.79708 0.497371
\(389\) −2.12579 −0.107782 −0.0538910 0.998547i \(-0.517162\pi\)
−0.0538910 + 0.998547i \(0.517162\pi\)
\(390\) 16.0962 0.815061
\(391\) 0 0
\(392\) −2.09214 −0.105669
\(393\) 6.07254 0.306319
\(394\) −39.1403 −1.97186
\(395\) −8.18051 −0.411606
\(396\) −77.4743 −3.89323
\(397\) −25.1983 −1.26467 −0.632334 0.774696i \(-0.717903\pi\)
−0.632334 + 0.774696i \(0.717903\pi\)
\(398\) −21.3691 −1.07114
\(399\) −7.68235 −0.384599
\(400\) −3.60231 −0.180116
\(401\) −32.8681 −1.64135 −0.820677 0.571392i \(-0.806404\pi\)
−0.820677 + 0.571392i \(0.806404\pi\)
\(402\) 32.1885 1.60542
\(403\) 6.88587 0.343010
\(404\) 38.8122 1.93098
\(405\) 21.3794 1.06235
\(406\) −2.56541 −0.127319
\(407\) −11.3945 −0.564803
\(408\) 0 0
\(409\) −16.5721 −0.819437 −0.409719 0.912212i \(-0.634373\pi\)
−0.409719 + 0.912212i \(0.634373\pi\)
\(410\) −1.46748 −0.0724735
\(411\) −61.8796 −3.05229
\(412\) −24.7361 −1.21866
\(413\) 1.78630 0.0878979
\(414\) −1.75551 −0.0862785
\(415\) −6.08874 −0.298884
\(416\) 19.9803 0.979613
\(417\) −26.4502 −1.29527
\(418\) −20.5537 −1.00531
\(419\) −5.31866 −0.259833 −0.129917 0.991525i \(-0.541471\pi\)
−0.129917 + 0.991525i \(0.541471\pi\)
\(420\) −8.21104 −0.400658
\(421\) 3.72116 0.181358 0.0906791 0.995880i \(-0.471096\pi\)
0.0906791 + 0.995880i \(0.471096\pi\)
\(422\) −44.5473 −2.16853
\(423\) −24.4842 −1.19046
\(424\) −5.18933 −0.252016
\(425\) 0 0
\(426\) −43.3705 −2.10131
\(427\) −9.51507 −0.460466
\(428\) −28.1215 −1.35930
\(429\) −38.7440 −1.87058
\(430\) −20.6464 −0.995660
\(431\) 0.652621 0.0314357 0.0157178 0.999876i \(-0.494997\pi\)
0.0157178 + 0.999876i \(0.494997\pi\)
\(432\) 48.4900 2.33297
\(433\) 5.31477 0.255411 0.127706 0.991812i \(-0.459239\pi\)
0.127706 + 0.991812i \(0.459239\pi\)
\(434\) −6.73196 −0.323145
\(435\) 3.40468 0.163242
\(436\) 24.7052 1.18316
\(437\) −0.243012 −0.0116248
\(438\) −23.9660 −1.14514
\(439\) 5.53592 0.264215 0.132107 0.991235i \(-0.457826\pi\)
0.132107 + 0.991235i \(0.457826\pi\)
\(440\) −1.83456 −0.0874593
\(441\) −40.4869 −1.92795
\(442\) 0 0
\(443\) 14.9894 0.712169 0.356084 0.934454i \(-0.384112\pi\)
0.356084 + 0.934454i \(0.384112\pi\)
\(444\) −16.1425 −0.766087
\(445\) 8.46170 0.401123
\(446\) 40.9390 1.93852
\(447\) −15.7701 −0.745900
\(448\) −11.0507 −0.522097
\(449\) −20.7816 −0.980743 −0.490371 0.871514i \(-0.663139\pi\)
−0.490371 + 0.871514i \(0.663139\pi\)
\(450\) 14.7494 0.695291
\(451\) 3.53227 0.166328
\(452\) 12.7680 0.600558
\(453\) 2.27771 0.107016
\(454\) 28.1814 1.32262
\(455\) −2.89997 −0.135953
\(456\) −2.43166 −0.113873
\(457\) 15.6444 0.731816 0.365908 0.930651i \(-0.380758\pi\)
0.365908 + 0.930651i \(0.380758\pi\)
\(458\) 7.44445 0.347856
\(459\) 0 0
\(460\) −0.259736 −0.0121102
\(461\) −7.39362 −0.344355 −0.172178 0.985066i \(-0.555080\pi\)
−0.172178 + 0.985066i \(0.555080\pi\)
\(462\) 37.8780 1.76225
\(463\) 17.2150 0.800049 0.400025 0.916504i \(-0.369002\pi\)
