Properties

Label 1445.2.a.m.1.1
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(1,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,3,3,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1397493.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3x^{4} + 10x^{3} + 3x^{2} - 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.05432\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.40162 q^{2} +3.14741 q^{3} +3.76778 q^{4} -1.00000 q^{5} -7.55888 q^{6} -2.45595 q^{7} -4.24555 q^{8} +6.90618 q^{9} +2.40162 q^{10} -2.67294 q^{11} +11.8588 q^{12} -2.57085 q^{13} +5.89825 q^{14} -3.14741 q^{15} +2.66063 q^{16} -16.5860 q^{18} -6.25456 q^{19} -3.76778 q^{20} -7.72986 q^{21} +6.41940 q^{22} +3.11473 q^{23} -13.3625 q^{24} +1.00000 q^{25} +6.17420 q^{26} +12.2943 q^{27} -9.25348 q^{28} +0.710678 q^{29} +7.55888 q^{30} -3.99271 q^{31} +2.10127 q^{32} -8.41285 q^{33} +2.45595 q^{35} +26.0210 q^{36} +3.63287 q^{37} +15.0211 q^{38} -8.09151 q^{39} +4.24555 q^{40} -8.29741 q^{41} +18.5642 q^{42} -12.7653 q^{43} -10.0711 q^{44} -6.90618 q^{45} -7.48040 q^{46} +2.78467 q^{47} +8.37409 q^{48} -0.968329 q^{49} -2.40162 q^{50} -9.68640 q^{52} +0.165984 q^{53} -29.5263 q^{54} +2.67294 q^{55} +10.4268 q^{56} -19.6857 q^{57} -1.70678 q^{58} -12.2972 q^{59} -11.8588 q^{60} +0.680871 q^{61} +9.58898 q^{62} -16.9612 q^{63} -10.3677 q^{64} +2.57085 q^{65} +20.2045 q^{66} -1.50354 q^{67} +9.80333 q^{69} -5.89825 q^{70} +2.51376 q^{71} -29.3205 q^{72} -8.24985 q^{73} -8.72478 q^{74} +3.14741 q^{75} -23.5658 q^{76} +6.56461 q^{77} +19.4327 q^{78} -4.47987 q^{79} -2.66063 q^{80} +17.9768 q^{81} +19.9272 q^{82} +12.1257 q^{83} -29.1245 q^{84} +30.6575 q^{86} +2.23680 q^{87} +11.3481 q^{88} +1.16707 q^{89} +16.5860 q^{90} +6.31386 q^{91} +11.7356 q^{92} -12.5667 q^{93} -6.68772 q^{94} +6.25456 q^{95} +6.61356 q^{96} -3.12613 q^{97} +2.32556 q^{98} -18.4598 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 3 q^{3} + 3 q^{4} - 6 q^{5} - 9 q^{6} + 6 q^{7} - 6 q^{8} + 3 q^{9} + 3 q^{10} - 6 q^{11} + 6 q^{12} - 9 q^{13} + 18 q^{14} - 3 q^{15} - 3 q^{16} - 15 q^{18} - 21 q^{19} - 3 q^{20} - 12 q^{21}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.40162 −1.69820 −0.849101 0.528230i \(-0.822856\pi\)
−0.849101 + 0.528230i \(0.822856\pi\)
\(3\) 3.14741 1.81716 0.908579 0.417714i \(-0.137169\pi\)
0.908579 + 0.417714i \(0.137169\pi\)
\(4\) 3.76778 1.88389
\(5\) −1.00000 −0.447214
\(6\) −7.55888 −3.08590
\(7\) −2.45595 −0.928260 −0.464130 0.885767i \(-0.653633\pi\)
−0.464130 + 0.885767i \(0.653633\pi\)
\(8\) −4.24555 −1.50103
\(9\) 6.90618 2.30206
\(10\) 2.40162 0.759459
\(11\) −2.67294 −0.805923 −0.402962 0.915217i \(-0.632019\pi\)
−0.402962 + 0.915217i \(0.632019\pi\)
\(12\) 11.8588 3.42333
\(13\) −2.57085 −0.713025 −0.356512 0.934291i \(-0.616034\pi\)
−0.356512 + 0.934291i \(0.616034\pi\)
\(14\) 5.89825 1.57637
\(15\) −3.14741 −0.812657
\(16\) 2.66063 0.665158
\(17\) 0 0
\(18\) −16.5860 −3.90936
\(19\) −6.25456 −1.43490 −0.717448 0.696613i \(-0.754690\pi\)
−0.717448 + 0.696613i \(0.754690\pi\)
\(20\) −3.76778 −0.842502
\(21\) −7.72986 −1.68679
\(22\) 6.41940 1.36862
\(23\) 3.11473 0.649466 0.324733 0.945806i \(-0.394725\pi\)
0.324733 + 0.945806i \(0.394725\pi\)
\(24\) −13.3625 −2.72760
\(25\) 1.00000 0.200000
\(26\) 6.17420 1.21086
\(27\) 12.2943 2.36605
\(28\) −9.25348 −1.74874
\(29\) 0.710678 0.131970 0.0659848 0.997821i \(-0.478981\pi\)
0.0659848 + 0.997821i \(0.478981\pi\)
\(30\) 7.55888 1.38006
\(31\) −3.99271 −0.717112 −0.358556 0.933508i \(-0.616731\pi\)
−0.358556 + 0.933508i \(0.616731\pi\)
\(32\) 2.10127 0.371456
\(33\) −8.41285 −1.46449
\(34\) 0 0
\(35\) 2.45595 0.415131
\(36\) 26.0210 4.33683
\(37\) 3.63287 0.597240 0.298620 0.954372i \(-0.403474\pi\)
0.298620 + 0.954372i \(0.403474\pi\)
\(38\) 15.0211 2.43674
\(39\) −8.09151 −1.29568
\(40\) 4.24555 0.671280
\(41\) −8.29741 −1.29584 −0.647919 0.761709i \(-0.724360\pi\)
−0.647919 + 0.761709i \(0.724360\pi\)
\(42\) 18.5642 2.86452
\(43\) −12.7653 −1.94669 −0.973347 0.229338i \(-0.926344\pi\)
−0.973347 + 0.229338i \(0.926344\pi\)
\(44\) −10.0711 −1.51827
\(45\) −6.90618 −1.02951
\(46\) −7.48040 −1.10293
\(47\) 2.78467 0.406185 0.203093 0.979160i \(-0.434901\pi\)
0.203093 + 0.979160i \(0.434901\pi\)
\(48\) 8.37409 1.20870
\(49\) −0.968329 −0.138333
\(50\) −2.40162 −0.339641
\(51\) 0 0
\(52\) −9.68640 −1.34326
\(53\) 0.165984 0.0227996 0.0113998 0.999935i \(-0.496371\pi\)
0.0113998 + 0.999935i \(0.496371\pi\)
\(54\) −29.5263 −4.01803
\(55\) 2.67294 0.360420
\(56\) 10.4268 1.39334
\(57\) −19.6857 −2.60743
\(58\) −1.70678 −0.224111
\(59\) −12.2972 −1.60095 −0.800476 0.599364i \(-0.795420\pi\)
−0.800476 + 0.599364i \(0.795420\pi\)
\(60\) −11.8588 −1.53096
\(61\) 0.680871 0.0871767 0.0435883 0.999050i \(-0.486121\pi\)
0.0435883 + 0.999050i \(0.486121\pi\)
\(62\) 9.58898 1.21780
\(63\) −16.9612 −2.13691
\(64\) −10.3677 −1.29596
\(65\) 2.57085 0.318874
\(66\) 20.2045 2.48700
\(67\) −1.50354 −0.183687 −0.0918433 0.995773i \(-0.529276\pi\)
