Properties

Label 1445.2.a.k
Level $1445$
Weight $2$
Character orbit 1445.a
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{2} q^{3} + (\beta_{2} + \beta_1) q^{4} + q^{5} + ( - \beta_1 + 1) q^{6} + (\beta_{2} + 2 \beta_1) q^{7} + (\beta_{2} + 1) q^{8} + ( - \beta_{2} - \beta_1) q^{9} + \beta_1 q^{10}+ \cdots + ( - 2 \beta_{2} - 3 \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + q^{4} + 3 q^{5} + 2 q^{6} + 2 q^{7} + 3 q^{8} - q^{9} + q^{10} + 4 q^{11} - 6 q^{12} + 4 q^{13} + 12 q^{14} - 3 q^{16} - 5 q^{18} + q^{20} - 4 q^{21} + 8 q^{22} + 8 q^{23} - 8 q^{24}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
0.311108
2.17009
−1.48119 −1.67513 0.193937 1.00000 2.48119 −1.28726 2.67513 −0.193937 −1.48119
1.2 0.311108 2.21432 −1.90321 1.00000 0.688892 −1.59210 −1.21432 1.90321 0.311108
1.3 2.17009 −0.539189 2.70928 1.00000 −1.17009 4.87936 1.53919 −2.70928 2.17009
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1445.2.a.k 3
5.b even 2 1 7225.2.a.r 3
17.b even 2 1 1445.2.a.j 3
17.c even 4 2 85.2.d.a 6
51.f odd 4 2 765.2.g.b 6
68.f odd 4 2 1360.2.c.f 6
85.c even 2 1 7225.2.a.q 3
85.f odd 4 2 425.2.c.a 6
85.i odd 4 2 425.2.c.b 6
85.j even 4 2 425.2.d.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.d.a 6 17.c even 4 2
425.2.c.a 6 85.f odd 4 2
425.2.c.b 6 85.i odd 4 2
425.2.d.c 6 85.j even 4 2
765.2.g.b 6 51.f odd 4 2
1360.2.c.f 6 68.f odd 4 2
1445.2.a.j 3 17.b even 2 1
1445.2.a.k 3 1.a even 1 1 trivial
7225.2.a.q 3 85.c even 2 1
7225.2.a.r 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1445))\):

\( T_{2}^{3} - T_{2}^{2} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{3} - 4T_{3} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} - 3T + 1 \) Copy content Toggle raw display
$3$ \( T^{3} - 4T - 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 2 T^{2} + \cdots - 10 \) Copy content Toggle raw display
$11$ \( T^{3} - 4 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{3} - 4 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 16T - 16 \) Copy content Toggle raw display
$23$ \( T^{3} - 8 T^{2} + \cdots + 214 \) Copy content Toggle raw display
$29$ \( T^{3} + 12 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{3} - 10 T^{2} + \cdots + 58 \) Copy content Toggle raw display
$37$ \( T^{3} - 8 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$41$ \( T^{3} + 2 T^{2} + \cdots + 232 \) Copy content Toggle raw display
$43$ \( T^{3} + 14 T^{2} + \cdots + 68 \) Copy content Toggle raw display
$47$ \( T^{3} + 10T^{2} - 148 \) Copy content Toggle raw display
$53$ \( T^{3} - 14 T^{2} + \cdots + 296 \) Copy content Toggle raw display
$59$ \( T^{3} + 4 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$61$ \( T^{3} - 6 T^{2} + \cdots + 536 \) Copy content Toggle raw display
$67$ \( T^{3} - 6 T^{2} + \cdots + 460 \) Copy content Toggle raw display
$71$ \( T^{3} - 8 T^{2} + \cdots + 626 \) Copy content Toggle raw display
$73$ \( T^{3} - 30 T^{2} + \cdots - 824 \) Copy content Toggle raw display
$79$ \( T^{3} - 10 T^{2} + \cdots + 494 \) Copy content Toggle raw display
$83$ \( T^{3} + 2 T^{2} + \cdots - 796 \) Copy content Toggle raw display
$89$ \( T^{3} - 2 T^{2} + \cdots + 1396 \) Copy content Toggle raw display
$97$ \( T^{3} + 20 T^{2} + \cdots - 464 \) Copy content Toggle raw display
show more
show less