0.400025 + 0.916504i \(0.369002\pi\)
\(464\) 3.83793 0.178172
\(465\) 8.93431 0.414319
\(466\) −28.9595 −1.34152
\(467\) −36.3391 −1.68157 −0.840787 0.541367i \(-0.817907\pi\)
−0.840787 + 0.541367i \(0.817907\pi\)
\(468\) −38.7640 −1.79187
\(469\) −5.79925 −0.267785
\(470\) −6.94259 −0.320238
\(471\) −18.8085 −0.866651
\(472\) 0.565409 0.0260250
\(473\) 49.6967 2.28506
\(474\) 53.4620 2.45559
\(475\) 2.04173 0.0936810
\(476\) 0 0
\(477\) −100.423 −4.59807
\(478\) −46.3451 −2.11978
\(479\) 30.3678 1.38754 0.693770 0.720196i \(-0.255948\pi\)
0.693770 + 0.720196i \(0.255948\pi\)
\(480\) 25.9241 1.18327
\(481\) −5.70118 −0.259952
\(482\) 12.3623 0.563087
\(483\) 0.447843 0.0203776
\(484\) 28.8735 1.31243
\(485\) 4.48946 0.203856
\(486\) −57.1364 −2.59176
\(487\) −25.2832 −1.14569 −0.572846 0.819663i \(-0.694161\pi\)
−0.572846 + 0.819663i \(0.694161\pi\)
\(488\) −3.01176 −0.136336
\(489\) 18.8422 0.852074
\(490\) −11.4802 −0.518623
\(491\) −28.7941 −1.29946 −0.649730 0.760165i \(-0.725118\pi\)
−0.649730 + 0.760165i \(0.725118\pi\)
\(492\) 5.00413 0.225604
\(493\) 0 0
\(494\) −10.2840 −0.462697
\(495\) −35.5022 −1.59571
\(496\) 10.0712 0.452212
\(497\) 7.81386 0.350500
\(498\) 39.7916 1.78311
\(499\) −14.9561 −0.669527 −0.334764 0.942302i \(-0.608656\pi\)
−0.334764 + 0.942302i \(0.608656\pi\)
\(500\) 2.18224 0.0975927
\(501\) −34.4121 −1.53742
\(502\) −1.44575 −0.0645272
\(503\) 32.5784 1.45260 0.726300 0.687378i \(-0.241239\pi\)
0.726300 + 0.687378i \(0.241239\pi\)
\(504\) 3.16483 0.140973
\(505\) 17.7855 0.791444
\(506\) 1.19818 0.0532655
\(507\) 22.1581 0.984075
\(508\) −14.8479 −0.658769
\(509\) −33.1868 −1.47098 −0.735490 0.677535i \(-0.763048\pi\)
−0.735490 + 0.677535i \(0.763048\pi\)
\(510\) 0 0
\(511\) 4.31784 0.191010
\(512\) 31.9081 1.41015
\(513\) −27.4833 −1.21342
\(514\) −30.8239 −1.35958
\(515\) −11.3352 −0.499488
\(516\) 70.4049 3.09940
\(517\) 16.7111 0.734952
\(518\) 5.57375 0.244897
\(519\) −30.9882 −1.36023
\(520\) −0.917916 −0.0402533
\(521\) −28.6670 −1.25593 −0.627963 0.778244i \(-0.716111\pi\)
−0.627963 + 0.778244i \(0.716111\pi\)
\(522\) −15.7141 −0.687787
\(523\) −42.6141 −1.86338 −0.931692 0.363248i \(-0.881668\pi\)
−0.931692 + 0.363248i \(0.881668\pi\)
\(524\) −4.14680 −0.181154
\(525\) −3.76267 −0.164216
\(526\) −29.7130 −1.29555
\(527\) 0 0
\(528\) −56.6667 −2.46610
\(529\) −22.9858 −0.999384
\(530\) −28.4755 −1.23690
\(531\) 10.9417 0.474831
\(532\) 5.24610 0.227447
\(533\) 1.76736 0.0765528
\(534\) −55.2996 −2.39305
\(535\) −12.8865 −0.557133
\(536\) −1.83561 −0.0792864
\(537\) −50.2216 −2.16722
\(538\) 57.9983 2.50048
\(539\) 27.6333 1.19025
\(540\) −29.3747 −1.26408
\(541\) 22.0963 0.949993 0.474997 0.879988i \(-0.342449\pi\)
0.474997 + 0.879988i \(0.342449\pi\)
\(542\) 19.0123 0.816648
\(543\) −12.7480 −0.547068
\(544\) 0 0
\(545\) 11.3210 0.484940
\(546\) 18.9521 0.811077
\(547\) −38.6850 −1.65405 −0.827026 0.562163i \(-0.809969\pi\)