−0.0918433 + 0.995773i \(0.529276\pi\)
\(68\) 0 0
\(69\) 9.80333 1.18018
\(70\) −5.89825 −0.704976
\(71\) 2.51376 0.298328 0.149164 0.988812i \(-0.452342\pi\)
0.149164 + 0.988812i \(0.452342\pi\)
\(72\) −29.3205 −3.45546
\(73\) −8.24985 −0.965572 −0.482786 0.875738i \(-0.660375\pi\)
−0.482786 + 0.875738i \(0.660375\pi\)
\(74\) −8.72478 −1.01423
\(75\) 3.14741 0.363431
\(76\) −23.5658 −2.70319
\(77\) 6.56461 0.748107
\(78\) 19.4327 2.20032
\(79\) −4.47987 −0.504025 −0.252012 0.967724i \(-0.581092\pi\)
−0.252012 + 0.967724i \(0.581092\pi\)
\(80\) −2.66063 −0.297468
\(81\) 17.9768 1.99742
\(82\) 19.9272 2.20060
\(83\) 12.1257 1.33097 0.665484 0.746412i \(-0.268225\pi\)
0.665484 + 0.746412i \(0.268225\pi\)
\(84\) −29.1245 −3.17774
\(85\) 0 0
\(86\) 30.6575 3.30588
\(87\) 2.23680 0.239810
\(88\) 11.3481 1.20971
\(89\) 1.16707 0.123709 0.0618546 0.998085i \(-0.480298\pi\)
0.0618546 + 0.998085i \(0.480298\pi\)
\(90\) 16.5860 1.74832
\(91\) 6.31386 0.661873
\(92\) 11.7356 1.22352
\(93\) −12.5667 −1.30310
\(94\) −6.68772 −0.689785
\(95\) 6.25456 0.641705
\(96\) 6.61356 0.674993
\(97\) −3.12613 −0.317410 −0.158705 0.987326i \(-0.550732\pi\)
−0.158705 + 0.987326i \(0.550732\pi\)
\(98\) 2.32556 0.234917
\(99\) −18.4598 −1.85528
\(100\) 3.76778 0.376778
\(101\) 0.963333 0.0958553 0.0479276 0.998851i \(-0.484738\pi\)
0.0479276 + 0.998851i \(0.484738\pi\)
\(102\) 0 0
\(103\) −13.1842 −1.29908 −0.649539 0.760329i \(-0.725038\pi\)
−0.649539 + 0.760329i \(0.725038\pi\)
\(104\) 10.9147 1.07027
\(105\) 7.72986 0.754358
\(106\) −0.398630 −0.0387184
\(107\) −1.20156 −0.116159 −0.0580797 0.998312i \(-0.518498\pi\)
−0.0580797 + 0.998312i \(0.518498\pi\)
\(108\) 46.3224 4.45738
\(109\) 18.8394 1.80449 0.902243 0.431227i \(-0.141919\pi\)
0.902243 + 0.431227i \(0.141919\pi\)
\(110\) −6.41940 −0.612066
\(111\) 11.4341 1.08528
\(112\) −6.53436 −0.617439
\(113\) 11.1118 1.04531 0.522656 0.852544i \(-0.324941\pi\)
0.522656 + 0.852544i \(0.324941\pi\)
\(114\) 47.2775 4.42794
\(115\) −3.11473 −0.290450
\(116\) 2.67768 0.248617
\(117\) −17.7547 −1.64143
\(118\) 29.5331 2.71874
\(119\) 0 0
\(120\) 13.3625 1.21982
\(121\) −3.85537 −0.350488
\(122\) −1.63520 −0.148044
\(123\) −26.1153 −2.35474
\(124\) −15.0437 −1.35096
\(125\) −1.00000 −0.0894427
\(126\) 40.7344 3.62891
\(127\) 1.62949 0.144594 0.0722970 0.997383i \(-0.476967\pi\)
0.0722970 + 0.997383i \(0.476967\pi\)
\(128\) 20.6968 1.82935
\(129\) −40.1777 −3.53745
\(130\) −6.17420 −0.541513
\(131\) −14.1257 −1.23417 −0.617083 0.786898i \(-0.711686\pi\)
−0.617083 + 0.786898i \(0.711686\pi\)
\(132\) −31.6978 −2.75894
\(133\) 15.3609 1.33196
\(134\) 3.61093 0.311937
\(135\) −12.2943 −1.05813
\(136\) 0 0
\(137\) 12.0396 1.02861 0.514305 0.857607i \(-0.328050\pi\)
0.514305 + 0.857607i \(0.328050\pi\)
\(138\) −23.5439 −2.00419
\(139\) 12.7907 1.08489 0.542447 0.840090i \(-0.317498\pi\)
0.542447 + 0.840090i \(0.317498\pi\)
\(140\) 9.25348 0.782061
\(141\) 8.76448 0.738103
\(142\) −6.03709 −0.506622
\(143\) 6.87173 0.574643
\(144\) 18.3748 1.53123
\(145\) −0.710678 −0.0590186
\(146\) 19.8130 1.63974
\(147\) −3.04773 −0.251372
\(148\) 13.6879 1.12514
\(149\) 5.52099 0.452297 0.226149 0.974093i \(-0.427386\pi\)
0.226149 + 0.974093i \(0.427386\pi\)
\(150\) −7.55888 −0.617180
\(151\) −20.1224 −1.63754 −0.818769 0.574123i \(-0.805343\pi\)
−0.818769 + 0.574123i \(0.805343\pi\)
\(152\) 26.5540 2.15382
\(153\) 0 0
\(154\) −15.7657 −1.27044
\(155\) 3.99271 0.320702
\(156\) −30.4871 −2.44092
\(157\) 6.77751 0.540904 0.270452 0.962733i \(-0.412827\pi\)
0.270452 + 0.962733i \(0.412827\pi\)
\(158\) 10.7589 0.855936
\(159\) 0.522418 0.0414305
\(160\) −2.10127 −0.166120
\(161\) −7.64961 −0.602874
\(162\) −43.1734 −3.39202
\(163\) −15.3503 −1.20233 −0.601165 0.799125i \(-0.705296\pi\)
−0.601165 + 0.799125i \(0.705296\pi\)
\(164\) −31.2629 −2.44122
\(165\) 8.41285 0.654939
\(166\) −29.1213 −2.26025
\(167\) 25.4830 1.97193 0.985965 0.166950i \(-0.0533918\pi\)
0.985965 + 0.166950i \(0.0533918\pi\)
\(168\) 32.8175 2.53193
\(169\) −6.39074 −0.491596
\(170\) 0 0
\(171\) −43.1951 −3.30321
\(172\) −48.0970 −3.66736
\(173\) −4.03225 −0.306566 −0.153283 0.988182i \(-0.548985\pi\)
−0.153283 + 0.988182i \(0.548985\pi\)
\(174\) −5.37193 −0.407245
\(175\) −2.45595 −0.185652
\(176\) −7.11172 −0.536066
\(177\) −38.7042 −2.90918
\(178\) −2.80286 −0.210083
\(179\) −21.2384 −1.58743 −0.793717 0.608287i \(-0.791857\pi\)
−0.793717 + 0.608287i \(0.791857\pi\)
\(180\) −26.0210 −1.93949
\(181\) 11.0451 0.820973 0.410486 0.911867i \(-0.365359\pi\)
0.410486 + 0.911867i \(0.365359\pi\)
\(182\) −15.1635 −1.12399
\(183\) 2.14298 0.158414
\(184\) −13.2237 −0.974867
\(185\) −3.63287 −0.267094
\(186\) 30.1804 2.21294
\(187\) 0 0
\(188\) 10.4920 0.765210
\(189\) −30.1942 −2.19631
\(190\) −15.0211 −1.08974
\(191\) −11.9621 −0.865544 −0.432772 0.901503i \(-0.642464\pi\)
−0.432772 + 0.901503i \(0.642464\pi\)
\(192\) −32.6314 −2.35497
\(193\) −0.567470 −0.0408474 −0.0204237 0.999791i \(-0.506502\pi\)
