Properties

Label 1445.2.a.j.1.3
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17009 q^{2} +0.539189 q^{3} +2.70928 q^{4} -1.00000 q^{5} +1.17009 q^{6} -4.87936 q^{7} +1.53919 q^{8} -2.70928 q^{9} -2.17009 q^{10} -3.17009 q^{11} +1.46081 q^{12} +2.63090 q^{13} -10.5886 q^{14} -0.539189 q^{15} -2.07838 q^{16} -5.87936 q^{18} -1.07838 q^{19} -2.70928 q^{20} -2.63090 q^{21} -6.87936 q^{22} +5.21953 q^{23} +0.829914 q^{24} +1.00000 q^{25} +5.70928 q^{26} -3.07838 q^{27} -13.2195 q^{28} +2.92162 q^{29} -1.17009 q^{30} -4.09171 q^{31} -7.58864 q^{32} -1.70928 q^{33} +4.87936 q^{35} -7.34017 q^{36} -5.26180 q^{37} -2.34017 q^{38} +1.41855 q^{39} -1.53919 q^{40} -5.60197 q^{41} -5.70928 q^{42} -3.36910 q^{43} -8.58864 q^{44} +2.70928 q^{45} +11.3268 q^{46} -6.78765 q^{47} -1.12064 q^{48} +16.8082 q^{49} +2.17009 q^{50} +7.12783 q^{52} -3.75872 q^{53} -6.68035 q^{54} +3.17009 q^{55} -7.51026 q^{56} -0.581449 q^{57} +6.34017 q^{58} +2.34017 q^{59} -1.46081 q^{60} +12.2557 q^{61} -8.87936 q^{62} +13.2195 q^{63} -12.3112 q^{64} -2.63090 q^{65} -3.70928 q^{66} +10.2062 q^{67} +2.81432 q^{69} +10.5886 q^{70} -4.06505 q^{71} -4.17009 q^{72} -11.0784 q^{73} -11.4186 q^{74} +0.539189 q^{75} -2.92162 q^{76} +15.4680 q^{77} +3.07838 q^{78} +6.92881 q^{79} +2.07838 q^{80} +6.46800 q^{81} -12.1568 q^{82} -8.23287 q^{83} -7.12783 q^{84} -7.31124 q^{86} +1.57531 q^{87} -4.87936 q^{88} +7.15449 q^{89} +5.87936 q^{90} -12.8371 q^{91} +14.1412 q^{92} -2.20620 q^{93} -14.7298 q^{94} +1.07838 q^{95} -4.09171 q^{96} +8.18342 q^{97} +36.4752 q^{98} +8.58864 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + q^{4} - 3 q^{5} - 2 q^{6} - 2 q^{7} + 3 q^{8} - q^{9} - q^{10} - 4 q^{11} + 6 q^{12} + 4 q^{13} - 12 q^{14} - 3 q^{16} - 5 q^{18} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} + 8 q^{24}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17009 1.53448 0.767241 0.641358i \(-0.221629\pi\)
0.767241 + 0.641358i \(0.221629\pi\)
\(3\) 0.539189 0.311301 0.155650 0.987812i \(-0.450253\pi\)
0.155650 + 0.987812i \(0.450253\pi\)
\(4\) 2.70928 1.35464
\(5\) −1.00000 −0.447214
\(6\) 1.17009 0.477686
\(7\) −4.87936 −1.84423 −0.922113 0.386921i \(-0.873538\pi\)
−0.922113 + 0.386921i \(0.873538\pi\)
\(8\) 1.53919 0.544185
\(9\) −2.70928 −0.903092
\(10\) −2.17009 −0.686242
\(11\) −3.17009 −0.955817 −0.477909 0.878410i \(-0.658605\pi\)
−0.477909 + 0.878410i \(0.658605\pi\)
\(12\) 1.46081 0.421700
\(13\) 2.63090 0.729680 0.364840 0.931070i \(-0.381124\pi\)
0.364840 + 0.931070i \(0.381124\pi\)
\(14\) −10.5886 −2.82993
\(15\) −0.539189 −0.139218
\(16\) −2.07838 −0.519594
\(17\) 0 0
\(18\) −5.87936 −1.38578
\(19\) −1.07838 −0.247397 −0.123698 0.992320i \(-0.539476\pi\)
−0.123698 + 0.992320i \(0.539476\pi\)
\(20\) −2.70928 −0.605812
\(21\) −2.63090 −0.574109
\(22\) −6.87936 −1.46668
\(23\) 5.21953 1.08835 0.544174 0.838972i \(-0.316843\pi\)
0.544174 + 0.838972i \(0.316843\pi\)
\(24\) 0.829914 0.169405
\(25\) 1.00000 0.200000
\(26\) 5.70928 1.11968
\(27\) −3.07838 −0.592434
\(28\) −13.2195 −2.49826
\(29\) 2.92162 0.542532 0.271266 0.962504i \(-0.412558\pi\)
0.271266 + 0.962504i \(0.412558\pi\)
\(30\) −1.17009 −0.213628
\(31\) −4.09171 −0.734893 −0.367446 0.930045i \(-0.619768\pi\)
−0.367446 + 0.930045i \(0.619768\pi\)
\(32\) −7.58864 −1.34149
\(33\) −1.70928 −0.297547
\(34\) 0 0
\(35\) 4.87936 0.824763
\(36\) −7.34017 −1.22336
\(37\) −5.26180 −0.865034 −0.432517 0.901626i \(-0.642374\pi\)
−0.432517 + 0.901626i \(0.642374\pi\)
\(38\) −2.34017 −0.379626
\(39\) 1.41855 0.227150
\(40\) −1.53919 −0.243367
\(41\) −5.60197 −0.874880 −0.437440 0.899247i \(-0.644115\pi\)
−0.437440 + 0.899247i \(0.644115\pi\)
\(42\) −5.70928 −0.880960
\(43\) −3.36910 −0.513783 −0.256892 0.966440i \(-0.582698\pi\)
−0.256892 + 0.966440i \(0.582698\pi\)
\(44\) −8.58864 −1.29479
\(45\) 2.70928 0.403875
\(46\) 11.3268 1.67005
\(47\) −6.78765 −0.990081 −0.495040 0.868870i \(-0.664847\pi\)
−0.495040 + 0.868870i \(0.664847\pi\)
\(48\) −1.12064 −0.161750
\(49\) 16.8082 2.40117
\(50\) 2.17009 0.306897
\(51\) 0 0
\(52\) 7.12783 0.988452
\(53\) −3.75872 −0.516300 −0.258150 0.966105i \(-0.583113\pi\)
−0.258150 + 0.966105i \(0.583113\pi\)
\(54\) −6.68035 −0.909080
\(55\) 3.17009 0.427454
\(56\) −7.51026 −1.00360
\(57\) −0.581449 −0.0770148
\(58\) 6.34017 0.832505
\(59\) 2.34017 0.304665 0.152332 0.988329i \(-0.451322\pi\)
0.152332 + 0.988329i \(0.451322\pi\)
\(60\) −1.46081 −0.188590
\(61\) 12.2557 1.56918 0.784588 0.620018i \(-0.212875\pi\)
0.784588 + 0.620018i \(0.212875\pi\)
\(62\) −8.87936 −1.12768
\(63\) 13.2195 1.66550
\(64\) −12.3112 −1.53891
\(65\) −2.63090 −0.326323
\(66\) −3.70928 −0.456580
\(67\) 10.2062 1.24689 0.623443 0.781869i \(-0.285733\pi\)
0.623443 + 0.781869i \(0.285733\pi\)
\(68\) 0 0
\(69\) 2.81432 0.338804
\(70\) 10.5886 1.26558
\(71\) −4.06505 −0.482432 −0.241216 0.970471i \(-0.577546\pi\)
−0.241216 + 0.970471i \(0.577546\pi\)
\(72\) −4.17009 −0.491449
\(73\) −11.0784 −1.29663 −0.648313 0.761374i \(-0.724525\pi\)
−0.648313 + 0.761374i \(0.724525\pi\)
\(74\) −11.4186 −1.32738