−0.827026 + 0.562163i \(0.809969\pi\)
\(548\) 42.2561 1.80509
\(549\) −58.2834 −2.48747
\(550\) −10.0668 −0.429250
\(551\) −2.17528 −0.0926699
\(552\) 0.141754 0.00603344
\(553\) −9.63200 −0.409594
\(554\) −45.8221 −1.94679
\(555\) −7.39720 −0.313994
\(556\) 18.0622 0.766009
\(557\) 33.9638 1.43909 0.719546 0.694445i \(-0.244350\pi\)
0.719546 + 0.694445i \(0.244350\pi\)
\(558\) −41.2358 −1.74565
\(559\) 24.8656 1.05170
\(560\) −4.24148 −0.179235
\(561\) 0 0
\(562\) 63.9101 2.69589
\(563\) −2.27374 −0.0958267 −0.0479133 0.998851i \(-0.515257\pi\)
−0.0479133 + 0.998851i \(0.515257\pi\)
\(564\) 23.6744 0.996873
\(565\) 5.85089 0.246149
\(566\) −24.0201 −1.00964
\(567\) 25.1728 1.05716
\(568\) 2.47329 0.103777
\(569\) −5.68027 −0.238129 −0.119065 0.992887i \(-0.537990\pi\)
−0.119065 + 0.992887i \(0.537990\pi\)
\(570\) −13.3433 −0.558889
\(571\) −12.9627 −0.542471 −0.271236 0.962513i \(-0.587432\pi\)
−0.271236 + 0.962513i \(0.587432\pi\)
\(572\) 26.4574 1.10624
\(573\) −61.3587 −2.56330
\(574\) −1.72785 −0.0721193
\(575\) −0.119023 −0.00496359
\(576\) −67.6898 −2.82041
\(577\) 27.7816 1.15656 0.578281 0.815838i \(-0.303724\pi\)
0.578281 + 0.815838i \(0.303724\pi\)
\(578\) 0 0
\(579\) 37.5793 1.56174
\(580\) −2.32498 −0.0965393
\(581\) −7.16908 −0.297424
\(582\) −29.3399 −1.21618
\(583\) 68.5415 2.83870
\(584\) 1.36671 0.0565547
\(585\) −17.7634 −0.734427
\(586\) −54.3791 −2.24638
\(587\) −6.89170 −0.284451 −0.142226 0.989834i \(-0.545426\pi\)
−0.142226 + 0.989834i \(0.545426\pi\)
\(588\) 39.1478 1.61443
\(589\) −5.70820 −0.235202
\(590\) 3.10257 0.127731
\(591\) 61.1617 2.51585
\(592\) −8.33851 −0.342711
\(593\) −13.9274 −0.571930 −0.285965 0.958240i \(-0.592314\pi\)
−0.285965 + 0.958240i \(0.592314\pi\)
\(594\) 135.507 5.55992
\(595\) 0 0
\(596\) 10.7690 0.441117
\(597\) 33.3920 1.36664
\(598\) 0.599504 0.0245155
\(599\) 19.3270 0.789681 0.394841 0.918750i \(-0.370800\pi\)
0.394841 + 0.918750i \(0.370800\pi\)
\(600\) −1.19098 −0.0486216
\(601\) −42.1759 −1.72039 −0.860195 0.509965i \(-0.829658\pi\)
−0.860195 + 0.509965i \(0.829658\pi\)
\(602\) −24.3098 −0.990793
\(603\) −35.5226 −1.44659
\(604\) −1.55539 −0.0632881
\(605\) 13.2311 0.537923
\(606\) −116.233 −4.72165
\(607\) −18.8481 −0.765021 −0.382511 0.923951i \(-0.624940\pi\)
−0.382511 + 0.923951i \(0.624940\pi\)
\(608\) −16.5631 −0.671723
\(609\) 4.00878 0.162444
\(610\) −16.5265 −0.669138
\(611\) 8.36132 0.338263
\(612\) 0 0
\(613\) 16.1284 0.651420 0.325710 0.945470i \(-0.394397\pi\)
0.325710 + 0.945470i \(0.394397\pi\)
\(614\) 38.2385 1.54318
\(615\) 2.29312 0.0924675
\(616\) −2.16007 −0.0870318
\(617\) 37.7508 1.51979 0.759894 0.650046i \(-0.225251\pi\)
0.759894 + 0.650046i \(0.225251\pi\)
\(618\) 74.0787 2.97988
\(619\) 48.7190 1.95818 0.979091 0.203425i \(-0.0652072\pi\)
0.979091 + 0.203425i \(0.0652072\pi\)
\(620\) −6.10103 −0.245023
\(621\) 1.60214 0.0642916
\(622\) 16.2916 0.653232