−0.0204237 + 0.999791i \(0.506502\pi\)
\(194\) 7.50778 0.539027
\(195\) 8.09151 0.579445
\(196\) −3.64846 −0.260604
\(197\) −8.93316 −0.636461 −0.318231 0.948013i \(-0.603089\pi\)
−0.318231 + 0.948013i \(0.603089\pi\)
\(198\) 44.3335 3.15065
\(199\) −16.6697 −1.18168 −0.590840 0.806789i \(-0.701204\pi\)
−0.590840 + 0.806789i \(0.701204\pi\)
\(200\) −4.24555 −0.300206
\(201\) −4.73225 −0.333787
\(202\) −2.31356 −0.162782
\(203\) −1.74539 −0.122502
\(204\) 0 0
\(205\) 8.29741 0.579516
\(206\) 31.6634 2.20610
\(207\) 21.5109 1.49511
\(208\) −6.84007 −0.474274
\(209\) 16.7181 1.15642
\(210\) −18.5642 −1.28105
\(211\) 19.6063 1.34975 0.674876 0.737931i \(-0.264197\pi\)
0.674876 + 0.737931i \(0.264197\pi\)
\(212\) 0.625391 0.0429520
\(213\) 7.91182 0.542109
\(214\) 2.88570 0.197262
\(215\) 12.7653 0.870588
\(216\) −52.1962 −3.55150
\(217\) 9.80588 0.665666
\(218\) −45.2451 −3.06438
\(219\) −25.9657 −1.75460
\(220\) 10.0711 0.678992
\(221\) 0 0
\(222\) −27.4604 −1.84302
\(223\) 17.7907 1.19135 0.595677 0.803224i \(-0.296884\pi\)
0.595677 + 0.803224i \(0.296884\pi\)
\(224\) −5.16061 −0.344808
\(225\) 6.90618 0.460412
\(226\) −26.6864 −1.77515
\(227\) −2.74184 −0.181982 −0.0909911 0.995852i \(-0.529003\pi\)
−0.0909911 + 0.995852i \(0.529003\pi\)
\(228\) −74.1713 −4.91212
\(229\) 28.4081 1.87726 0.938630 0.344925i \(-0.112096\pi\)
0.938630 + 0.344925i \(0.112096\pi\)
\(230\) 7.48040 0.493243
\(231\) 20.6615 1.35943
\(232\) −3.01722 −0.198090
\(233\) 14.7458 0.966032 0.483016 0.875611i \(-0.339541\pi\)
0.483016 + 0.875611i \(0.339541\pi\)
\(234\) 42.6401 2.78747
\(235\) −2.78467 −0.181652
\(236\) −46.3330 −3.01602
\(237\) −14.1000 −0.915892
\(238\) 0 0
\(239\) 8.93034 0.577656 0.288828 0.957381i \(-0.406734\pi\)
0.288828 + 0.957381i \(0.406734\pi\)
\(240\) −8.37409 −0.540545
\(241\) −25.4005 −1.63619 −0.818095 0.575083i \(-0.804970\pi\)
−0.818095 + 0.575083i \(0.804970\pi\)
\(242\) 9.25913 0.595199
\(243\) 19.6972 1.26358
\(244\) 2.56538 0.164231
\(245\) 0.968329 0.0618643
\(246\) 62.7192 3.99883
\(247\) 16.0795 1.02312
\(248\) 16.9512 1.07640
\(249\) 38.1645 2.41858
\(250\) 2.40162 0.151892
\(251\) −0.459279 −0.0289894 −0.0144947 0.999895i \(-0.504614\pi\)
−0.0144947 + 0.999895i \(0.504614\pi\)
\(252\) −63.9062 −4.02571
\(253\) −8.32550 −0.523420
\(254\) −3.91342 −0.245550
\(255\) 0 0
\(256\) −28.9704 −1.81065
\(257\) 18.6397 1.16271 0.581357 0.813648i \(-0.302522\pi\)
0.581357 + 0.813648i \(0.302522\pi\)
\(258\) 96.4916 6.00730
\(259\) −8.92213 −0.554394
\(260\) 9.68640 0.600725
\(261\) 4.90807 0.303802
\(262\) 33.9245 2.09586
\(263\) −16.5539 −1.02076 −0.510379 0.859950i \(-0.670495\pi\)
−0.510379 + 0.859950i \(0.670495\pi\)
\(264\) 35.7172 2.19824
\(265\) −0.165984 −0.0101963
\(266\) −36.8910 −2.26193
\(267\) 3.67325 0.224799
\(268\) −5.66501 −0.346046
\(269\) −7.70877 −0.470012 −0.235006 0.971994i \(-0.575511\pi\)
−0.235006 + 0.971994i \(0.575511\pi\)
\(270\) 29.5263 1.79692
\(271\) −21.0971 −1.28156 −0.640780 0.767725i \(-0.721389\pi\)
−0.640780 + 0.767725i \(0.721389\pi\)
\(272\) 0 0
\(273\) 19.8723 1.20273
\(274\) −28.9145 −1.74679
\(275\) −2.67294 −0.161185
\(276\) 36.9368 2.22334
\(277\) −6.30787 −0.379003 −0.189501 0.981880i \(-0.560687\pi\)
−0.189501 + 0.981880i \(0.560687\pi\)
\(278\) −30.7184 −1.84237
\(279\) −27.5744 −1.65083
\(280\) −10.4268 −0.623123
\(281\) −23.6264 −1.40943 −0.704716 0.709490i \(-0.748925\pi\)
−0.704716 + 0.709490i \(0.748925\pi\)
\(282\) −21.0490 −1.25345
\(283\) 19.3219 1.14857 0.574283 0.818657i \(-0.305281\pi\)
0.574283 + 0.818657i \(0.305281\pi\)
\(284\) 9.47130 0.562018
\(285\) 19.6857 1.16608
\(286\) −16.5033 −0.975861
\(287\) 20.3780 1.20288
\(288\) 14.5118 0.855113
\(289\) 0 0
\(290\) 1.70678 0.100226
\(291\) −9.83920 −0.576784
\(292\) −31.0837 −1.81903
\(293\) −11.1159 −0.649397 −0.324698 0.945818i \(-0.605263\pi\)
−0.324698 + 0.945818i \(0.605263\pi\)
\(294\) 7.31949 0.426881
\(295\) 12.2972 0.715968
\(296\) −15.4235 −0.896474
\(297\) −32.8621 −1.90685
\(298\) −13.2593 −0.768093
\(299\) −8.00750 −0.463086
\(300\) 11.8588 0.684666
\(301\) 31.3509 1.80704
\(302\) 48.3264 2.78087
\(303\) 3.03200 0.174184
\(304\) −16.6411 −0.954431
\(305\) −0.680871 −0.0389866
\(306\) 0 0
\(307\) −8.08367 −0.461359 −0.230680 0.973030i \(-0.574095\pi\)
−0.230680 + 0.973030i \(0.574095\pi\)
\(308\) 24.7340 1.40935
\(309\) −41.4960 −2.36063
\(310\) −9.58898 −0.544617
\(311\) 13.5612 0.768988 0.384494 0.923128i \(-0.374376\pi\)
0.384494 + 0.923128i \(0.374376\pi\)
\(312\) 34.3529 1.94485
\(313\) 9.12199 0.515605 0.257803 0.966198i \(-0.417002\pi\)
0.257803 + 0.966198i \(0.417002\pi\)
\(314\) −16.2770 −0.918565
\(315\) 16.9612 0.955655
\(316\) −16.8792 −0.949528
\(317\) −33.7435 −1.89522 −0.947611 0.319426i \(-0.896510\pi\)
−0.947611 + 0.319426i \(0.896510\pi\)
\(318\) −1.25465 −0.0703573
\(319\) −1.89960 −0.106357
\(320\) 10.3677 0.579573
\(321\) −3.78181 −0.211080
\(322\) 18.3715 1.02380
\(323\) 0 0
\(324\) 67.7326 3.76292
\(325\) −2.57085 −0.142605