\(75\) 0.539189 0.0622602
\(76\) −2.92162 −0.335133
\(77\) 15.4680 1.76274
\(78\) 3.07838 0.348558
\(79\) 6.92881 0.779552 0.389776 0.920910i \(-0.372552\pi\)
0.389776 + 0.920910i \(0.372552\pi\)
\(80\) 2.07838 0.232370
\(81\) 6.46800 0.718667
\(82\) −12.1568 −1.34249
\(83\) −8.23287 −0.903674 −0.451837 0.892100i \(-0.649231\pi\)
−0.451837 + 0.892100i \(0.649231\pi\)
\(84\) −7.12783 −0.777710
\(85\) 0 0
\(86\) −7.31124 −0.788392
\(87\) 1.57531 0.168891
\(88\) −4.87936 −0.520142
\(89\) 7.15449 0.758374 0.379187 0.925320i \(-0.376204\pi\)
0.379187 + 0.925320i \(0.376204\pi\)
\(90\) 5.87936 0.619739
\(91\) −12.8371 −1.34569
\(92\) 14.1412 1.47432
\(93\) −2.20620 −0.228773
\(94\) −14.7298 −1.51926
\(95\) 1.07838 0.110639
\(96\) −4.09171 −0.417608
\(97\) 8.18342 0.830900 0.415450 0.909616i \(-0.363624\pi\)
0.415450 + 0.909616i \(0.363624\pi\)
\(98\) 36.4752 3.68455
\(99\) 8.58864 0.863191
\(100\) 2.70928 0.270928
\(101\) −2.47414 −0.246186 −0.123093 0.992395i \(-0.539281\pi\)
−0.123093 + 0.992395i \(0.539281\pi\)
\(102\) 0 0
\(103\) −19.6514 −1.93631 −0.968156 0.250348i \(-0.919455\pi\)
−0.968156 + 0.250348i \(0.919455\pi\)
\(104\) 4.04945 0.397081
\(105\) 2.63090 0.256749
\(106\) −8.15676 −0.792254
\(107\) 12.6381 1.22177 0.610885 0.791719i \(-0.290814\pi\)
0.610885 + 0.791719i \(0.290814\pi\)
\(108\) −8.34017 −0.802534
\(109\) −8.15676 −0.781275 −0.390638 0.920544i \(-0.627745\pi\)
−0.390638 + 0.920544i \(0.627745\pi\)
\(110\) 6.87936 0.655921
\(111\) −2.83710 −0.269286
\(112\) 10.1412 0.958249
\(113\) 17.0205 1.60116 0.800578 0.599229i \(-0.204526\pi\)
0.800578 + 0.599229i \(0.204526\pi\)
\(114\) −1.26180 −0.118178
\(115\) −5.21953 −0.486724
\(116\) 7.91548 0.734934
\(117\) −7.12783 −0.658968
\(118\) 5.07838 0.467503
\(119\) 0 0
\(120\) −0.829914 −0.0757604
\(121\) −0.950552 −0.0864138
\(122\) 26.5958 2.40787
\(123\) −3.02052 −0.272351
\(124\) −11.0856 −0.995513
\(125\) −1.00000 −0.0894427
\(126\) 28.6875 2.55569
\(127\) 8.04945 0.714273 0.357137 0.934052i \(-0.383753\pi\)
0.357137 + 0.934052i \(0.383753\pi\)
\(128\) −11.5392 −1.01993
\(129\) −1.81658 −0.159941
\(130\) −5.70928 −0.500737
\(131\) −11.6937 −1.02168 −0.510841 0.859675i \(-0.670666\pi\)
−0.510841 + 0.859675i \(0.670666\pi\)
\(132\) −4.63090 −0.403068
\(133\) 5.26180 0.456256
\(134\) 22.1483 1.91333
\(135\) 3.07838 0.264945
\(136\) 0 0
\(137\) 1.95055 0.166647 0.0833234 0.996523i \(-0.473447\pi\)
0.0833234 + 0.996523i \(0.473447\pi\)
\(138\) 6.10731 0.519889
\(139\) 2.00719 0.170247 0.0851237 0.996370i \(-0.472871\pi\)
0.0851237 + 0.996370i \(0.472871\pi\)
\(140\) 13.2195 1.11725
\(141\) −3.65983 −0.308213
\(142\) −8.82150 −0.740284
\(143\) −8.34017 −0.697440
\(144\) 5.63090 0.469241
\(145\) −2.92162 −0.242628
\(146\) −24.0410 −1.98965
\(147\) 9.06278 0.747485
\(148\) −14.2557 −1.17181
\(149\) −14.2823 −1.17005 −0.585026 0.811014i \(-0.698916\pi\)
−0.585026 + 0.811014i \(0.698916\pi\)
\(150\) 1.17009 0.0955372
\(151\) −12.8638 −1.04684 −0.523419 0.852075i \(-0.675344\pi\)
−0.523419 + 0.852075i \(0.675344\pi\)
\(152\) −1.65983 −0.134630
\(153\) 0 0
\(154\) 33.5669 2.70490
\(155\) 4.09171 0.328654
\(156\) 3.84324 0.307706
\(157\) 3.75872 0.299979 0.149989 0.988688i \(-0.452076\pi\)
0.149989 + 0.988688i \(0.452076\pi\)
\(158\) 15.0361 1.19621
\(159\) −2.02666 −0.160725
\(160\) 7.58864 0.599934
\(161\) −25.4680 −2.00716
\(162\) 14.0361 1.10278
\(163\) −8.69594 −0.681119 −0.340559 0.940223i \(-0.610616\pi\)
−0.340559 + 0.940223i \(0.610616\pi\)
\(164\) −15.1773 −1.18515
\(165\) 1.70928 0.133067
\(166\) −17.8660 −1.38667
\(167\) −1.37629 −0.106501 −0.0532503 0.998581i \(-0.516958\pi\)
−0.0532503 + 0.998581i \(0.516958\pi\)
\(168\) −4.04945 −0.312422
\(169\) −6.07838 −0.467568
\(170\) 0 0
\(171\) 2.92162 0.223422
\(172\) −9.12783 −0.695990
\(173\) 17.3607 1.31991 0.659954 0.751306i \(-0.270576\pi\)
0.659954 + 0.751306i \(0.270576\pi\)
\(174\) 3.41855 0.259160
\(175\) −4.87936 −0.368845
\(176\) 6.58864 0.496637
\(177\) 1.26180 0.0948423
\(178\) 15.5259 1.16371
\(179\) −6.83710 −0.511029 −0.255514 0.966805i \(-0.582245\pi\)
−0.255514 + 0.966805i \(0.582245\pi\)
\(180\) 7.34017 0.547104
\(181\) 15.0205 1.11647 0.558233 0.829684i \(-0.311479\pi\)
0.558233 + 0.829684i \(0.311479\pi\)
\(182\) −27.8576 −2.06494
\(183\) 6.60811 0.488486
\(184\) 8.03385 0.592263
\(185\) 5.26180 0.386855
\(186\) −4.78765 −0.351048
\(187\) 0 0
\(188\) −18.3896 −1.34120
\(189\) 15.0205 1.09258
\(190\) 2.34017 0.169774
\(191\) −24.2823 −1.75701 −0.878503 0.477736i \(-0.841457\pi\)
−0.878503 + 0.477736i \(0.841457\pi\)
\(192\) −6.63809 −0.479063
\(193\) −11.8576 −0.853530 −0.426765 0.904363i \(-0.640347\pi\)
−0.426765 + 0.904363i \(0.640347\pi\)
\(194\) 17.7587 1.27500
\(195\) −1.41855 −0.101585
\(196\) 45.5380 3.25271
\(197\) −18.2557 −1.30066 −0.650331 0.759651i \(-0.725370\pi\)
−0.650331 + 0.759651i \(0.725370\pi\)
\(198\) 18.6381 1.32455
\(199\) −3.72487 −0.264049 −0.132025 0.991246i \(-0.542148\pi\)
−0.132025 + 0.991246i \(0.542148\pi\)
\(200\) 1.53919 0.108837
\(201\) 5.50307 0.388157