\(623\) 9.96308 0.399162
\(624\) −28.3530 −1.13503
\(625\) 1.00000 0.0400000
\(626\) −16.3351 −0.652880
\(627\) 32.1178 1.28266
\(628\) 12.8439 0.512528
\(629\) 0 0
\(630\) 17.3664 0.691893
\(631\) −39.1517 −1.55861 −0.779303 0.626647i \(-0.784427\pi\)
−0.779303 + 0.626647i \(0.784427\pi\)
\(632\) −3.04878 −0.121274
\(633\) 69.6109 2.76678
\(634\) −31.9683 −1.26962
\(635\) −6.80398 −0.270008
\(636\) 97.1021 3.85035
\(637\) 13.8262 0.547815
\(638\) 10.7253 0.424617
\(639\) 47.8628 1.89342
\(640\) −2.96912 −0.117365
\(641\) 49.9352 1.97232 0.986161 0.165793i \(-0.0530185\pi\)
0.986161 + 0.165793i \(0.0530185\pi\)
\(642\) 84.2170 3.32378
\(643\) 15.6383 0.616714 0.308357 0.951271i \(-0.400221\pi\)
0.308357 + 0.951271i \(0.400221\pi\)
\(644\) −0.305821 −0.0120511
\(645\) 32.2627 1.27034
\(646\) 0 0
\(647\) −24.8287 −0.976118 −0.488059 0.872811i \(-0.662295\pi\)
−0.488059 + 0.872811i \(0.662295\pi\)
\(648\) 7.96784 0.313006
\(649\) −7.46800 −0.293145
\(650\) −5.03689 −0.197563
\(651\) 10.5196 0.412294
\(652\) −12.8669 −0.503907
\(653\) 16.8005 0.657453 0.328727 0.944425i \(-0.393381\pi\)
0.328727 + 0.944425i \(0.393381\pi\)
\(654\) −73.9862 −2.89309
\(655\) −1.90025 −0.0742489
\(656\) 2.58493 0.100924
\(657\) 26.4484 1.03185
\(658\) −8.17443 −0.318673
\(659\) 13.1974 0.514097 0.257048 0.966399i \(-0.417250\pi\)
0.257048 + 0.966399i \(0.417250\pi\)
\(660\) 34.3281 1.33622
\(661\) −38.1892 −1.48539 −0.742694 0.669631i \(-0.766452\pi\)
−0.742694 + 0.669631i \(0.766452\pi\)
\(662\) −9.06062 −0.352151
\(663\) 0 0
\(664\) −2.26920 −0.0880620
\(665\) 2.40400 0.0932231
\(666\) 34.1413 1.32295
\(667\) 0.126808 0.00491001
\(668\) 23.4992 0.909212
\(669\) −63.9724 −2.47331
\(670\) −10.0726 −0.389138
\(671\) 39.7798 1.53568
\(672\) 30.5239 1.17748
\(673\) 24.3655 0.939219 0.469610 0.882874i \(-0.344395\pi\)
0.469610 + 0.882874i \(0.344395\pi\)
\(674\) −12.3441 −0.475476
\(675\) −13.4608 −0.518106
\(676\) −15.1312 −0.581971
\(677\) −46.2667 −1.77817 −0.889087 0.457737i \(-0.848660\pi\)
−0.889087 + 0.457737i \(0.848660\pi\)
\(678\) −38.2372 −1.46849
\(679\) 5.28604 0.202859
\(680\) 0 0
\(681\) −44.0371 −1.68750
\(682\) 28.1444 1.07771
\(683\) 16.4922 0.631056 0.315528 0.948916i \(-0.397818\pi\)
0.315528 + 0.948916i \(0.397818\pi\)
\(684\) 32.1343 1.22869
\(685\) 19.3637 0.739847
\(686\) −30.3726 −1.15963
\(687\) −11.6329 −0.443823
\(688\) 36.3682 1.38653
\(689\) 34.2945 1.30652
\(690\) 0.777847 0.0296121
\(691\) 25.8554 0.983584 0.491792 0.870713i \(-0.336342\pi\)
0.491792 + 0.870713i \(0.336342\pi\)
\(692\) 21.1611 0.804425
\(693\) −41.8015 −1.58791
\(694\) 0.190387 0.00722698
\(695\) 8.27692 0.313962
\(696\) 1.26888 0.0480968
\(697\) 0 0
\(698\) 19.5143 0.738628
\(699\) 45.2529 1.71162
\(700\) 2.56944 0.0971157
\(701\) 8.67606 0.327690 0.163845 0.986486i \(-0.447610\pi\)
0.163845 + 0.986486i \(0.447610\pi\)
\(702\) 67.8005 2.55896
\(703\) 4.72613 0.178249
\(704\) 46.1999 1.74123