\(326\) 36.8656 2.04180
\(327\) 59.2953 3.27904
\(328\) 35.2271 1.94509
\(329\) −6.83899 −0.377046
\(330\) −20.2045 −1.11222
\(331\) −21.2983 −1.17066 −0.585329 0.810796i \(-0.699035\pi\)
−0.585329 + 0.810796i \(0.699035\pi\)
\(332\) 45.6870 2.50740
\(333\) 25.0892 1.37488
\(334\) −61.2004 −3.34874
\(335\) 1.50354 0.0821471
\(336\) −20.5663 −1.12198
\(337\) 22.4073 1.22061 0.610303 0.792168i \(-0.291048\pi\)
0.610303 + 0.792168i \(0.291048\pi\)
\(338\) 15.3481 0.834829
\(339\) 34.9734 1.89949
\(340\) 0 0
\(341\) 10.6723 0.577937
\(342\) 103.738 5.60953
\(343\) 19.5698 1.05667
\(344\) 54.1958 2.92204
\(345\) −9.80333 −0.527794
\(346\) 9.68393 0.520611
\(347\) 18.0764 0.970393 0.485197 0.874405i \(-0.338748\pi\)
0.485197 + 0.874405i \(0.338748\pi\)
\(348\) 8.42776 0.451775
\(349\) −9.00587 −0.482073 −0.241037 0.970516i \(-0.577487\pi\)
−0.241037 + 0.970516i \(0.577487\pi\)
\(350\) 5.89825 0.315275
\(351\) −31.6069 −1.68705
\(352\) −5.61658 −0.299365
\(353\) −27.4982 −1.46358 −0.731791 0.681530i \(-0.761315\pi\)
−0.731791 + 0.681530i \(0.761315\pi\)
\(354\) 92.9527 4.94038
\(355\) −2.51376 −0.133416
\(356\) 4.39727 0.233055
\(357\) 0 0
\(358\) 51.0066 2.69578
\(359\) 24.2551 1.28013 0.640066 0.768320i \(-0.278907\pi\)
0.640066 + 0.768320i \(0.278907\pi\)
\(360\) 29.3205 1.54533
\(361\) 20.1195 1.05892
\(362\) −26.5261 −1.39418
\(363\) −12.1344 −0.636891
\(364\) 23.7893 1.24690
\(365\) 8.24985 0.431817
\(366\) −5.14663 −0.269019
\(367\) 25.1930 1.31506 0.657532 0.753427i \(-0.271601\pi\)
0.657532 + 0.753427i \(0.271601\pi\)
\(368\) 8.28715 0.431997
\(369\) −57.3034 −2.98310
\(370\) 8.72478 0.453580
\(371\) −0.407647 −0.0211640
\(372\) −47.3486 −2.45491
\(373\) −12.3570 −0.639823 −0.319911 0.947447i \(-0.603653\pi\)
−0.319911 + 0.947447i \(0.603653\pi\)
\(374\) 0 0
\(375\) −3.14741 −0.162531
\(376\) −11.8224 −0.609696
\(377\) −1.82705 −0.0940976
\(378\) 72.5151 3.72977
\(379\) 1.73645 0.0891957 0.0445978 0.999005i \(-0.485799\pi\)
0.0445978 + 0.999005i \(0.485799\pi\)
\(380\) 23.5658 1.20890
\(381\) 5.12867 0.262750
\(382\) 28.7283 1.46987
\(383\) 17.5969 0.899158 0.449579 0.893241i \(-0.351574\pi\)
0.449579 + 0.893241i \(0.351574\pi\)
\(384\) 65.1412 3.32422
\(385\) −6.56461 −0.334563
\(386\) 1.36285 0.0693671
\(387\) −88.1596 −4.48140
\(388\) −11.7786 −0.597967
\(389\) −11.0817 −0.561866 −0.280933 0.959727i \(-0.590644\pi\)
−0.280933 + 0.959727i \(0.590644\pi\)
\(390\) −19.4327 −0.984015
\(391\) 0 0
\(392\) 4.11109 0.207641
\(393\) −44.4593 −2.24267
\(394\) 21.4541 1.08084
\(395\) 4.47987 0.225407
\(396\) −69.5527 −3.49515
\(397\) 8.03226 0.403128 0.201564 0.979475i \(-0.435398\pi\)
0.201564 + 0.979475i \(0.435398\pi\)
\(398\) 40.0342 2.00673
\(399\) 48.3469 2.42037
\(400\) 2.66063 0.133032
\(401\) 10.9609 0.547360 0.273680 0.961821i \(-0.411759\pi\)
0.273680 + 0.961821i \(0.411759\pi\)
\(402\) 11.3651 0.566838
\(403\) 10.2646 0.511319
\(404\) 3.62963 0.180581
\(405\) −17.9768 −0.893273
\(406\) 4.19176 0.208034
\(407\) −9.71046 −0.481330
\(408\) 0 0
\(409\) 8.43948 0.417306 0.208653 0.977990i \(-0.433092\pi\)
0.208653 + 0.977990i \(0.433092\pi\)
\(410\) −19.9272 −0.984136
\(411\) 37.8935 1.86915
\(412\) −49.6752 −2.44732
\(413\) 30.2011 1.48610
\(414\) −51.6610 −2.53900
\(415\) −12.1257 −0.595227
\(416\) −5.40205 −0.264857
\(417\) 40.2576 1.97142
\(418\) −40.1505 −1.96383
\(419\) 14.4828 0.707533 0.353767 0.935334i \(-0.384901\pi\)
0.353767 + 0.935334i \(0.384901\pi\)
\(420\) 29.1245 1.42113
\(421\) 1.51690 0.0739292 0.0369646 0.999317i \(-0.488231\pi\)
0.0369646 + 0.999317i \(0.488231\pi\)
\(422\) −47.0869 −2.29215
\(423\) 19.2314 0.935063
\(424\) −0.704692 −0.0342229
\(425\) 0 0
\(426\) −19.0012 −0.920611
\(427\) −1.67218 −0.0809226
\(428\) −4.52723 −0.218832
\(429\) 21.6282 1.04422
\(430\) −30.6575 −1.47843
\(431\) 19.7875 0.953129 0.476564 0.879140i \(-0.341882\pi\)
0.476564 + 0.879140i \(0.341882\pi\)
\(432\) 32.7107 1.57379
\(433\) 9.49722 0.456407 0.228204 0.973613i \(-0.426715\pi\)
0.228204 + 0.973613i \(0.426715\pi\)
\(434\) −23.5500 −1.13044
\(435\) −2.23680 −0.107246
\(436\) 70.9828 3.39946
\(437\) −19.4813 −0.931916
\(438\) 62.3597 2.97966
\(439\) −20.0395 −0.956433 −0.478217 0.878242i \(-0.658717\pi\)
−0.478217 + 0.878242i \(0.658717\pi\)
\(440\) −11.3481 −0.541000
\(441\) −6.68745 −0.318450
\(442\) 0 0
\(443\) −13.1946 −0.626894 −0.313447 0.949606i \(-0.601484\pi\)
−0.313447 + 0.949606i \(0.601484\pi\)
\(444\) 43.0813 2.04455
\(445\) −1.16707 −0.0553245
\(446\) −42.7265 −2.02316
\(447\) 17.3768 0.821895
\(448\) 25.4626 1.20299
\(449\) 16.1247 0.760973 0.380486 0.924786i \(-0.375757\pi\)
0.380486 + 0.924786i \(0.375757\pi\)
\(450\) −16.5860 −0.781873
\(451\) 22.1785 1.04435
\(452\) 41.8669 1.96925
\(453\) −63.3334 −2.97566
\(454\) 6.58486 0.309043
\(455\) −6.31386 −0.295998
\(456\) 83.5764 3.91382
\(457\) −8.78267 −0.410836 −0.205418 0.978674i \(-0.565855\pi\)
−0.205418 + 0.978674i \(0.565855\pi\)
\(458\) −68.2255 −3.18797
\(459\) 0 0