\(202\) −5.36910 −0.377769
\(203\) −14.2557 −1.00055
\(204\) 0 0
\(205\) 5.60197 0.391258
\(206\) −42.6453 −2.97124
\(207\) −14.1412 −0.982878
\(208\) −5.46800 −0.379138
\(209\) 3.41855 0.236466
\(210\) 5.70928 0.393977
\(211\) −22.2485 −1.53165 −0.765824 0.643051i \(-0.777668\pi\)
−0.765824 + 0.643051i \(0.777668\pi\)
\(212\) −10.1834 −0.699400
\(213\) −2.19183 −0.150182
\(214\) 27.4257 1.87478
\(215\) 3.36910 0.229771
\(216\) −4.73820 −0.322394
\(217\) 19.9649 1.35531
\(218\) −17.7009 −1.19885
\(219\) −5.97334 −0.403641
\(220\) 8.58864 0.579046
\(221\) 0 0
\(222\) −6.15676 −0.413214
\(223\) 2.19183 0.146776 0.0733878 0.997303i \(-0.476619\pi\)
0.0733878 + 0.997303i \(0.476619\pi\)
\(224\) 37.0277 2.47402
\(225\) −2.70928 −0.180618
\(226\) 36.9360 2.45695
\(227\) 9.55971 0.634500 0.317250 0.948342i \(-0.397241\pi\)
0.317250 + 0.948342i \(0.397241\pi\)
\(228\) −1.57531 −0.104327
\(229\) −7.36910 −0.486964 −0.243482 0.969905i \(-0.578290\pi\)
−0.243482 + 0.969905i \(0.578290\pi\)
\(230\) −11.3268 −0.746870
\(231\) 8.34017 0.548743
\(232\) 4.49693 0.295238
\(233\) −9.44521 −0.618776 −0.309388 0.950936i \(-0.600124\pi\)
−0.309388 + 0.950936i \(0.600124\pi\)
\(234\) −15.4680 −1.01117
\(235\) 6.78765 0.442778
\(236\) 6.34017 0.412710
\(237\) 3.73594 0.242675
\(238\) 0 0
\(239\) 6.25565 0.404644 0.202322 0.979319i \(-0.435151\pi\)
0.202322 + 0.979319i \(0.435151\pi\)
\(240\) 1.12064 0.0723369
\(241\) 2.49693 0.160841 0.0804207 0.996761i \(-0.474374\pi\)
0.0804207 + 0.996761i \(0.474374\pi\)
\(242\) −2.06278 −0.132600
\(243\) 12.7226 0.816156
\(244\) 33.2039 2.12566
\(245\) −16.8082 −1.07383
\(246\) −6.55479 −0.417918
\(247\) −2.83710 −0.180520
\(248\) −6.29791 −0.399918
\(249\) −4.43907 −0.281315
\(250\) −2.17009 −0.137248
\(251\) −11.8166 −0.745856 −0.372928 0.927860i \(-0.621646\pi\)
−0.372928 + 0.927860i \(0.621646\pi\)
\(252\) 35.8154 2.25616
\(253\) −16.5464 −1.04026
\(254\) 17.4680 1.09604
\(255\) 0 0
\(256\) −0.418551 −0.0261594
\(257\) −14.9444 −0.932207 −0.466103 0.884730i \(-0.654342\pi\)
−0.466103 + 0.884730i \(0.654342\pi\)
\(258\) −3.94214 −0.245427
\(259\) 25.6742 1.59532
\(260\) −7.12783 −0.442049
\(261\) −7.91548 −0.489956
\(262\) −25.3763 −1.56775
\(263\) 12.9444 0.798186 0.399093 0.916910i \(-0.369325\pi\)
0.399093 + 0.916910i \(0.369325\pi\)
\(264\) −2.63090 −0.161921
\(265\) 3.75872 0.230897
\(266\) 11.4186 0.700116
\(267\) 3.85762 0.236083
\(268\) 27.6514 1.68908
\(269\) 7.47641 0.455845 0.227922 0.973679i \(-0.426807\pi\)
0.227922 + 0.973679i \(0.426807\pi\)
\(270\) 6.68035 0.406553
\(271\) −2.15676 −0.131014 −0.0655068 0.997852i \(-0.520866\pi\)
−0.0655068 + 0.997852i \(0.520866\pi\)
\(272\) 0 0
\(273\) −6.92162 −0.418916
\(274\) 4.23287 0.255717
\(275\) −3.17009 −0.191163
\(276\) 7.62475 0.458956
\(277\) −12.1568 −0.730429 −0.365214 0.930923i \(-0.619004\pi\)
−0.365214 + 0.930923i \(0.619004\pi\)
\(278\) 4.35577 0.261242
\(279\) 11.0856 0.663675
\(280\) 7.51026 0.448824
\(281\) −13.1194 −0.782639 −0.391319 0.920255i \(-0.627981\pi\)
−0.391319 + 0.920255i \(0.627981\pi\)
\(282\) −7.94214 −0.472948
\(283\) −13.9577 −0.829701 −0.414851 0.909889i \(-0.636166\pi\)
−0.414851 + 0.909889i \(0.636166\pi\)
\(284\) −11.0133 −0.653521
\(285\) 0.581449 0.0344421
\(286\) −18.0989 −1.07021
\(287\) 27.3340 1.61348
\(288\) 20.5597 1.21149
\(289\) 0 0
\(290\) −6.34017 −0.372308
\(291\) 4.41241 0.258660
\(292\) −30.0144 −1.75646
\(293\) 4.73820 0.276809 0.138404 0.990376i \(-0.455803\pi\)
0.138404 + 0.990376i \(0.455803\pi\)
\(294\) 19.6670 1.14700
\(295\) −2.34017 −0.136250
\(296\) −8.09890 −0.470739
\(297\) 9.75872 0.566259
\(298\) −30.9939 −1.79543
\(299\) 13.7321 0.794146
\(300\) 1.46081 0.0843400
\(301\) 16.4391 0.947532
\(302\) −27.9155 −1.60636
\(303\) −1.33403 −0.0766380
\(304\) 2.24128 0.128546
\(305\) −12.2557 −0.701757
\(306\) 0 0
\(307\) −21.5936 −1.23241 −0.616205 0.787586i \(-0.711331\pi\)
−0.616205 + 0.787586i \(0.711331\pi\)
\(308\) 41.9071 2.38788
\(309\) −10.5958 −0.602775
\(310\) 8.87936 0.504314
\(311\) −24.2628 −1.37582 −0.687910 0.725796i \(-0.741472\pi\)
−0.687910 + 0.725796i \(0.741472\pi\)
\(312\) 2.18342 0.123612
\(313\) 4.07223 0.230176 0.115088 0.993355i \(-0.463285\pi\)
0.115088 + 0.993355i \(0.463285\pi\)
\(314\) 8.15676 0.460312
\(315\) −13.2195 −0.744836
\(316\) 18.7721 1.05601
\(317\) 8.05786 0.452574 0.226287 0.974061i \(-0.427341\pi\)
0.226287 + 0.974061i \(0.427341\pi\)
\(318\) −4.39803 −0.246629
\(319\) −9.26180 −0.518561
\(320\) 12.3112 0.688219
\(321\) 6.81432 0.380338
\(322\) −55.2678 −3.07995
\(323\) 0 0
\(324\) 17.5236 0.973533
\(325\) 2.63090 0.145936
\(326\) −18.8710 −1.04517
\(327\) −4.39803 −0.243212
\(328\) −8.62249 −0.476097
\(329\) 33.1194 1.82593
\(330\) 3.70928 0.204189
\(331\) 10.0722 0.553620 0.276810 0.960925i \(-0.410723\pi\)
0.276810 + 0.960925i \(0.410723\pi\)
\(332\) −22.3051 −1.22415
\(333\) 14.2557 0.781205
\(334\) −2.98667 −0.163423
\(335\) −10.2062 −0.557624
\(336\) 5.46800 0.298304
\(337\) 11.2351 0.612017 0.306008 0.952029i \(-0.401006\pi\)