\(705\) 10.8487 0.408585
\(706\) 35.2031 1.32489
\(707\) 20.9412 0.787576
\(708\) −10.5799 −0.397615
\(709\) −35.9232 −1.34912 −0.674562 0.738218i \(-0.735667\pi\)
−0.674562 + 0.738218i \(0.735667\pi\)
\(710\) 13.5717 0.509337
\(711\) −58.9996 −2.21266
\(712\) 3.15357 0.118185
\(713\) 0.332760 0.0124620
\(714\) 0 0
\(715\) 12.1240 0.453411
\(716\) 34.2952 1.28167
\(717\) 72.4202 2.70458
\(718\) −36.2892 −1.35430
\(719\) −9.75299 −0.363725 −0.181863 0.983324i \(-0.558213\pi\)
−0.181863 + 0.983324i \(0.558213\pi\)
\(720\) −25.9806 −0.968241
\(721\) −13.3464 −0.497047
\(722\) −30.3309 −1.12880
\(723\) −19.3177 −0.718432
\(724\) 8.70529 0.323530
\(725\) −1.06541 −0.0395683
\(726\) −86.4693 −3.20918
\(727\) −11.0694 −0.410542 −0.205271 0.978705i \(-0.565808\pi\)
−0.205271 + 0.978705i \(0.565808\pi\)
\(728\) −1.08078 −0.0400565
\(729\) 25.1447 0.931285
\(730\) 7.49954 0.277570
\(731\) 0 0
\(732\) 56.3557 2.08297
\(733\) 42.1634 1.55734 0.778670 0.627434i \(-0.215895\pi\)
0.778670 + 0.627434i \(0.215895\pi\)
\(734\) 74.2438 2.74039
\(735\) 17.9393 0.661701
\(736\) 0.965546 0.0355905
\(737\) 24.2451 0.893078
\(738\) −10.5838 −0.389593
\(739\) 47.1617 1.73487 0.867435 0.497550i \(-0.165767\pi\)
0.867435 + 0.497550i \(0.165767\pi\)
\(740\) 5.05137 0.185692
\(741\) 16.0700 0.590346
\(742\) −33.5279 −1.23085
\(743\) −31.7495 −1.16478 −0.582388 0.812911i \(-0.697882\pi\)
−0.582388 + 0.812911i \(0.697882\pi\)
\(744\) 3.32971 0.122073
\(745\) 4.93485 0.180799
\(746\) 12.0483 0.441121
\(747\) −43.9133 −1.60670
\(748\) 0 0
\(749\) −15.1730 −0.554409
\(750\) −6.53528 −0.238635
\(751\) −22.1885 −0.809668 −0.404834 0.914390i \(-0.632671\pi\)
−0.404834 + 0.914390i \(0.632671\pi\)
\(752\) 12.2292 0.445954
\(753\) 2.25918 0.0823289
\(754\) 5.36634 0.195431
\(755\) −0.712752 −0.0259397
\(756\) −34.5867 −1.25791
\(757\) −13.0640 −0.474821 −0.237410 0.971409i \(-0.576299\pi\)
−0.237410 + 0.971409i \(0.576299\pi\)
\(758\) 59.8658 2.17442
\(759\) −1.87230 −0.0679604
\(760\) 0.760928 0.0276017
\(761\) 18.9811 0.688065 0.344033 0.938958i \(-0.388207\pi\)
0.344033 + 0.938958i \(0.388207\pi\)
\(762\) 44.4659 1.61083
\(763\) 13.3298 0.482569
\(764\) 41.9004 1.51590
\(765\) 0 0
\(766\) 25.1668 0.909313
\(767\) −3.73659 −0.134920
\(768\) −40.5812 −1.46435
\(769\) −22.0057 −0.793544 −0.396772 0.917917i \(-0.629870\pi\)
−0.396772 + 0.917917i \(0.629870\pi\)
\(770\) −11.8530 −0.427152
\(771\) 48.1663 1.73467
\(772\) −25.6620 −0.923596
\(773\) −13.2410 −0.476247 −0.238123 0.971235i \(-0.576532\pi\)
−0.238123 + 0.971235i \(0.576532\pi\)
\(774\) −148.907 −5.35234
\(775\) −2.79577 −0.100427
\(776\) 1.67317 0.0600632
\(777\) −8.70970 −0.312459
\(778\) −4.34736 −0.155860
\(779\) −1.46509 −0.0524924
\(780\) 17.1759 0.614997
\(781\) −32.6676 −1.16894
\(782\) 0 0
\(783\) 14.3412 0.512514
\(784\) 20.2221 0.722219
\(785\) 5.88566 0.210068
\(786\) 12.4187 0.442959
\(787\) −11.9863 −0.427266 −0.213633 0.976914i \(-0.568530\pi\)
