Properties

Label 1445.2.a.f
Level $1445$
Weight $2$
Character orbit 1445.a
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} + (\beta + 2) q^{3} + ( - 2 \beta + 1) q^{4} + q^{5} + \beta q^{6} + ( - \beta + 2) q^{7} + (\beta - 3) q^{8} + (4 \beta + 3) q^{9} + (\beta - 1) q^{10} + ( - \beta + 4) q^{11} + ( - 3 \beta - 2) q^{12}+ \cdots + (13 \beta + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 4 q^{3} + 2 q^{4} + 2 q^{5} + 4 q^{7} - 6 q^{8} + 6 q^{9} - 2 q^{10} + 8 q^{11} - 4 q^{12} - 8 q^{14} + 4 q^{15} + 6 q^{16} + 10 q^{18} + 2 q^{20} + 4 q^{21} - 12 q^{22} + 4 q^{23} - 8 q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.41421 0.585786 3.82843 1.00000 −1.41421 3.41421 −4.41421 −2.65685 −2.41421
1.2 0.414214 3.41421 −1.82843 1.00000 1.41421 0.585786 −1.58579 8.65685 0.414214
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1445.2.a.f 2
5.b even 2 1 7225.2.a.o 2
17.b even 2 1 85.2.a.b 2
17.c even 4 2 1445.2.d.f 4
51.c odd 2 1 765.2.a.i 2
68.d odd 2 1 1360.2.a.o 2
85.c even 2 1 425.2.a.f 2
85.g odd 4 2 425.2.b.e 4
119.d odd 2 1 4165.2.a.q 2
136.e odd 2 1 5440.2.a.ba 2
136.h even 2 1 5440.2.a.bm 2
255.h odd 2 1 3825.2.a.p 2
340.d odd 2 1 6800.2.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.a.b 2 17.b even 2 1
425.2.a.f 2 85.c even 2 1
425.2.b.e 4 85.g odd 4 2
765.2.a.i 2 51.c odd 2 1
1360.2.a.o 2 68.d odd 2 1
1445.2.a.f 2 1.a even 1 1 trivial
1445.2.d.f 4 17.c even 4 2
3825.2.a.p 2 255.h odd 2 1
4165.2.a.q 2 119.d odd 2 1
5440.2.a.ba 2 136.e odd 2 1
5440.2.a.bm 2 136.h even 2 1
6800.2.a.ba 2 340.d odd 2 1
7225.2.a.o 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1445))\):

\( T_{2}^{2} + 2T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{2} - 4T_{3} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 4T + 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 2 \) Copy content Toggle raw display
$11$ \( T^{2} - 8T + 14 \) Copy content Toggle raw display
$13$ \( T^{2} - 8 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 8 \) Copy content Toggle raw display
$23$ \( T^{2} - 4T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$31$ \( T^{2} - 18 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 68 \) Copy content Toggle raw display
$41$ \( T^{2} + 4T - 68 \) Copy content Toggle raw display
$43$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$53$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 24T + 136 \) Copy content Toggle raw display
$61$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 28 \) Copy content Toggle raw display
$71$ \( T^{2} - 18 \) Copy content Toggle raw display
$73$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 8T + 14 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T - 124 \) Copy content Toggle raw display
$89$ \( T^{2} + 16T + 32 \) Copy content Toggle raw display
$97$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
show more
show less