0.306008 + 0.952029i \(0.401006\pi\)
\(338\) −13.1906 −0.717474
\(339\) 9.17727 0.498441
\(340\) 0 0
\(341\) 12.9711 0.702423
\(342\) 6.34017 0.342837
\(343\) −47.8576 −2.58407
\(344\) −5.18568 −0.279593
\(345\) −2.81432 −0.151518
\(346\) 37.6742 2.02538
\(347\) −8.74927 −0.469685 −0.234843 0.972033i \(-0.575457\pi\)
−0.234843 + 0.972033i \(0.575457\pi\)
\(348\) 4.26794 0.228786
\(349\) 26.9093 1.44042 0.720212 0.693754i \(-0.244045\pi\)
0.720212 + 0.693754i \(0.244045\pi\)
\(350\) −10.5886 −0.565986
\(351\) −8.09890 −0.432287
\(352\) 24.0566 1.28222
\(353\) 18.3135 0.974730 0.487365 0.873198i \(-0.337958\pi\)
0.487365 + 0.873198i \(0.337958\pi\)
\(354\) 2.73820 0.145534
\(355\) 4.06505 0.215750
\(356\) 19.3835 1.02732
\(357\) 0 0
\(358\) −14.8371 −0.784165
\(359\) 9.57531 0.505365 0.252683 0.967549i \(-0.418687\pi\)
0.252683 + 0.967549i \(0.418687\pi\)
\(360\) 4.17009 0.219783
\(361\) −17.8371 −0.938795
\(362\) 32.5958 1.71320
\(363\) −0.512527 −0.0269007
\(364\) −34.7792 −1.82293
\(365\) 11.0784 0.579869
\(366\) 14.3402 0.749573
\(367\) 12.1145 0.632371 0.316186 0.948697i \(-0.397598\pi\)
0.316186 + 0.948697i \(0.397598\pi\)
\(368\) −10.8482 −0.565500
\(369\) 15.1773 0.790097
\(370\) 11.4186 0.593622
\(371\) 18.3402 0.952174
\(372\) −5.97721 −0.309904
\(373\) 30.4619 1.57726 0.788628 0.614871i \(-0.210792\pi\)
0.788628 + 0.614871i \(0.210792\pi\)
\(374\) 0 0
\(375\) −0.539189 −0.0278436
\(376\) −10.4475 −0.538788
\(377\) 7.68649 0.395874
\(378\) 32.5958 1.67655
\(379\) 0.986669 0.0506818 0.0253409 0.999679i \(-0.491933\pi\)
0.0253409 + 0.999679i \(0.491933\pi\)
\(380\) 2.92162 0.149876
\(381\) 4.34017 0.222354
\(382\) −52.6947 −2.69610
\(383\) 24.9588 1.27533 0.637667 0.770312i \(-0.279900\pi\)
0.637667 + 0.770312i \(0.279900\pi\)
\(384\) −6.22180 −0.317505
\(385\) −15.4680 −0.788322
\(386\) −25.7321 −1.30973
\(387\) 9.12783 0.463993
\(388\) 22.1711 1.12557
\(389\) −33.8082 −1.71414 −0.857071 0.515198i \(-0.827718\pi\)
−0.857071 + 0.515198i \(0.827718\pi\)
\(390\) −3.07838 −0.155880
\(391\) 0 0
\(392\) 25.8710 1.30668
\(393\) −6.30510 −0.318050
\(394\) −39.6163 −1.99584
\(395\) −6.92881 −0.348626
\(396\) 23.2690 1.16931
\(397\) 28.5236 1.43156 0.715779 0.698327i \(-0.246072\pi\)
0.715779 + 0.698327i \(0.246072\pi\)
\(398\) −8.08330 −0.405179
\(399\) 2.83710 0.142033
\(400\) −2.07838 −0.103919
\(401\) −33.0928 −1.65257 −0.826287 0.563250i \(-0.809551\pi\)
−0.826287 + 0.563250i \(0.809551\pi\)
\(402\) 11.9421 0.595620
\(403\) −10.7649 −0.536236
\(404\) −6.70313 −0.333493
\(405\) −6.46800 −0.321397
\(406\) −30.9360 −1.53533
\(407\) 16.6803 0.826814
\(408\) 0 0
\(409\) −30.1978 −1.49318 −0.746592 0.665282i \(-0.768311\pi\)
−0.746592 + 0.665282i \(0.768311\pi\)
\(410\) 12.1568 0.600379
\(411\) 1.05172 0.0518773
\(412\) −53.2411 −2.62300
\(413\) −11.4186 −0.561870
\(414\) −30.6875 −1.50821
\(415\) 8.23287 0.404135
\(416\) −19.9649 −0.978861
\(417\) 1.08225 0.0529982
\(418\) 7.41855 0.362853
\(419\) 18.1639 0.887367 0.443683 0.896184i \(-0.353671\pi\)
0.443683 + 0.896184i \(0.353671\pi\)
\(420\) 7.12783 0.347802
\(421\) 0.760991 0.0370884 0.0185442 0.999828i \(-0.494097\pi\)
0.0185442 + 0.999828i \(0.494097\pi\)
\(422\) −48.2811 −2.35029
\(423\) 18.3896 0.894134
\(424\) −5.78539 −0.280963
\(425\) 0 0
\(426\) −4.75646 −0.230451
\(427\) −59.7998 −2.89391
\(428\) 34.2401 1.65506
\(429\) −4.49693 −0.217114
\(430\) 7.31124 0.352579
\(431\) 6.34736 0.305742 0.152871 0.988246i \(-0.451148\pi\)
0.152871 + 0.988246i \(0.451148\pi\)
\(432\) 6.39803 0.307825
\(433\) −3.62475 −0.174195 −0.0870973 0.996200i \(-0.527759\pi\)
−0.0870973 + 0.996200i \(0.527759\pi\)
\(434\) 43.3256 2.07970
\(435\) −1.57531 −0.0755302
\(436\) −22.0989 −1.05835
\(437\) −5.62863 −0.269254
\(438\) −12.9627 −0.619380
\(439\) 6.40522 0.305704 0.152852 0.988249i \(-0.451154\pi\)
0.152852 + 0.988249i \(0.451154\pi\)
\(440\) 4.87936 0.232614
\(441\) −45.5380 −2.16847
\(442\) 0 0
\(443\) 27.4824 1.30573 0.652864 0.757476i \(-0.273568\pi\)
0.652864 + 0.757476i \(0.273568\pi\)
\(444\) −7.68649 −0.364785
\(445\) −7.15449 −0.339155
\(446\) 4.75646 0.225225
\(447\) −7.70086 −0.364238
\(448\) 60.0710 2.83809
\(449\) −28.7526 −1.35692 −0.678459 0.734638i \(-0.737352\pi\)
−0.678459 + 0.734638i \(0.737352\pi\)
\(450\) −5.87936 −0.277156
\(451\) 17.7587 0.836226
\(452\) 46.1133 2.16899
\(453\) −6.93600 −0.325882
\(454\) 20.7454 0.973630
\(455\) 12.8371 0.601813
\(456\) −0.894960 −0.0419104
\(457\) 31.4101 1.46930 0.734652 0.678444i \(-0.237345\pi\)
0.734652 + 0.678444i \(0.237345\pi\)
\(458\) −15.9916 −0.747238
\(459\) 0 0
\(460\) −14.1412 −0.659335
\(461\) 7.75872 0.361360 0.180680 0.983542i \(-0.442170\pi\)
0.180680 + 0.983542i \(0.442170\pi\)
\(462\) 18.0989 0.842037
\(463\) 24.2329 1.12620 0.563098 0.826390i \(-0.309609\pi\)
0.563098 + 0.826390i \(0.309609\pi\)
\(464\) −6.07223 −0.281896
\(465\) 2.20620 0.102310
\(466\) −20.4969 −0.949502
\(467\) 12.3174 0.569981 0.284990 0.958530i \(-0.408010\pi\)
0.284990 + 0.958530i \(0.408010\pi\)
\(468\) −19.3112 −0.892663
\(469\) −49.7998 −2.29954