−0.213633 + 0.976914i \(0.568530\pi\)
\(788\) −41.7659 −1.48785
\(789\) 46.4304 1.65297
\(790\) −16.7296 −0.595212
\(791\) 6.88902 0.244945
\(792\) −13.2312 −0.470152
\(793\) 19.9037 0.706801
\(794\) −51.5319 −1.82880
\(795\) 44.4966 1.57813
\(796\) −22.8026 −0.808218
\(797\) −23.3187 −0.825989 −0.412995 0.910734i \(-0.635517\pi\)
−0.412995 + 0.910734i \(0.635517\pi\)
\(798\) −15.7108 −0.556157
\(799\) 0 0
\(800\) −8.11229 −0.286813
\(801\) 61.0276 2.15630
\(802\) −67.2170 −2.37351
\(803\) −18.0517 −0.637030
\(804\) 34.3478 1.21135
\(805\) −0.140141 −0.00493933
\(806\) 14.0820 0.496016
\(807\) −90.6298 −3.19032
\(808\) 6.62844 0.233188
\(809\) 30.8141 1.08337 0.541683 0.840583i \(-0.317787\pi\)
0.541683 + 0.840583i \(0.317787\pi\)
\(810\) 43.7220 1.53623
\(811\) −38.6069 −1.35567 −0.677836 0.735213i \(-0.737082\pi\)
−0.677836 + 0.735213i \(0.737082\pi\)
\(812\) −2.73750 −0.0960675
\(813\) −29.7091 −1.04194
\(814\) −23.3023 −0.816745
\(815\) −5.89619 −0.206535
\(816\) 0 0
\(817\) −20.6129 −0.721154
\(818\) −33.8908 −1.18496
\(819\) −20.9152 −0.730837
\(820\) −1.56592 −0.0546842
\(821\) 21.5899 0.753493 0.376747 0.926316i \(-0.377043\pi\)
0.376747 + 0.926316i \(0.377043\pi\)
\(822\) −126.547 −4.41383
\(823\) −25.4053 −0.885573 −0.442787 0.896627i \(-0.646010\pi\)
−0.442787 + 0.896627i \(0.646010\pi\)
\(824\) −4.22449 −0.147167
\(825\) 15.7307 0.547671
\(826\) 3.65307 0.127107
\(827\) −14.8822 −0.517506 −0.258753 0.965943i \(-0.583312\pi\)
−0.258753 + 0.965943i \(0.583312\pi\)
\(828\) −1.87327 −0.0651007
\(829\) −29.8580 −1.03701 −0.518505 0.855075i \(-0.673511\pi\)
−0.518505 + 0.855075i \(0.673511\pi\)
\(830\) −12.4518 −0.432208
\(831\) 71.6029 2.48388
\(832\) 23.1160 0.801402
\(833\) 0 0
\(834\) −54.0920 −1.87305
\(835\) 10.7684 0.372656
\(836\) −21.9325 −0.758550
\(837\) 37.6333 1.30080
\(838\) −10.8769 −0.375737
\(839\) −32.2189 −1.11232 −0.556161 0.831075i \(-0.687726\pi\)
−0.556161 + 0.831075i \(0.687726\pi\)
\(840\) −1.40230 −0.0483840
\(841\) −27.8649 −0.960859
\(842\) 7.60996 0.262257
\(843\) −99.8677 −3.43963
\(844\) −47.5357 −1.63624
\(845\) −6.93382 −0.238531
\(846\) −50.0715 −1.72149
\(847\) 15.5788 0.535293
\(848\) 50.1589 1.72246
\(849\) 37.5345 1.28818
\(850\) 0 0
\(851\) −0.275510 −0.00944435
\(852\) −46.2798 −1.58552
\(853\) −6.64528 −0.227530 −0.113765 0.993508i \(-0.536291\pi\)
−0.113765 + 0.993508i \(0.536291\pi\)
\(854\) −19.4588 −0.665867
\(855\) 14.7254 0.503598
\(856\) −4.80265 −0.164151
\(857\) −34.5296 −1.17951 −0.589754 0.807583i \(-0.700775\pi\)
−0.589754 + 0.807583i \(0.700775\pi\)
\(858\) −79.2336 −2.70499
\(859\) 46.7639 1.59556 0.797782 0.602946i \(-0.206007\pi\)
0.797782 + 0.602946i \(0.206007\pi\)
\(860\) −22.0315 −0.751266
\(861\) 2.69999 0.0920155
\(862\) 1.33464 0.0454582
\(863\) −40.3468 −1.37342 −0.686711 0.726930i \(-0.740946\pi\)
−0.686711 + 0.726930i \(0.740946\pi\)
\(864\) 109.198 3.71499