\(460\) −11.7356 −0.547177
\(461\) 18.3746 0.855789 0.427895 0.903829i \(-0.359255\pi\)
0.427895 + 0.903829i \(0.359255\pi\)
\(462\) −49.6211 −2.30858
\(463\) −29.1662 −1.35547 −0.677735 0.735306i \(-0.737038\pi\)
−0.677735 + 0.735306i \(0.737038\pi\)
\(464\) 1.89085 0.0877806
\(465\) 12.5667 0.582766
\(466\) −35.4139 −1.64052
\(467\) −8.21883 −0.380322 −0.190161 0.981753i \(-0.560901\pi\)
−0.190161 + 0.981753i \(0.560901\pi\)
\(468\) −66.8960 −3.09227
\(469\) 3.69261 0.170509
\(470\) 6.68772 0.308481
\(471\) 21.3316 0.982908
\(472\) 52.2082 2.40307
\(473\) 34.1210 1.56889
\(474\) 33.8628 1.55537
\(475\) −6.25456 −0.286979
\(476\) 0 0
\(477\) 1.14631 0.0524861
\(478\) −21.4473 −0.980977
\(479\) 36.3883 1.66262 0.831312 0.555807i \(-0.187590\pi\)
0.831312 + 0.555807i \(0.187590\pi\)
\(480\) −6.61356 −0.301866
\(481\) −9.33955 −0.425847
\(482\) 61.0024 2.77858
\(483\) −24.0765 −1.09552
\(484\) −14.5262 −0.660281
\(485\) 3.12613 0.141950
\(486\) −47.3052 −2.14581
\(487\) 33.0821 1.49909 0.749547 0.661951i \(-0.230271\pi\)
0.749547 + 0.661951i \(0.230271\pi\)
\(488\) −2.89067 −0.130855
\(489\) −48.3137 −2.18482
\(490\) −2.32556 −0.105058
\(491\) 12.1162 0.546797 0.273398 0.961901i \(-0.411852\pi\)
0.273398 + 0.961901i \(0.411852\pi\)
\(492\) −98.3970 −4.43608
\(493\) 0 0
\(494\) −38.6169 −1.73746
\(495\) 18.4598 0.829708
\(496\) −10.6231 −0.476992
\(497\) −6.17365 −0.276926
\(498\) −91.6567 −4.10723
\(499\) −4.93983 −0.221137 −0.110568 0.993869i \(-0.535267\pi\)
−0.110568 + 0.993869i \(0.535267\pi\)
\(500\) −3.76778 −0.168500
\(501\) 80.2053 3.58331
\(502\) 1.10301 0.0492299
\(503\) 22.7414 1.01399 0.506995 0.861949i \(-0.330756\pi\)
0.506995 + 0.861949i \(0.330756\pi\)
\(504\) 72.0096 3.20756
\(505\) −0.963333 −0.0428678
\(506\) 19.9947 0.888873
\(507\) −20.1143 −0.893306
\(508\) 6.13957 0.272399
\(509\) −28.2780 −1.25340 −0.626701 0.779260i \(-0.715595\pi\)
−0.626701 + 0.779260i \(0.715595\pi\)
\(510\) 0 0
\(511\) 20.2612 0.896303
\(512\) 28.1824 1.24550
\(513\) −76.8957 −3.39503
\(514\) −44.7656 −1.97452
\(515\) 13.1842 0.580965
\(516\) −151.381 −6.66417
\(517\) −7.44326 −0.327354
\(518\) 21.4276 0.941474
\(519\) −12.6911 −0.557079
\(520\) −10.9147 −0.478639
\(521\) −15.0564 −0.659632 −0.329816 0.944045i \(-0.606987\pi\)
−0.329816 + 0.944045i \(0.606987\pi\)
\(522\) −11.7873 −0.515917
\(523\) 15.3033 0.669165 0.334583 0.942366i \(-0.391405\pi\)
0.334583 + 0.942366i \(0.391405\pi\)
\(524\) −53.2225 −2.32504
\(525\) −7.72986 −0.337359
\(526\) 39.7562 1.73345
\(527\) 0 0
\(528\) −22.3835 −0.974116
\(529\) −13.2984 −0.578193
\(530\) 0.398630 0.0173154
\(531\) −84.9263 −3.68549
\(532\) 57.8764 2.50926
\(533\) 21.3314 0.923965
\(534\) −8.82175 −0.381755
\(535\) 1.20156 0.0519481
\(536\) 6.38335 0.275719
\(537\) −66.8460 −2.88462
\(538\) 18.5136 0.798176
\(539\) 2.58829 0.111486
\(540\) −46.3224 −1.99340
\(541\) −5.89759 −0.253557 −0.126779 0.991931i \(-0.540464\pi\)
−0.126779 + 0.991931i \(0.540464\pi\)
\(542\) 50.6673 2.17635
\(543\) 34.7633 1.49184
\(544\) 0 0
\(545\) −18.8394 −0.806991
\(546\) −47.7257 −2.04247
\(547\) −13.6997 −0.585758 −0.292879 0.956149i \(-0.594613\pi\)
−0.292879 + 0.956149i \(0.594613\pi\)
\(548\) 45.3625 1.93779
\(549\) 4.70222 0.200686
\(550\) 6.41940 0.273724
\(551\) −4.44498 −0.189363
\(552\) −41.6205 −1.77149
\(553\) 11.0023 0.467866
\(554\) 15.1491 0.643624
\(555\) −11.4341 −0.485352
\(556\) 48.1926 2.04382
\(557\) 26.3831 1.11789 0.558943 0.829206i \(-0.311207\pi\)
0.558943 + 0.829206i \(0.311207\pi\)
\(558\) 66.2232 2.80345
\(559\) 32.8177 1.38804
\(560\) 6.53436 0.276127
\(561\) 0 0
\(562\) 56.7416 2.39350
\(563\) −22.3909 −0.943666 −0.471833 0.881688i \(-0.656407\pi\)
−0.471833 + 0.881688i \(0.656407\pi\)
\(564\) 33.0227 1.39051
\(565\) −11.1118 −0.467477
\(566\) −46.4038 −1.95050
\(567\) −44.1500 −1.85412
\(568\) −10.6723 −0.447799
\(569\) 1.33840 0.0561085 0.0280542 0.999606i \(-0.491069\pi\)
0.0280542 + 0.999606i \(0.491069\pi\)
\(570\) −47.2775 −1.98024
\(571\) −29.2226 −1.22293 −0.611464 0.791272i \(-0.709419\pi\)
−0.611464 + 0.791272i \(0.709419\pi\)
\(572\) 25.8912 1.08257
\(573\) −37.6495 −1.57283
\(574\) −48.9402 −2.04273
\(575\) 3.11473 0.129893
\(576\) −71.6013 −2.98339
\(577\) 14.0956 0.586809 0.293405 0.955988i \(-0.405212\pi\)
0.293405 + 0.955988i \(0.405212\pi\)
\(578\) 0 0
\(579\) −1.78606 −0.0742261
\(580\) −2.67768 −0.111185
\(581\) −29.7800 −1.23548
\(582\) 23.6300 0.979497
\(583\) −0.443665 −0.0183747
\(584\) 35.0252 1.44935
\(585\) 17.7547 0.734068
\(586\) 26.6961 1.10281
\(587\) −2.14440 −0.0885089 −0.0442545 0.999020i \(-0.514091\pi\)
−0.0442545 + 0.999020i \(0.514091\pi\)
\(588\) −11.4832 −0.473558
\(589\) 24.9727 1.02898
\(590\) −29.5331 −1.21586
\(591\) −28.1163 −1.15655
\(592\) 9.66572 0.397259
\(593\) 20.0106 0.821736 0.410868 0.911695i \(-0.365226\pi\)
0.410868 + 0.911695i \(0.365226\pi\)
\(594\) 78.9223 3.23822
\(595\) 0 0
\(596\) 20.8019 0.852079
\(597\) −52.4662 −2.14730
\(598\) 19.2310 0.786413