\(470\) 14.7298 0.679435
\(471\) 2.02666 0.0933837
\(472\) 3.60197 0.165794
\(473\) 10.6803 0.491083
\(474\) 8.10731 0.372381
\(475\) −1.07838 −0.0494794
\(476\) 0 0
\(477\) 10.1834 0.466267
\(478\) 13.5753 0.620920
\(479\) −2.14957 −0.0982162 −0.0491081 0.998793i \(-0.515638\pi\)
−0.0491081 + 0.998793i \(0.515638\pi\)
\(480\) 4.09171 0.186760
\(481\) −13.8432 −0.631198
\(482\) 5.41855 0.246808
\(483\) −13.7321 −0.624830
\(484\) −2.57531 −0.117059
\(485\) −8.18342 −0.371590
\(486\) 27.6092 1.25238
\(487\) −40.0833 −1.81635 −0.908174 0.418593i \(-0.862523\pi\)
−0.908174 + 0.418593i \(0.862523\pi\)
\(488\) 18.8638 0.853922
\(489\) −4.68876 −0.212033
\(490\) −36.4752 −1.64778
\(491\) 2.25565 0.101796 0.0508981 0.998704i \(-0.483792\pi\)
0.0508981 + 0.998704i \(0.483792\pi\)
\(492\) −8.18342 −0.368937
\(493\) 0 0
\(494\) −6.15676 −0.277006
\(495\) −8.58864 −0.386031
\(496\) 8.50412 0.381846
\(497\) 19.8348 0.889714
\(498\) −9.63317 −0.431672
\(499\) −42.5452 −1.90458 −0.952291 0.305190i \(-0.901280\pi\)
−0.952291 + 0.305190i \(0.901280\pi\)
\(500\) −2.70928 −0.121162
\(501\) −0.742080 −0.0331537
\(502\) −25.6430 −1.14450
\(503\) −9.55971 −0.426246 −0.213123 0.977025i \(-0.568364\pi\)
−0.213123 + 0.977025i \(0.568364\pi\)
\(504\) 20.3474 0.906343
\(505\) 2.47414 0.110098
\(506\) −35.9071 −1.59626
\(507\) −3.27739 −0.145554
\(508\) 21.8082 0.967581
\(509\) 28.3545 1.25679 0.628397 0.777893i \(-0.283712\pi\)
0.628397 + 0.777893i \(0.283712\pi\)
\(510\) 0 0
\(511\) 54.0554 2.39127
\(512\) 22.1701 0.979789
\(513\) 3.31965 0.146566
\(514\) −32.4307 −1.43046
\(515\) 19.6514 0.865945
\(516\) −4.92162 −0.216662
\(517\) 21.5174 0.946336
\(518\) 55.7152 2.44799
\(519\) 9.36069 0.410889
\(520\) −4.04945 −0.177580
\(521\) 15.1050 0.661764 0.330882 0.943672i \(-0.392654\pi\)
0.330882 + 0.943672i \(0.392654\pi\)
\(522\) −17.1773 −0.751829
\(523\) −10.8865 −0.476036 −0.238018 0.971261i \(-0.576498\pi\)
−0.238018 + 0.971261i \(0.576498\pi\)
\(524\) −31.6814 −1.38401
\(525\) −2.63090 −0.114822
\(526\) 28.0905 1.22480
\(527\) 0 0
\(528\) 3.55252 0.154604
\(529\) 4.24354 0.184502
\(530\) 8.15676 0.354307
\(531\) −6.34017 −0.275140
\(532\) 14.2557 0.618061
\(533\) −14.7382 −0.638383
\(534\) 8.37137 0.362265
\(535\) −12.6381 −0.546392
\(536\) 15.7093 0.678537
\(537\) −3.68649 −0.159084
\(538\) 16.2245 0.699486
\(539\) −53.2834 −2.29508
\(540\) 8.34017 0.358904
\(541\) −6.86830 −0.295291 −0.147646 0.989040i \(-0.547170\pi\)
−0.147646 + 0.989040i \(0.547170\pi\)
\(542\) −4.68035 −0.201038
\(543\) 8.09890 0.347557
\(544\) 0 0
\(545\) 8.15676 0.349397
\(546\) −15.0205 −0.642819
\(547\) 5.89988 0.252261 0.126130 0.992014i \(-0.459744\pi\)
0.126130 + 0.992014i \(0.459744\pi\)
\(548\) 5.28458 0.225746
\(549\) −33.2039 −1.41711
\(550\) −6.87936 −0.293337
\(551\) −3.15061 −0.134221
\(552\) 4.33176 0.184372
\(553\) −33.8082 −1.43767
\(554\) −26.3812 −1.12083
\(555\) 2.83710 0.120428
\(556\) 5.43802 0.230624
\(557\) −17.7359 −0.751496 −0.375748 0.926722i \(-0.622614\pi\)
−0.375748 + 0.926722i \(0.622614\pi\)
\(558\) 24.0566 1.01840
\(559\) −8.86376 −0.374897
\(560\) −10.1412 −0.428542
\(561\) 0 0
\(562\) −28.4703 −1.20095
\(563\) 38.8020 1.63531 0.817655 0.575708i \(-0.195274\pi\)
0.817655 + 0.575708i \(0.195274\pi\)
\(564\) −9.91548 −0.417517
\(565\) −17.0205 −0.716059
\(566\) −30.2895 −1.27316
\(567\) −31.5597 −1.32538
\(568\) −6.25687 −0.262533
\(569\) −12.1568 −0.509638 −0.254819 0.966989i \(-0.582016\pi\)
−0.254819 + 0.966989i \(0.582016\pi\)
\(570\) 1.26180 0.0528508
\(571\) −15.4569 −0.646853 −0.323426 0.946253i \(-0.604835\pi\)
−0.323426 + 0.946253i \(0.604835\pi\)
\(572\) −22.5958 −0.944779
\(573\) −13.0928 −0.546958
\(574\) 59.3172 2.47585
\(575\) 5.21953 0.217670
\(576\) 33.3545 1.38977
\(577\) −2.36296 −0.0983713 −0.0491856 0.998790i \(-0.515663\pi\)
−0.0491856 + 0.998790i \(0.515663\pi\)
\(578\) 0 0
\(579\) −6.39350 −0.265705
\(580\) −7.91548 −0.328672
\(581\) 40.1711 1.66658
\(582\) 9.57531 0.396909
\(583\) 11.9155 0.493489
\(584\) −17.0517 −0.705605
\(585\) 7.12783 0.294699
\(586\) 10.2823 0.424758
\(587\) 3.65142 0.150710 0.0753550 0.997157i \(-0.475991\pi\)
0.0753550 + 0.997157i \(0.475991\pi\)
\(588\) 24.5536 1.01257
\(589\) 4.41241 0.181810
\(590\) −5.07838 −0.209074
\(591\) −9.84324 −0.404897
\(592\) 10.9360 0.449467
\(593\) 1.38735 0.0569718 0.0284859 0.999594i \(-0.490931\pi\)
0.0284859 + 0.999594i \(0.490931\pi\)
\(594\) 21.1773 0.868914
\(595\) 0 0
\(596\) −38.6947 −1.58500
\(597\) −2.00841 −0.0821988
\(598\) 29.7998 1.21860
\(599\) −0.451356 −0.0184419 −0.00922095 0.999957i \(-0.502935\pi\)
−0.00922095 + 0.999957i \(0.502935\pi\)
\(600\) 0.829914 0.0338811
\(601\) 22.1301 0.902705 0.451353 0.892346i \(-0.350942\pi\)
0.451353 + 0.892346i \(0.350942\pi\)
\(602\) 35.6742 1.45397
\(603\) −27.6514 −1.12605
\(604\) −34.8515 −1.41809
\(605\) 0.950552 0.0386454
\(606\) −2.89496 −0.117600
\(607\) −10.2667 −0.416713 −0.208357 0.978053i \(-0.566811\pi\)
−0.208357 + 0.978053i \(0.566811\pi\)
\(608\) 8.18342 0.331881
\(609\) −7.68649 −0.311472