\(865\) 9.69698 0.329707
\(866\) 10.8690 0.369343
\(867\) 0 0
\(868\) −7.18356 −0.243826
\(869\) 40.2687 1.36602
\(870\) 6.96274 0.236059
\(871\) 12.1309 0.411041
\(872\) 4.21921 0.142880
\(873\) 32.3790 1.09586
\(874\) −0.496972 −0.0168103
\(875\) 1.17743 0.0398045
\(876\) −25.5736 −0.864053
\(877\) −15.5336 −0.524531 −0.262266 0.964996i \(-0.584470\pi\)
−0.262266 + 0.964996i \(0.584470\pi\)
\(878\) 11.3212 0.382073
\(879\) 84.9742 2.86611
\(880\) 17.7324 0.597760
\(881\) 33.1990 1.11850 0.559251 0.828998i \(-0.311089\pi\)
0.559251 + 0.828998i \(0.311089\pi\)
\(882\) −82.7978 −2.78795
\(883\) 34.1078 1.14782 0.573909 0.818919i \(-0.305426\pi\)
0.573909 + 0.818919i \(0.305426\pi\)
\(884\) 0 0
\(885\) −4.84816 −0.162969
\(886\) 30.6541 1.02985
\(887\) 32.3508 1.08623 0.543116 0.839658i \(-0.317244\pi\)
0.543116 + 0.839658i \(0.317244\pi\)
\(888\) −2.75685 −0.0925137
\(889\) −8.01122 −0.268688
\(890\) 17.3046 0.580052
\(891\) −105.240 −3.52569
\(892\) 43.6852 1.46269
\(893\) −6.93131 −0.231948
\(894\) −32.2507 −1.07862
\(895\) 15.7156 0.525314
\(896\) −3.49594 −0.116791
\(897\) −0.936801 −0.0312789
\(898\) −42.4994 −1.41822
\(899\) 2.97864 0.0993431
\(900\) 15.7388 0.524626
\(901\) 0 0
\(902\) 7.22367 0.240522
\(903\) 37.9872 1.26413
\(904\) 2.18055 0.0725241
\(905\) 3.98916 0.132604
\(906\) 4.65803 0.154753
\(907\) 27.9582 0.928336 0.464168 0.885747i \(-0.346353\pi\)
0.464168 + 0.885747i \(0.346353\pi\)
\(908\) 30.0719 0.997970
\(909\) 128.273 4.25454
\(910\) −5.93059 −0.196597
\(911\) −12.3093 −0.407826 −0.203913 0.978989i \(-0.565366\pi\)
−0.203913 + 0.978989i \(0.565366\pi\)
\(912\) 23.5039 0.778291
\(913\) 29.9719 0.991925
\(914\) 31.9937 1.05826
\(915\) 25.8247 0.853739
\(916\) 7.94384 0.262472
\(917\) −2.23742 −0.0738860
\(918\) 0 0
\(919\) 20.0893 0.662683 0.331342 0.943511i \(-0.392499\pi\)
0.331342 + 0.943511i \(0.392499\pi\)
\(920\) −0.0443583 −0.00146245
\(921\) −59.7526 −1.96891
\(922\) −15.1203 −0.497962
\(923\) −16.3451 −0.538005
\(924\) 40.4190 1.32969
\(925\) 2.31477 0.0761091
\(926\) 35.2056 1.15693
\(927\) −81.7518 −2.68508
\(928\) 8.64290 0.283717
\(929\) −6.06146 −0.198870 −0.0994350 0.995044i \(-0.531704\pi\)
−0.0994350 + 0.995044i \(0.531704\pi\)
\(930\) 18.2711 0.599134
\(931\) −11.4616 −0.375638
\(932\) −30.9022 −1.01223
\(933\) −25.4577 −0.833446
\(934\) −74.3154 −2.43167
\(935\) 0 0
\(936\) −6.62021 −0.216388
\(937\) −34.1763 −1.11649 −0.558246 0.829675i \(-0.688526\pi\)
−0.558246 + 0.829675i \(0.688526\pi\)
\(938\) −11.8598 −0.387236
\(939\) 25.5256 0.832997
\(940\) −7.40832 −0.241633
\(941\) 36.0225 1.17430 0.587149 0.809479i \(-0.300250\pi\)
0.587149 + 0.809479i \(0.300250\pi\)
\(942\) −38.4644 −1.25324
\(943\) 0.0854076 0.00278125
\(944\) −5.46511 −0.177874
\(945\) −15.8492 −0.515574
\(946\) 101.632 3.30435
\(947\) 39.4153 1.28083 0.640413 0.768030i \(-0.278763\pi\)
0.640413 + 0.768030i \(0.278763\pi\)
\(948\) 57.0483 1.85284
