Properties

Label 1445.2.a.p
Level $1445$
Weight $2$
Character orbit 1445.a
Self dual yes
Analytic conductor $11.538$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + ( - \beta_{5} - 1) q^{3} + (\beta_{7} + \beta_{6} + 1) q^{4} + q^{5} + (\beta_{11} + \beta_{9} - \beta_{7} + \cdots - 1) q^{6} + ( - \beta_{11} - \beta_{10} - \beta_1 - 1) q^{7} + (\beta_{10} + \beta_{9} - \beta_{7} + \cdots - 1) q^{8}+ \cdots + ( - \beta_{11} - 5 \beta_{10} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 8 q^{3} + 12 q^{4} + 12 q^{5} - 8 q^{6} - 16 q^{7} - 12 q^{8} + 12 q^{9} - 4 q^{10} - 16 q^{11} - 16 q^{12} - 8 q^{13} + 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} + 12 q^{20} + 16 q^{21}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 54 \nu^{11} - 195 \nu^{10} - 568 \nu^{9} + 2455 \nu^{8} + 1476 \nu^{7} - 10314 \nu^{6} + 1071 \nu^{5} + \cdots + 1470 ) / 41 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 141 \nu^{11} + 352 \nu^{10} + 1925 \nu^{9} - 4399 \nu^{8} - 9389 \nu^{7} + 18116 \nu^{6} + \cdots + 1191 ) / 41 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 212 \nu^{11} + 515 \nu^{10} + 2933 \nu^{9} - 6428 \nu^{8} - 14596 \nu^{7} + 26388 \nu^{6} + \cdots + 2356 ) / 41 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 232 \nu^{11} + 569 \nu^{10} + 3195 \nu^{9} - 7111 \nu^{8} - 15785 \nu^{7} + 29265 \nu^{6} + \cdots + 2217 ) / 41 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 332 \nu^{11} + 839 \nu^{10} + 4505 \nu^{9} - 10485 \nu^{8} - 21771 \nu^{7} + 43158 \nu^{6} + \cdots + 2793 ) / 41 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 332 \nu^{11} - 839 \nu^{10} - 4505 \nu^{9} + 10485 \nu^{8} + 21771 \nu^{7} - 43158 \nu^{6} + \cdots - 2916 ) / 41 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( - 8 \nu^{11} + 19 \nu^{10} + 112 \nu^{9} - 237 \nu^{8} - 568 \nu^{7} + 971 \nu^{6} + 1294 \nu^{5} + \cdots + 108 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 362 \nu^{11} - 879 \nu^{10} - 5021 \nu^{9} + 10997 \nu^{8} + 25092 \nu^{7} - 45321 \nu^{6} + \cdots - 3999 ) / 41 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 391 \nu^{11} + 986 \nu^{10} + 5323 \nu^{9} - 12342 \nu^{8} - 25871 \nu^{7} + 50942 \nu^{6} + \cdots + 3328 ) / 41 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 489 \nu^{11} + 1185 \nu^{10} + 6779 \nu^{9} - 14799 \nu^{8} - 33866 \nu^{7} + 60804 \nu^{6} + \cdots + 5644 ) / 41 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} + \beta_{6} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{10} - \beta_{9} + \beta_{7} + 2\beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{11} - \beta_{10} - \beta_{9} - \beta_{8} + 7\beta_{7} + 8\beta_{6} - 2\beta_{5} + \beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{11} - 8 \beta_{10} - 8 \beta_{9} - 2 \beta_{8} + 10 \beta_{7} + 19 \beta_{6} - 10 \beta_{5} + \cdots + 10 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 10 \beta_{11} - 11 \beta_{10} - 11 \beta_{9} - 10 \beta_{8} + 48 \beta_{7} + 58 \beta_{6} - 22 \beta_{5} + \cdots + 88 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 9 \beta_{11} - 58 \beta_{10} - 59 \beta_{9} - 21 \beta_{8} + 83 \beta_{7} + 151 \beta_{6} - 80 \beta_{5} + \cdots + 91 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 71 \beta_{11} - 98 \beta_{10} - 99 \beta_{9} - 72 \beta_{8} + 335 \beta_{7} + 421 \beta_{6} - 189 \beta_{5} + \cdots + 560 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 55 \beta_{11} - 417 \beta_{10} - 436 \beta_{9} - 158 \beta_{8} + 657 \beta_{7} + 1146 \beta_{6} + \cdots + 772 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 432 \beta_{11} - 810 \beta_{10} - 841 \beta_{9} - 458 \beta_{8} + 2378 \beta_{7} + 3087 \beta_{6} + \cdots + 3733 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 248 \beta_{11} - 3015 \beta_{10} - 3254 \beta_{9} - 1032 \beta_{8} + 5096 \beta_{7} + 8565 \beta_{6} + \cdots + 6241 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.73061
2.63994
1.80583