\(610\) −26.5958 −1.07683
\(611\) −17.8576 −0.722442
\(612\) 0 0
\(613\) −9.05172 −0.365595 −0.182798 0.983151i \(-0.558515\pi\)
−0.182798 + 0.983151i \(0.558515\pi\)
\(614\) −46.8599 −1.89111
\(615\) 3.02052 0.121799
\(616\) 23.8082 0.959259
\(617\) −17.8166 −0.717269 −0.358634 0.933478i \(-0.616757\pi\)
−0.358634 + 0.933478i \(0.616757\pi\)
\(618\) −22.9939 −0.924949
\(619\) 38.3884 1.54296 0.771480 0.636254i \(-0.219517\pi\)
0.771480 + 0.636254i \(0.219517\pi\)
\(620\) 11.0856 0.445207
\(621\) −16.0677 −0.644775
\(622\) −52.6525 −2.11117
\(623\) −34.9093 −1.39861
\(624\) −2.94828 −0.118026
\(625\) 1.00000 0.0400000
\(626\) 8.83710 0.353202
\(627\) 1.84324 0.0736121
\(628\) 10.1834 0.406363
\(629\) 0 0
\(630\) −28.6875 −1.14294
\(631\) 27.4863 1.09421 0.547105 0.837064i \(-0.315730\pi\)
0.547105 + 0.837064i \(0.315730\pi\)
\(632\) 10.6647 0.424221
\(633\) −11.9961 −0.476803
\(634\) 17.4863 0.694468
\(635\) −8.04945 −0.319433
\(636\) −5.49079 −0.217724
\(637\) 44.2206 1.75208
\(638\) −20.0989 −0.795723
\(639\) 11.0133 0.435681
\(640\) 11.5392 0.456126
\(641\) −9.79976 −0.387067 −0.193534 0.981094i \(-0.561995\pi\)
−0.193534 + 0.981094i \(0.561995\pi\)
\(642\) 14.7877 0.583622
\(643\) −16.9372 −0.667939 −0.333969 0.942584i \(-0.608388\pi\)
−0.333969 + 0.942584i \(0.608388\pi\)
\(644\) −68.9998 −2.71897
\(645\) 1.81658 0.0715279
\(646\) 0 0
\(647\) −2.98545 −0.117370 −0.0586850 0.998277i \(-0.518691\pi\)
−0.0586850 + 0.998277i \(0.518691\pi\)
\(648\) 9.95547 0.391088
\(649\) −7.41855 −0.291204
\(650\) 5.70928 0.223936
\(651\) 10.7649 0.421908
\(652\) −23.5597 −0.922669
\(653\) 40.1978 1.57306 0.786531 0.617551i \(-0.211875\pi\)
0.786531 + 0.617551i \(0.211875\pi\)
\(654\) −9.54411 −0.373204
\(655\) 11.6937 0.456910
\(656\) 11.6430 0.454583
\(657\) 30.0144 1.17097
\(658\) 71.8720 2.80186
\(659\) 43.9832 1.71334 0.856671 0.515864i \(-0.172529\pi\)
0.856671 + 0.515864i \(0.172529\pi\)
\(660\) 4.63090 0.180257
\(661\) −26.1133 −1.01569 −0.507844 0.861449i \(-0.669557\pi\)
−0.507844 + 0.861449i \(0.669557\pi\)
\(662\) 21.8576 0.849521
\(663\) 0 0
\(664\) −12.6719 −0.491766
\(665\) −5.26180 −0.204044
\(666\) 30.9360 1.19875
\(667\) 15.2495 0.590463
\(668\) −3.72875 −0.144270
\(669\) 1.18181 0.0456914
\(670\) −22.1483 −0.855665
\(671\) −38.8515 −1.49984
\(672\) 19.9649 0.770164
\(673\) −13.3340 −0.513989 −0.256995 0.966413i \(-0.582732\pi\)
−0.256995 + 0.966413i \(0.582732\pi\)
\(674\) 24.3812 0.939129
\(675\) −3.07838 −0.118487
\(676\) −16.4680 −0.633385
\(677\) 26.5113 1.01891 0.509456 0.860497i \(-0.329847\pi\)
0.509456 + 0.860497i \(0.329847\pi\)
\(678\) 19.9155 0.764849
\(679\) −39.9299 −1.53237
\(680\) 0 0
\(681\) 5.15449 0.197520
\(682\) 28.1483 1.07786
\(683\) −5.71646 −0.218734 −0.109367 0.994001i \(-0.534882\pi\)
−0.109367 + 0.994001i \(0.534882\pi\)
\(684\) 7.91548 0.302656
\(685\) −1.95055 −0.0745267
\(686\) −103.855 −3.96521
\(687\) −3.97334 −0.151592
\(688\) 7.00227 0.266959
\(689\) −9.88882 −0.376734
\(690\) −6.10731 −0.232501
\(691\) −43.8504 −1.66815 −0.834075 0.551652i \(-0.813998\pi\)
−0.834075 + 0.551652i \(0.813998\pi\)
\(692\) 47.0349 1.78800
\(693\) −41.9071 −1.59192
\(694\) −18.9867 −0.720724
\(695\) −2.00719 −0.0761370
\(696\) 2.42469 0.0919078
\(697\) 0 0
\(698\) 58.3956 2.21031
\(699\) −5.09275 −0.192626
\(700\) −13.2195 −0.499651
\(701\) 0.0806452 0.00304593 0.00152296 0.999999i \(-0.499515\pi\)
0.00152296 + 0.999999i \(0.499515\pi\)
\(702\) −17.5753 −0.663337
\(703\) 5.67420 0.214007
\(704\) 39.0277 1.47091
\(705\) 3.65983 0.137837
\(706\) 39.7419 1.49571
\(707\) 12.0722 0.454023
\(708\) 3.41855 0.128477
\(709\) 10.8227 0.406456 0.203228 0.979131i \(-0.434857\pi\)
0.203228 + 0.979131i \(0.434857\pi\)
\(710\) 8.82150 0.331065
\(711\) −18.7721 −0.704007
\(712\) 11.0121 0.412696
\(713\) −21.3568 −0.799819
\(714\) 0 0
\(715\) 8.34017 0.311905
\(716\) −18.5236 −0.692259
\(717\) 3.37298 0.125966
\(718\) 20.7792 0.775474
\(719\) 43.7659 1.63219 0.816097 0.577916i \(-0.196134\pi\)
0.816097 + 0.577916i \(0.196134\pi\)
\(720\) −5.63090 −0.209851
\(721\) 95.8864 3.57100
\(722\) −38.7081 −1.44056
\(723\) 1.34632 0.0500700
\(724\) 40.6947 1.51241
\(725\) 2.92162 0.108506
\(726\) −1.11223 −0.0412786
\(727\) −3.59809 −0.133446 −0.0667229 0.997772i \(-0.521254\pi\)
−0.0667229 + 0.997772i \(0.521254\pi\)
\(728\) −19.7587 −0.732307
\(729\) −12.5441 −0.464597
\(730\) 24.0410 0.889799
\(731\) 0 0
\(732\) 17.9032 0.661721
\(733\) 39.8264 1.47102 0.735511 0.677513i \(-0.236942\pi\)
0.735511 + 0.677513i \(0.236942\pi\)
\(734\) 26.2895 0.970363
\(735\) −9.06278 −0.334286
\(736\) −39.6092 −1.46001
\(737\) −32.3545 −1.19180
\(738\) 32.9360 1.21239
\(739\) −13.7587 −0.506123 −0.253061 0.967450i \(-0.581437\pi\)
−0.253061 + 0.967450i \(0.581437\pi\)
\(740\) 14.2557 0.524048
\(741\) −1.52973 −0.0561962
\(742\) 39.7998 1.46110
\(743\) 9.34963 0.343005 0.171502 0.985184i \(-0.445138\pi\)
0.171502 + 0.985184i \(0.445138\pi\)
\(744\) −3.39576 −0.124495
\(745\) 14.2823 0.523264
\(746\) 66.1049 2.42027
\(747\) 22.3051 0.816101