\(949\) −9.03209 −0.293194
\(950\) 4.17544 0.135469
\(951\) 49.9545 1.61989
\(952\) 0 0
\(953\) −6.36027 −0.206029 −0.103015 0.994680i \(-0.532849\pi\)
−0.103015 + 0.994680i \(0.532849\pi\)
\(954\) −205.371 −6.64914
\(955\) 19.2007 0.621319
\(956\) −49.4540 −1.59946
\(957\) −16.7596 −0.541760
\(958\) 62.1038 2.00648
\(959\) 22.7994 0.736231
\(960\) 29.9926 0.968008
\(961\) −23.1837 −0.747861
\(962\) −11.6592 −0.375908
\(963\) −92.9403 −2.99496
\(964\) 13.1916 0.424872
\(965\) −11.7595 −0.378551
\(966\) 0.915862 0.0294674
\(967\) 34.3424 1.10438 0.552189 0.833719i \(-0.313793\pi\)
0.552189 + 0.833719i \(0.313793\pi\)
\(968\) 4.93109 0.158491
\(969\) 0 0
\(970\) 9.18118 0.294790
\(971\) −7.98605 −0.256285 −0.128142 0.991756i \(-0.540901\pi\)
−0.128142 + 0.991756i \(0.540901\pi\)
\(972\) −60.9692 −1.95559
\(973\) 9.74552 0.312427
\(974\) −51.7055 −1.65675
\(975\) 7.87078 0.252067
\(976\) 29.1110 0.931821
\(977\) −15.0989 −0.483056 −0.241528 0.970394i \(-0.577649\pi\)
−0.241528 + 0.970394i \(0.577649\pi\)
\(978\) 38.5333 1.23216
\(979\) −41.6528 −1.33123
\(980\) −12.2503 −0.391322
\(981\) 81.6497 2.60688
\(982\) −58.8855 −1.87911
\(983\) −50.2932 −1.60410 −0.802052 0.597254i \(-0.796258\pi\)
−0.802052 + 0.597254i \(0.796258\pi\)
\(984\) 0.854618 0.0272442
\(985\) −19.1390 −0.609819
\(986\) 0 0
\(987\) 12.7736 0.406588
\(988\) −10.9738 −0.349124
\(989\) 1.20163 0.0382096
\(990\) −72.6039 −2.30750
\(991\) −13.0116 −0.413326 −0.206663 0.978412i \(-0.566260\pi\)
−0.206663 + 0.978412i \(0.566260\pi\)
\(992\) 22.6801 0.720094
\(993\) 14.1584 0.449302
\(994\) 15.9798 0.506847
\(995\) −10.4492 −0.331262
\(996\) 42.4609 1.34543
\(997\) −9.34885 −0.296081 −0.148040 0.988981i \(-0.547297\pi\)
−0.148040 + 0.988981i \(0.547297\pi\)
\(998\) −30.5860 −0.968183
\(999\) −31.1586 −0.985814
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.p.1.11 12
5.4 even 2 7225.2.a.bs.1.2 12
17.4 even 4 1445.2.d.j.866.3 24
17.10 odd 16 85.2.l.a.66.1 24
17.12 odd 16 85.2.l.a.76.1 yes 24
17.13 even 4 1445.2.d.j.866.4 24
17.16 even 2 1445.2.a.q.1.11 12
51.29 even 16 765.2.be.b.586.6 24
51.44 even 16 765.2.be.b.406.6 24
85.12 even 16 425.2.n.f.399.1 24
85.27 even 16 425.2.n.c.49.6 24
85.29 odd 16 425.2.m.b.76.6 24
85.44 odd 16 425.2.m.b.151.6 24
85.63 even 16 425.2.n.c.399.6 24
85.78 even 16 425.2.n.f.49.1 24
85.84 even 2 7225.2.a.bq.1.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.1 24 17.10 odd 16
85.2.l.a.76.1 yes 24 17.12 odd 16
425.2.m.b.76.6 24 85.29 odd 16
425.2.m.b.151.6 24 85.44 odd 16
425.2.n.c.49.6 24 85.27 even 16
425.2.n.c.399.6 24 85.63 even 16
425.2.n.f.49.1 24 85.78 even 16
425.2.n.f.399.1 24 85.12 even 16
765.2.be.b.406.6 24 51.44 even 16
765.2.be.b.586.6 24 51.29 even 16
1445.2.a.p.1.11 12 1.1 even 1 trivial
1445.2.a.q.1.11 12 17.16 even 2
1445.2.d.j.866.3 24 17.4 even 4
1445.2.d.j.866.4 24 17.13 even 4
7225.2.a.bq.1.2 12 85.84 even 2
7225.2.a.bs.1.2 12 5.4 even 2