\(599\) 18.2512 0.745724 0.372862 0.927887i \(-0.378377\pi\)
0.372862 + 0.927887i \(0.378377\pi\)
\(600\) −13.3625 −0.545521
\(601\) 11.2285 0.458020 0.229010 0.973424i \(-0.426451\pi\)
0.229010 + 0.973424i \(0.426451\pi\)
\(602\) −75.2931 −3.06872
\(603\) −10.3837 −0.422857
\(604\) −75.8169 −3.08495
\(605\) 3.85537 0.156743
\(606\) −7.28172 −0.295800
\(607\) 25.4461 1.03282 0.516412 0.856340i \(-0.327267\pi\)
0.516412 + 0.856340i \(0.327267\pi\)
\(608\) −13.1425 −0.533000
\(609\) −5.49345 −0.222606
\(610\) 1.63520 0.0662071
\(611\) −7.15895 −0.289620
\(612\) 0 0
\(613\) −38.4941 −1.55476 −0.777380 0.629031i \(-0.783452\pi\)
−0.777380 + 0.629031i \(0.783452\pi\)
\(614\) 19.4139 0.783482
\(615\) 26.1153 1.05307
\(616\) −27.8704 −1.12293
\(617\) −23.0835 −0.929305 −0.464653 0.885493i \(-0.653821\pi\)
−0.464653 + 0.885493i \(0.653821\pi\)
\(618\) 99.6578 4.00882
\(619\) −7.27540 −0.292423 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(620\) 15.0437 0.604168
\(621\) 38.2936 1.53667
\(622\) −32.5690 −1.30590
\(623\) −2.86626 −0.114834
\(624\) −21.5285 −0.861830
\(625\) 1.00000 0.0400000
\(626\) −21.9076 −0.875602
\(627\) 52.6187 2.10139
\(628\) 25.5362 1.01901
\(629\) 0 0
\(630\) −40.7344 −1.62290
\(631\) 33.2465 1.32352 0.661761 0.749715i \(-0.269809\pi\)
0.661761 + 0.749715i \(0.269809\pi\)
\(632\) 19.0195 0.756555
\(633\) 61.7090 2.45271
\(634\) 81.0390 3.21847
\(635\) −1.62949 −0.0646644
\(636\) 1.96836 0.0780505
\(637\) 2.48943 0.0986347
\(638\) 4.56213 0.180616
\(639\) 17.3605 0.686769
\(640\) −20.6968 −0.818112
\(641\) 21.4007 0.845276 0.422638 0.906299i \(-0.361104\pi\)
0.422638 + 0.906299i \(0.361104\pi\)
\(642\) 9.08247 0.358457
\(643\) −12.3392 −0.486610 −0.243305 0.969950i \(-0.578232\pi\)
−0.243305 + 0.969950i \(0.578232\pi\)
\(644\) −28.8221 −1.13575
\(645\) 40.1777 1.58199
\(646\) 0 0
\(647\) −2.48180 −0.0975696 −0.0487848 0.998809i \(-0.515535\pi\)
−0.0487848 + 0.998809i \(0.515535\pi\)
\(648\) −76.3212 −2.99818
\(649\) 32.8696 1.29024
\(650\) 6.17420 0.242172
\(651\) 30.8631 1.20962
\(652\) −57.8367 −2.26506
\(653\) −24.2220 −0.947882 −0.473941 0.880557i \(-0.657169\pi\)
−0.473941 + 0.880557i \(0.657169\pi\)
\(654\) −142.405 −5.56847
\(655\) 14.1257 0.551936
\(656\) −22.0763 −0.861936
\(657\) −56.9750 −2.22281
\(658\) 16.4247 0.640300
\(659\) −0.298916 −0.0116441 −0.00582205 0.999983i \(-0.501853\pi\)
−0.00582205 + 0.999983i \(0.501853\pi\)
\(660\) 31.6978 1.23384
\(661\) 45.7248 1.77849 0.889244 0.457434i \(-0.151231\pi\)
0.889244 + 0.457434i \(0.151231\pi\)
\(662\) 51.1504 1.98802
\(663\) 0 0
\(664\) −51.4802 −1.99782
\(665\) −15.3609 −0.595669
\(666\) −60.2549 −2.33483
\(667\) 2.21357 0.0857099
\(668\) 96.0143 3.71491
\(669\) 55.9946 2.16488
\(670\) −3.61093 −0.139502
\(671\) −1.81993 −0.0702577
\(672\) −16.2425 −0.626570
\(673\) −24.6536 −0.950325 −0.475162 0.879898i \(-0.657611\pi\)
−0.475162 + 0.879898i \(0.657611\pi\)
\(674\) −53.8139 −2.07284
\(675\) 12.2943 0.473209
\(676\) −24.0789 −0.926113
\(677\) 34.2463 1.31619 0.658097 0.752933i \(-0.271362\pi\)
0.658097 + 0.752933i \(0.271362\pi\)
\(678\) −83.9929 −3.22573
\(679\) 7.67760 0.294639
\(680\) 0 0
\(681\) −8.62969 −0.330690
\(682\) −25.6308 −0.981454
\(683\) −46.3391 −1.77312 −0.886558 0.462618i \(-0.846910\pi\)
−0.886558 + 0.462618i \(0.846910\pi\)
\(684\) −162.750 −6.22290
\(685\) −12.0396 −0.460009
\(686\) −46.9992 −1.79444
\(687\) 89.4119 3.41128
\(688\) −33.9638 −1.29486
\(689\) −0.426719 −0.0162567
\(690\) 23.5439 0.896300
\(691\) 25.0441 0.952724 0.476362 0.879249i \(-0.341955\pi\)
0.476362 + 0.879249i \(0.341955\pi\)
\(692\) −15.1926 −0.577537
\(693\) 45.3364 1.72219
\(694\) −43.4127 −1.64792
\(695\) −12.7907 −0.485179
\(696\) −9.49642 −0.359961
\(697\) 0 0
\(698\) 21.6287 0.818658
\(699\) 46.4112 1.75543
\(700\) −9.25348 −0.349748
\(701\) −45.8247 −1.73078 −0.865388 0.501102i \(-0.832928\pi\)
−0.865388 + 0.501102i \(0.832928\pi\)
\(702\) 75.9077 2.86495
\(703\) −22.7220 −0.856977
\(704\) 27.7123 1.04445
\(705\) −8.76448 −0.330090
\(706\) 66.0402 2.48546
\(707\) −2.36589 −0.0889786
\(708\) −145.829 −5.48059
\(709\) 19.9724 0.750078 0.375039 0.927009i \(-0.377629\pi\)
0.375039 + 0.927009i \(0.377629\pi\)
\(710\) 6.03709 0.226568
\(711\) −30.9388 −1.16029
\(712\) −4.95486 −0.185691
\(713\) −12.4362 −0.465740
\(714\) 0 0
\(715\) −6.87173 −0.256988
\(716\) −80.0218 −2.99055
\(717\) 28.1074 1.04969
\(718\) −58.2514 −2.17392
\(719\) −33.6934 −1.25655 −0.628277 0.777990i \(-0.716239\pi\)
−0.628277 + 0.777990i \(0.716239\pi\)
\(720\) −18.3748 −0.684788
\(721\) 32.3797 1.20588
\(722\) −48.3195 −1.79827
\(723\) −79.9457 −2.97321
\(724\) 41.6154 1.54662
\(725\) 0.710678 0.0263939
\(726\) 29.1423 1.08157
\(727\) −6.28209 −0.232990 −0.116495 0.993191i \(-0.537166\pi\)
−0.116495 + 0.993191i \(0.537166\pi\)
\(728\) −26.8058 −0.993489
\(729\) 8.06486 0.298699
\(730\) −19.8130 −0.733313
\(731\) 0 0
\(732\) 8.07429 0.298434
\(733\) 10.1710 0.375675 0.187837 0.982200i \(-0.439852\pi\)
0.187837 + 0.982200i \(0.439852\pi\)