\(748\) 0 0
\(749\) −61.6658 −2.25322
\(750\) −1.17009 −0.0427255
\(751\) −53.7392 −1.96097 −0.980487 0.196586i \(-0.937014\pi\)
−0.980487 + 0.196586i \(0.937014\pi\)
\(752\) 14.1073 0.514441
\(753\) −6.37137 −0.232186
\(754\) 16.6803 0.607462
\(755\) 12.8638 0.468160
\(756\) 40.6947 1.48005
\(757\) 41.5136 1.50884 0.754418 0.656394i \(-0.227919\pi\)
0.754418 + 0.656394i \(0.227919\pi\)
\(758\) 2.14116 0.0777703
\(759\) −8.92162 −0.323834
\(760\) 1.65983 0.0602083
\(761\) −18.0372 −0.653847 −0.326923 0.945051i \(-0.606012\pi\)
−0.326923 + 0.945051i \(0.606012\pi\)
\(762\) 9.41855 0.341198
\(763\) 39.7998 1.44085
\(764\) −65.7875 −2.38011
\(765\) 0 0
\(766\) 54.1627 1.95698
\(767\) 6.15676 0.222308
\(768\) −0.225678 −0.00814345
\(769\) −23.0843 −0.832443 −0.416221 0.909263i \(-0.636646\pi\)
−0.416221 + 0.909263i \(0.636646\pi\)
\(770\) −33.5669 −1.20967
\(771\) −8.05786 −0.290197
\(772\) −32.1256 −1.15622
\(773\) 27.4101 0.985874 0.492937 0.870065i \(-0.335923\pi\)
0.492937 + 0.870065i \(0.335923\pi\)
\(774\) 19.8082 0.711990
\(775\) −4.09171 −0.146979
\(776\) 12.5958 0.452164
\(777\) 13.8432 0.496624
\(778\) −73.3667 −2.63032
\(779\) 6.04104 0.216443
\(780\) −3.84324 −0.137610
\(781\) 12.8865 0.461117
\(782\) 0 0
\(783\) −8.99386 −0.321414
\(784\) −34.9337 −1.24763
\(785\) −3.75872 −0.134155
\(786\) −13.6826 −0.488043
\(787\) −30.6069 −1.09102 −0.545509 0.838105i \(-0.683664\pi\)
−0.545509 + 0.838105i \(0.683664\pi\)
\(788\) −49.4596 −1.76192
\(789\) 6.97948 0.248476
\(790\) −15.0361 −0.534961
\(791\) −83.0493 −2.95289
\(792\) 13.2195 0.469736
\(793\) 32.2434 1.14500
\(794\) 61.8987 2.19670
\(795\) 2.02666 0.0718783
\(796\) −10.0917 −0.357691
\(797\) −22.9770 −0.813888 −0.406944 0.913453i \(-0.633406\pi\)
−0.406944 + 0.913453i \(0.633406\pi\)
\(798\) 6.15676 0.217947
\(799\) 0 0
\(800\) −7.58864 −0.268299
\(801\) −19.3835 −0.684882
\(802\) −71.8141 −2.53585
\(803\) 35.1194 1.23934
\(804\) 14.9093 0.525812
\(805\) 25.4680 0.897629
\(806\) −23.3607 −0.822845
\(807\) 4.03120 0.141905
\(808\) −3.80817 −0.133971
\(809\) 42.7670 1.50361 0.751803 0.659388i \(-0.229184\pi\)
0.751803 + 0.659388i \(0.229184\pi\)
\(810\) −14.0361 −0.493179
\(811\) −9.41136 −0.330478 −0.165239 0.986254i \(-0.552839\pi\)
−0.165239 + 0.986254i \(0.552839\pi\)
\(812\) −38.6225 −1.35538
\(813\) −1.16290 −0.0407846
\(814\) 36.1978 1.26873
\(815\) 8.69594 0.304606
\(816\) 0 0
\(817\) 3.63317 0.127108
\(818\) −65.5318 −2.29127
\(819\) 34.7792 1.21529
\(820\) 15.1773 0.530013
\(821\) 32.6681 1.14012 0.570062 0.821602i \(-0.306919\pi\)
0.570062 + 0.821602i \(0.306919\pi\)
\(822\) 2.28231 0.0796048
\(823\) −15.9265 −0.555164 −0.277582 0.960702i \(-0.589533\pi\)
−0.277582 + 0.960702i \(0.589533\pi\)
\(824\) −30.2472 −1.05371
\(825\) −1.70928 −0.0595093
\(826\) −24.7792 −0.862180
\(827\) −6.01560 −0.209183 −0.104591 0.994515i \(-0.533353\pi\)
−0.104591 + 0.994515i \(0.533353\pi\)
\(828\) −38.3123 −1.33144
\(829\) 11.0472 0.383684 0.191842 0.981426i \(-0.438554\pi\)
0.191842 + 0.981426i \(0.438554\pi\)
\(830\) 17.8660 0.620139
\(831\) −6.55479 −0.227383
\(832\) −32.3896 −1.12291
\(833\) 0 0
\(834\) 2.34858 0.0813248
\(835\) 1.37629 0.0476285
\(836\) 9.26180 0.320326
\(837\) 12.5958 0.435375
\(838\) 39.4173 1.36165
\(839\) −35.9805 −1.24219 −0.621093 0.783737i \(-0.713311\pi\)
−0.621093 + 0.783737i \(0.713311\pi\)
\(840\) 4.04945 0.139719
\(841\) −20.4641 −0.705659
\(842\) 1.65142 0.0569116
\(843\) −7.07384 −0.243636
\(844\) −60.2772 −2.07483
\(845\) 6.07838 0.209103
\(846\) 39.9071 1.37203
\(847\) 4.63809 0.159367
\(848\) 7.81205 0.268267
\(849\) −7.52586 −0.258287
\(850\) 0 0
\(851\) −27.4641 −0.941458
\(852\) −5.93827 −0.203442
\(853\) 28.7792 0.985382 0.492691 0.870204i \(-0.336013\pi\)
0.492691 + 0.870204i \(0.336013\pi\)
\(854\) −129.771 −4.44066
\(855\) −2.92162 −0.0999174
\(856\) 19.4524 0.664869
\(857\) −17.0661 −0.582967 −0.291483 0.956576i \(-0.594149\pi\)
−0.291483 + 0.956576i \(0.594149\pi\)
\(858\) −9.75872 −0.333157
\(859\) 18.9360 0.646088 0.323044 0.946384i \(-0.395294\pi\)
0.323044 + 0.946384i \(0.395294\pi\)
\(860\) 9.12783 0.311256
\(861\) 14.7382 0.502277
\(862\) 13.7743 0.469155
\(863\) 30.8332 1.04958 0.524788 0.851233i \(-0.324145\pi\)
0.524788 + 0.851233i \(0.324145\pi\)
\(864\) 23.3607 0.794747
\(865\) −17.3607 −0.590281
\(866\) −7.86603 −0.267299
\(867\) 0 0
\(868\) 54.0905 1.83595
\(869\) −21.9649 −0.745109
\(870\) −3.41855 −0.115900
\(871\) 26.8515 0.909828
\(872\) −12.5548 −0.425159
\(873\) −22.1711 −0.750379
\(874\) −12.2146 −0.413165
\(875\) 4.87936 0.164953
\(876\) −16.1834 −0.546787
\(877\) 4.30898 0.145504 0.0727519 0.997350i \(-0.476822\pi\)
0.0727519 + 0.997350i \(0.476822\pi\)
\(878\) 13.8999 0.469098
\(879\) 2.55479 0.0861708
\(880\) −6.58864 −0.222103
\(881\) 12.2245 0.411852 0.205926 0.978568i \(-0.433979\pi\)
0.205926 + 0.978568i \(0.433979\pi\)
\(882\) −98.8213 −3.32749
\(883\) −28.2329 −0.950112 −0.475056 0.879956i \(-0.657572\pi\)
−0.475056 + 0.879956i \(0.657572\pi\)
\(884\) 0 0
\(885\) −1.26180 −0.0424148
\(886\) 59.6391 2.00362