1.55555
1.55041
0.962871
−0.301687
−0.360254
−0.747914
−1.43840
−2.04505
−2.35190
−2.73061 1.54691 5.45623 1.00000 −4.22400 −1.26445 −9.43761 −0.607075 −2.73061
1.2 −2.63994 −2.12055 4.96928 1.00000 5.59814 −4.06194 −7.83873 1.49675 −2.63994
1.3 −1.80583 0.687917 1.26102 1.00000 −1.24226 −4.34193 1.33447 −2.52677 −1.80583
1.4 −1.55555 −3.00797 0.419729 1.00000 4.67904 −3.45467 2.45819 6.04787 −1.55555
1.5 −1.55041 −1.14040 0.403772 1.00000 1.76809 3.74146 2.47481 −1.69949 −1.55041
1.6 −0.962871 2.64897 −1.07288 1.00000 −2.55062 −3.09463 2.95879 4.01706 −0.962871
1.7 0.301687 1.06101 −1.90899 1.00000 0.320094 2.50984 −1.17929 −1.87425 0.301687
1.8 0.360254 0.0542373 −1.87022 1.00000 0.0195392 0.298718 −1.39426 −2.99706 0.360254
1.9 0.747914 −3.07503 −1.44062 1.00000 −2.29986 −3.23262 −2.57329 6.45581 0.747914
1.10 1.43840 0.109907 0.0689897 1.00000 0.158090 −0.695085 −2.77756 −2.98792 1.43840
1.11 2.04505 −3.19566 2.18224 1.00000 −6.53528 1.17743 0.372688 7.21221 2.04505
1.12 2.35190 −1.56935 3.53144 1.00000 −3.69096 −3.58212 3.60181 −0.537139 2.35190
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1445.2.a.p 12
5.b even 2 1 7225.2.a.bs 12
17.b even 2 1 1445.2.a.q 12
17.c even 4 2 1445.2.d.j 24
17.e odd 16 2 85.2.l.a 24
51.i even 16 2 765.2.be.b 24
85.c even 2 1 7225.2.a.bq 12
85.o even 16 2 425.2.n.c 24
85.p odd 16 2 425.2.m.b 24
85.r even 16 2 425.2.n.f 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.l.a 24 17.e odd 16 2
425.2.m.b 24 85.p odd 16 2
425.2.n.c 24 85.o even 16 2
425.2.n.f 24 85.r even 16 2
765.2.be.b 24 51.i even 16 2
1445.2.a.p 12 1.a even 1 1 trivial
1445.2.a.q 12 17.b even 2 1
1445.2.d.j 24 17.c even 4 2
7225.2.a.bq 12 85.c even 2 1
7225.2.a.bs 12 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1445))\):

\( T_{2}^{12} + 4 T_{2}^{11} - 10 T_{2}^{10} - 52 T_{2}^{9} + 21 T_{2}^{8} + 232 T_{2}^{7} + 44 T_{2}^{6} + \cdots + 17 \) Copy content Toggle raw display
\( T_{3}^{12} + 8 T_{3}^{11} + 8 T_{3}^{10} - 80 T_{3}^{9} - 186 T_{3}^{8} + 176 T_{3}^{7} + 680 T_{3}^{6} + \cdots + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} + 4 T^{11} + \cdots + 17 \) Copy content Toggle raw display
$3$ \( T^{12} + 8 T^{11} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{12} \) Copy content Toggle raw display
$7$ \( T^{12} + 16 T^{11} + \cdots + 6338 \) Copy content Toggle raw display
$11$ \( T^{12} + 16 T^{11} + \cdots - 1598 \) Copy content Toggle raw display
$13$ \( T^{12} + 8 T^{11} + \cdots - 23932 \) Copy content Toggle raw display
$17$ \( T^{12} \) Copy content Toggle raw display
$19$ \( T^{12} - 92 T^{10} + \cdots - 3008 \) Copy content Toggle raw display
$23$ \( T^{12} + 16 T^{11} + \cdots - 2206 \) Copy content Toggle raw display
$29$ \( T^{12} + 16 T^{11} + \cdots - 6008 \) Copy content Toggle raw display
$31$ \( T^{12} + 24 T^{11} + \cdots + 352546 \) Copy content Toggle raw display
$37$ \( T^{12} + 24 T^{11} + \cdots + 26248 \) Copy content Toggle raw display
$41$ \( T^{12} + 8 T^{11} + \cdots - 427904 \) Copy content Toggle raw display
$43$ \( T^{12} + 16 T^{11} + \cdots + 63172 \) Copy content Toggle raw display
$47$ \( T^{12} + 32 T^{11} + \cdots + 45712388 \) Copy content Toggle raw display
$53$ \( T^{12} - 340 T^{10} + \cdots - 8342512 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 296882176 \) Copy content Toggle raw display
$61$ \( T^{12} + 24 T^{11} + \cdots - 12501472 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots - 961394684 \) Copy content Toggle raw display
$71$ \( T^{12} - 16 T^{11} + \cdots + 1907842 \) Copy content Toggle raw display
$73$ \( T^{12} + 16 T^{11} + \cdots + 15430176 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 23846133218 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots - 3068795644 \) Copy content Toggle raw display
$89$ \( T^{12} - 8 T^{11} + \cdots + 186436 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots - 3976256888 \) Copy content Toggle raw display
show more
show less