\(734\) −60.5040 −2.23324
\(735\) 3.04773 0.112417
\(736\) 6.54489 0.241248
\(737\) 4.01888 0.148037
\(738\) 137.621 5.06590
\(739\) −14.2869 −0.525552 −0.262776 0.964857i \(-0.584638\pi\)
−0.262776 + 0.964857i \(0.584638\pi\)
\(740\) −13.6879 −0.503176
\(741\) 50.6088 1.85916
\(742\) 0.979014 0.0359407
\(743\) 21.9933 0.806855 0.403428 0.915012i \(-0.367819\pi\)
0.403428 + 0.915012i \(0.367819\pi\)
\(744\) 53.3525 1.95600
\(745\) −5.52099 −0.202274
\(746\) 29.6769 1.08655
\(747\) 83.7422 3.06397
\(748\) 0 0
\(749\) 2.95097 0.107826
\(750\) 7.55888 0.276011
\(751\) −11.9963 −0.437751 −0.218876 0.975753i \(-0.570239\pi\)
−0.218876 + 0.975753i \(0.570239\pi\)
\(752\) 7.40897 0.270177
\(753\) −1.44554 −0.0526784
\(754\) 4.38787 0.159797
\(755\) 20.1224 0.732329
\(756\) −113.765 −4.13761
\(757\) −41.6081 −1.51227 −0.756135 0.654415i \(-0.772915\pi\)
−0.756135 + 0.654415i \(0.772915\pi\)
\(758\) −4.17031 −0.151472
\(759\) −26.2038 −0.951136
\(760\) −26.5540 −0.963217
\(761\) 50.6689 1.83675 0.918374 0.395715i \(-0.129503\pi\)
0.918374 + 0.395715i \(0.129503\pi\)
\(762\) −12.3171 −0.446203
\(763\) −46.2685 −1.67503
\(764\) −45.0705 −1.63059
\(765\) 0 0
\(766\) −42.2610 −1.52695
\(767\) 31.6141 1.14152
\(768\) −91.1817 −3.29024
\(769\) 36.4245 1.31350 0.656750 0.754108i \(-0.271931\pi\)
0.656750 + 0.754108i \(0.271931\pi\)
\(770\) 15.7657 0.568156
\(771\) 58.6668 2.11283
\(772\) −2.13810 −0.0769521
\(773\) 40.5949 1.46010 0.730049 0.683395i \(-0.239497\pi\)
0.730049 + 0.683395i \(0.239497\pi\)
\(774\) 211.726 7.61033
\(775\) −3.99271 −0.143422
\(776\) 13.2721 0.476442
\(777\) −28.0816 −1.00742
\(778\) 26.6141 0.954163
\(779\) 51.8967 1.85939
\(780\) 30.4871 1.09161
\(781\) −6.71913 −0.240430
\(782\) 0 0
\(783\) 8.73732 0.312246
\(784\) −2.57637 −0.0920131
\(785\) −6.77751 −0.241900
\(786\) 106.774 3.80851
\(787\) 9.86307 0.351580 0.175790 0.984428i \(-0.443752\pi\)
0.175790 + 0.984428i \(0.443752\pi\)
\(788\) −33.6582 −1.19902
\(789\) −52.1019 −1.85488
\(790\) −10.7589 −0.382786
\(791\) −27.2900 −0.970321
\(792\) 78.3721 2.78483
\(793\) −1.75042 −0.0621591
\(794\) −19.2904 −0.684592
\(795\) −0.522418 −0.0185283
\(796\) −62.8076 −2.22616
\(797\) −39.4185 −1.39628 −0.698138 0.715964i \(-0.745988\pi\)
−0.698138 + 0.715964i \(0.745988\pi\)
\(798\) −116.111 −4.11028
\(799\) 0 0
\(800\) 2.10127 0.0742911
\(801\) 8.06000 0.284786
\(802\) −26.3239 −0.929528
\(803\) 22.0514 0.778177
\(804\) −17.8301 −0.628819
\(805\) 7.64961 0.269613
\(806\) −24.6518 −0.868322
\(807\) −24.2627 −0.854086
\(808\) −4.08988 −0.143881
\(809\) 9.42731 0.331447 0.165723 0.986172i \(-0.447004\pi\)
0.165723 + 0.986172i \(0.447004\pi\)
\(810\) 43.1734 1.51696
\(811\) −22.2187 −0.780203 −0.390101 0.920772i \(-0.627560\pi\)
−0.390101 + 0.920772i \(0.627560\pi\)
\(812\) −6.57624 −0.230781
\(813\) −66.4013 −2.32880
\(814\) 23.3208 0.817395
\(815\) 15.3503 0.537698
\(816\) 0 0
\(817\) 79.8415 2.79330
\(818\) −20.2684 −0.708670
\(819\) 43.6047 1.52367
\(820\) 31.2629 1.09175
\(821\) 14.1242 0.492938 0.246469 0.969151i \(-0.420730\pi\)
0.246469 + 0.969151i \(0.420730\pi\)
\(822\) −91.0058 −3.17419
\(823\) −47.6084 −1.65953 −0.829763 0.558116i \(-0.811524\pi\)
−0.829763 + 0.558116i \(0.811524\pi\)
\(824\) 55.9741 1.94995
\(825\) −8.41285 −0.292898
\(826\) −72.5317 −2.52370
\(827\) 4.85003 0.168652 0.0843261 0.996438i \(-0.473126\pi\)
0.0843261 + 0.996438i \(0.473126\pi\)
\(828\) 81.0484 2.81663
\(829\) 19.9101 0.691508 0.345754 0.938325i \(-0.387623\pi\)
0.345754 + 0.938325i \(0.387623\pi\)
\(830\) 29.1213 1.01082
\(831\) −19.8534 −0.688708
\(832\) 26.6538 0.924055
\(833\) 0 0
\(834\) −96.6835 −3.34787
\(835\) −25.4830 −0.881874
\(836\) 62.9902 2.17856
\(837\) −49.0877 −1.69672
\(838\) −34.7823 −1.20153
\(839\) −1.98935 −0.0686799 −0.0343400 0.999410i \(-0.510933\pi\)
−0.0343400 + 0.999410i \(0.510933\pi\)
\(840\) −32.8175 −1.13231
\(841\) −28.4949 −0.982584
\(842\) −3.64302 −0.125547
\(843\) −74.3618 −2.56116
\(844\) 73.8722 2.54279
\(845\) 6.39074 0.219848
\(846\) −46.1866 −1.58793
\(847\) 9.46857 0.325344
\(848\) 0.441621 0.0151653
\(849\) 60.8138 2.08712
\(850\) 0 0
\(851\) 11.3154 0.387887
\(852\) 29.8100 1.02127
\(853\) 26.0104 0.890579 0.445289 0.895387i \(-0.353101\pi\)
0.445289 + 0.895387i \(0.353101\pi\)
\(854\) 4.01595 0.137423
\(855\) 43.1951 1.47724
\(856\) 5.10129 0.174359
\(857\) −18.9964 −0.648904 −0.324452 0.945902i \(-0.605180\pi\)
−0.324452 + 0.945902i \(0.605180\pi\)
\(858\) −51.9426 −1.77329
\(859\) 15.6479 0.533899 0.266950 0.963710i \(-0.413984\pi\)
0.266950 + 0.963710i \(0.413984\pi\)
\(860\) 48.0970 1.64009
\(861\) 64.1379 2.18581
\(862\) −47.5220 −1.61861
\(863\) −44.1746 −1.50372 −0.751860 0.659322i \(-0.770843\pi\)
−0.751860 + 0.659322i \(0.770843\pi\)
\(864\) 25.8337 0.878881
\(865\) 4.03225 0.137100
\(866\) −22.8087 −0.775072
\(867\) 0 0
\(868\) 36.9464 1.25404
\(869\) 11.9744 0.406205
\(870\) 5.37193 0.182126
\(871\) 3.86537 0.130973
\(872\) −79.9836 −2.70859
\(873\) −21.5896 −0.730697