\(887\) −5.17396 −0.173725 −0.0868623 0.996220i \(-0.527684\pi\)
−0.0868623 + 0.996220i \(0.527684\pi\)
\(888\) −4.36683 −0.146541
\(889\) −39.2762 −1.31728
\(890\) −15.5259 −0.520428
\(891\) −20.5041 −0.686914
\(892\) 5.93827 0.198828
\(893\) 7.31965 0.244943
\(894\) −16.7115 −0.558918
\(895\) 6.83710 0.228539
\(896\) 56.3039 1.88098
\(897\) 7.40417 0.247218
\(898\) −62.3956 −2.08217
\(899\) −11.9544 −0.398702
\(900\) −7.34017 −0.244672
\(901\) 0 0
\(902\) 38.5380 1.28317
\(903\) 8.86376 0.294968
\(904\) 26.1978 0.871326
\(905\) −15.0205 −0.499299
\(906\) −15.0517 −0.500060
\(907\) −6.32457 −0.210004 −0.105002 0.994472i \(-0.533485\pi\)
−0.105002 + 0.994472i \(0.533485\pi\)
\(908\) 25.8999 0.859518
\(909\) 6.70313 0.222329
\(910\) 27.8576 0.923471
\(911\) 27.6526 0.916173 0.458086 0.888908i \(-0.348535\pi\)
0.458086 + 0.888908i \(0.348535\pi\)
\(912\) 1.20847 0.0400165
\(913\) 26.0989 0.863747
\(914\) 68.1627 2.25462
\(915\) −6.60811 −0.218457
\(916\) −19.9649 −0.659660
\(917\) 57.0577 1.88421
\(918\) 0 0
\(919\) −47.5318 −1.56793 −0.783965 0.620805i \(-0.786806\pi\)
−0.783965 + 0.620805i \(0.786806\pi\)
\(920\) −8.03385 −0.264868
\(921\) −11.6430 −0.383650
\(922\) 16.8371 0.554500
\(923\) −10.6947 −0.352021
\(924\) 22.5958 0.743348
\(925\) −5.26180 −0.173007
\(926\) 52.5874 1.72813
\(927\) 53.2411 1.74867
\(928\) −22.1711 −0.727803
\(929\) −43.7875 −1.43662 −0.718310 0.695723i \(-0.755084\pi\)
−0.718310 + 0.695723i \(0.755084\pi\)
\(930\) 4.78765 0.156993
\(931\) −18.1256 −0.594041
\(932\) −25.5897 −0.838218
\(933\) −13.0823 −0.428294
\(934\) 26.7298 0.874626
\(935\) 0 0
\(936\) −10.9711 −0.358601
\(937\) −14.2367 −0.465094 −0.232547 0.972585i \(-0.574706\pi\)
−0.232547 + 0.972585i \(0.574706\pi\)
\(938\) −108.070 −3.52860
\(939\) 2.19570 0.0716541
\(940\) 18.3896 0.599803
\(941\) 35.2183 1.14808 0.574042 0.818826i \(-0.305375\pi\)
0.574042 + 0.818826i \(0.305375\pi\)
\(942\) 4.39803 0.143296
\(943\) −29.2397 −0.952175
\(944\) −4.86376 −0.158302
\(945\) −15.0205 −0.488618
\(946\) 23.1773 0.753558
\(947\) −49.1227 −1.59627 −0.798137 0.602476i \(-0.794181\pi\)
−0.798137 + 0.602476i \(0.794181\pi\)
\(948\) 10.1217 0.328737
\(949\) −29.1461 −0.946122
\(950\) −2.34017 −0.0759252
\(951\) 4.34471 0.140887
\(952\) 0 0
\(953\) −17.0556 −0.552485 −0.276242 0.961088i \(-0.589089\pi\)
−0.276242 + 0.961088i \(0.589089\pi\)
\(954\) 22.0989 0.715478
\(955\) 24.2823 0.785757
\(956\) 16.9483 0.548147
\(957\) −4.99386 −0.161428
\(958\) −4.66475 −0.150711
\(959\) −9.51745 −0.307334
\(960\) 6.63809 0.214243
\(961\) −14.2579 −0.459933
\(962\) −30.0410 −0.968562
\(963\) −34.2401 −1.10337
\(964\) 6.76487 0.217882
\(965\) 11.8576 0.381710
\(966\) −29.7998 −0.958792
\(967\) 25.1955 0.810233 0.405117 0.914265i \(-0.367231\pi\)
0.405117 + 0.914265i \(0.367231\pi\)
\(968\) −1.46308 −0.0470251
\(969\) 0 0
\(970\) −17.7587 −0.570198
\(971\) −1.67420 −0.0537277 −0.0268639 0.999639i \(-0.508552\pi\)
−0.0268639 + 0.999639i \(0.508552\pi\)
\(972\) 34.4690 1.10560
\(973\) −9.79380 −0.313975
\(974\) −86.9842 −2.78715
\(975\) 1.41855 0.0454300
\(976\) −25.4719 −0.815335
\(977\) 39.9109 1.27686 0.638432 0.769678i \(-0.279583\pi\)
0.638432 + 0.769678i \(0.279583\pi\)
\(978\) −10.1750 −0.325361
\(979\) −22.6803 −0.724867
\(980\) −45.5380 −1.45466
\(981\) 22.0989 0.705563
\(982\) 4.89496 0.156204
\(983\) 5.46081 0.174173 0.0870864 0.996201i \(-0.472244\pi\)
0.0870864 + 0.996201i \(0.472244\pi\)
\(984\) −4.64915 −0.148209
\(985\) 18.2557 0.581673
\(986\) 0 0
\(987\) 17.8576 0.568414
\(988\) −7.68649 −0.244540
\(989\) −17.5851 −0.559175
\(990\) −18.6381 −0.592357
\(991\) 42.0749 1.33655 0.668276 0.743913i \(-0.267032\pi\)
0.668276 + 0.743913i \(0.267032\pi\)
\(992\) 31.0505 0.985854
\(993\) 5.43084 0.172342
\(994\) 43.0433 1.36525
\(995\) 3.72487 0.118086
\(996\) −12.0267 −0.381079
\(997\) −54.6681 −1.73135 −0.865677 0.500602i \(-0.833112\pi\)
−0.865677 + 0.500602i \(0.833112\pi\)
\(998\) −92.3267 −2.92255
\(999\) 16.1978 0.512476
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.j.1.3 3
5.4 even 2 7225.2.a.q.1.1 3
17.4 even 4 85.2.d.a.16.1 6
17.13 even 4 85.2.d.a.16.2 yes 6
17.16 even 2 1445.2.a.k.1.3 3
51.38 odd 4 765.2.g.b.271.5 6
51.47 odd 4 765.2.g.b.271.6 6
68.47 odd 4 1360.2.c.f.1121.3 6
68.55 odd 4 1360.2.c.f.1121.4 6
85.4 even 4 425.2.d.c.101.6 6
85.13 odd 4 425.2.c.b.424.6 6
85.38 odd 4 425.2.c.a.424.6 6
85.47 odd 4 425.2.c.a.424.1 6
85.64 even 4 425.2.d.c.101.5 6
85.72 odd 4 425.2.c.b.424.1 6
85.84 even 2 7225.2.a.r.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.1 6 17.4 even 4
85.2.d.a.16.2 yes 6 17.13 even 4
425.2.c.a.424.1 6 85.47 odd 4
425.2.c.a.424.6 6 85.38 odd 4
425.2.c.b.424.1 6 85.72 odd 4
425.2.c.b.424.6 6 85.13 odd 4
425.2.d.c.101.5 6 85.64 even 4
425.2.d.c.101.6 6 85.4 even 4
765.2.g.b.271.5 6 51.38 odd 4
765.2.g.b.271.6 6 51.47 odd 4
1360.2.c.f.1121.3 6 68.47 odd 4
1360.2.c.f.1121.4 6 68.55 odd 4
1445.2.a.j.1.3 3 1.1 even 1 trivial
1445.2.a.k.1.3 3 17.16 even 2
7225.2.a.q.1.1 3 5.4 even 2
7225.2.a.r.1.1 3 85.84 even 2