\(874\) 46.7867 1.58258
\(875\) 2.45595 0.0830261
\(876\) −97.8330 −3.30547
\(877\) 9.87744 0.333538 0.166769 0.985996i \(-0.446667\pi\)
0.166769 + 0.985996i \(0.446667\pi\)
\(878\) 48.1273 1.62422
\(879\) −34.9862 −1.18006
\(880\) 7.11172 0.239736
\(881\) 51.6330 1.73956 0.869780 0.493439i \(-0.164260\pi\)
0.869780 + 0.493439i \(0.164260\pi\)
\(882\) 16.0607 0.540793
\(883\) −17.8503 −0.600710 −0.300355 0.953827i \(-0.597105\pi\)
−0.300355 + 0.953827i \(0.597105\pi\)
\(884\) 0 0
\(885\) 38.7042 1.30103
\(886\) 31.6884 1.06459
\(887\) −57.3894 −1.92695 −0.963474 0.267802i \(-0.913703\pi\)
−0.963474 + 0.267802i \(0.913703\pi\)
\(888\) −48.5441 −1.62903
\(889\) −4.00194 −0.134221
\(890\) 2.80286 0.0939522
\(891\) −48.0509 −1.60977
\(892\) 67.0315 2.24438
\(893\) −17.4169 −0.582833
\(894\) −41.7325 −1.39574
\(895\) 21.2384 0.709922
\(896\) −50.8302 −1.69812
\(897\) −25.2029 −0.841499
\(898\) −38.7255 −1.29229
\(899\) −2.83753 −0.0946370
\(900\) 26.0210 0.867366
\(901\) 0 0
\(902\) −53.2644 −1.77351
\(903\) 98.6742 3.28367
\(904\) −47.1757 −1.56904
\(905\) −11.0451 −0.367150
\(906\) 152.103 5.05328
\(907\) −7.21531 −0.239580 −0.119790 0.992799i \(-0.538222\pi\)
−0.119790 + 0.992799i \(0.538222\pi\)
\(908\) −10.3307 −0.342835
\(909\) 6.65295 0.220665
\(910\) 15.1635 0.502665
\(911\) −47.1365 −1.56170 −0.780852 0.624717i \(-0.785214\pi\)
−0.780852 + 0.624717i \(0.785214\pi\)
\(912\) −52.3763 −1.73435
\(913\) −32.4113 −1.07266
\(914\) 21.0927 0.697683
\(915\) −2.14298 −0.0708447
\(916\) 107.036 3.53656
\(917\) 34.6919 1.14563
\(918\) 0 0
\(919\) −3.10828 −0.102533 −0.0512663 0.998685i \(-0.516326\pi\)
−0.0512663 + 0.998685i \(0.516326\pi\)
\(920\) 13.2237 0.435974
\(921\) −25.4426 −0.838363
\(922\) −44.1288 −1.45330
\(923\) −6.46249 −0.212715
\(924\) 77.8481 2.56101
\(925\) 3.63287 0.119448
\(926\) 70.0463 2.30186
\(927\) −91.0524 −2.99055
\(928\) 1.49333 0.0490209
\(929\) −18.2447 −0.598588 −0.299294 0.954161i \(-0.596751\pi\)
−0.299294 + 0.954161i \(0.596751\pi\)
\(930\) −30.1804 −0.989655
\(931\) 6.05647 0.198493
\(932\) 55.5592 1.81990
\(933\) 42.6828 1.39737
\(934\) 19.7385 0.645864
\(935\) 0 0
\(936\) 75.3786 2.46383
\(937\) −14.3214 −0.467860 −0.233930 0.972253i \(-0.575159\pi\)
−0.233930 + 0.972253i \(0.575159\pi\)
\(938\) −8.86825 −0.289559
\(939\) 28.7106 0.936936
\(940\) −10.4920 −0.342212
\(941\) −29.4874 −0.961261 −0.480631 0.876923i \(-0.659592\pi\)
−0.480631 + 0.876923i \(0.659592\pi\)
\(942\) −51.2304 −1.66918
\(943\) −25.8442 −0.841603
\(944\) −32.7182 −1.06489
\(945\) 30.1942 0.982218
\(946\) −81.9457 −2.66429
\(947\) 10.2467 0.332973 0.166486 0.986044i \(-0.446758\pi\)
0.166486 + 0.986044i \(0.446758\pi\)
\(948\) −53.1257 −1.72544
\(949\) 21.2091 0.688477
\(950\) 15.0211 0.487348
\(951\) −106.204 −3.44392
\(952\) 0 0
\(953\) −30.5425 −0.989370 −0.494685 0.869072i \(-0.664717\pi\)
−0.494685 + 0.869072i \(0.664717\pi\)
\(954\) −2.75301 −0.0891320
\(955\) 11.9621 0.387083
\(956\) 33.6476 1.08824
\(957\) −5.97883 −0.193268
\(958\) −87.3909 −2.82347
\(959\) −29.5686 −0.954818
\(960\) 32.6314 1.05318
\(961\) −15.0583 −0.485751
\(962\) 22.4301 0.723175
\(963\) −8.29821 −0.267406
\(964\) −95.7036 −3.08241
\(965\) 0.567470 0.0182675
\(966\) 57.8225 1.86041
\(967\) −50.0287 −1.60881 −0.804407 0.594078i \(-0.797517\pi\)
−0.804407 + 0.594078i \(0.797517\pi\)
\(968\) 16.3681 0.526092
\(969\) 0 0
\(970\) −7.50778 −0.241060
\(971\) 0.00176375 5.66015e−5 0 2.83007e−5 1.00000i \(-0.499991\pi\)
2.83007e−5 1.00000i \(0.499991\pi\)
\(972\) 74.2148 2.38044
\(973\) −31.4133 −1.00706
\(974\) −79.4507 −2.54577
\(975\) −8.09151 −0.259136
\(976\) 1.81155 0.0579862
\(977\) −15.5052 −0.496055 −0.248028 0.968753i \(-0.579782\pi\)
−0.248028 + 0.968753i \(0.579782\pi\)
\(978\) 116.031 3.71027
\(979\) −3.11952 −0.0997002
\(980\) 3.64846 0.116546
\(981\) 130.108 4.15404
\(982\) −29.0985 −0.928571
\(983\) 16.7282 0.533547 0.266774 0.963759i \(-0.414042\pi\)
0.266774 + 0.963759i \(0.414042\pi\)
\(984\) 110.874 3.53453
\(985\) 8.93316 0.284634
\(986\) 0 0
\(987\) −21.5251 −0.685151
\(988\) 60.5842 1.92744
\(989\) −39.7606 −1.26431
\(990\) −44.3335 −1.40901
\(991\) −2.57414 −0.0817701 −0.0408851 0.999164i \(-0.513018\pi\)
−0.0408851 + 0.999164i \(0.513018\pi\)
\(992\) −8.38976 −0.266375
\(993\) −67.0343 −2.12727
\(994\) 14.8268 0.470277
\(995\) 16.6697 0.528463
\(996\) 143.796 4.55634
\(997\) 16.8644 0.534101 0.267050 0.963683i \(-0.413951\pi\)
0.267050 + 0.963683i \(0.413951\pi\)
\(998\) 11.8636 0.375535
\(999\) 44.6637 1.41310
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.m.1.1 yes 6
5.4 even 2 7225.2.a.bh.1.6 6
17.4 even 4 1445.2.d.h.866.11 12
17.13 even 4 1445.2.d.h.866.12 12
17.16 even 2 1445.2.a.l.1.1 6
85.84 even 2 7225.2.a.bi.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.l.1.1 6 17.16 even 2
1445.2.a.m.1.1 yes 6 1.1 even 1 trivial
1445.2.d.h.866.11 12 17.4 even 4
1445.2.d.h.866.12 12 17.13 even 4
7225.2.a.bh.1.6 6 5.4 even 2
7225.2.a.bi.1.6 6 85.84 even 2