Properties

Label 1444.2.e.c
Level $1444$
Weight $2$
Character orbit 1444.e
Analytic conductor $11.530$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1444 = 2^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1444.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.5303980519\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{3} + ( - \zeta_{6} + 1) q^{5} - 3 q^{7} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - 2 \zeta_{6} + 2) q^{3} + ( - \zeta_{6} + 1) q^{5} - 3 q^{7} - \zeta_{6} q^{9} + 5 q^{11} - 4 \zeta_{6} q^{13} - 2 \zeta_{6} q^{15} + ( - 3 \zeta_{6} + 3) q^{17} + (6 \zeta_{6} - 6) q^{21} - 8 \zeta_{6} q^{23} + 4 \zeta_{6} q^{25} + 4 q^{27} - 2 \zeta_{6} q^{29} - 4 q^{31} + ( - 10 \zeta_{6} + 10) q^{33} + (3 \zeta_{6} - 3) q^{35} - 10 q^{37} - 8 q^{39} + ( - 10 \zeta_{6} + 10) q^{41} + (\zeta_{6} - 1) q^{43} - q^{45} + \zeta_{6} q^{47} + 2 q^{49} - 6 \zeta_{6} q^{51} - 4 \zeta_{6} q^{53} + ( - 5 \zeta_{6} + 5) q^{55} + ( - 6 \zeta_{6} + 6) q^{59} + 13 \zeta_{6} q^{61} + 3 \zeta_{6} q^{63} - 4 q^{65} - 12 \zeta_{6} q^{67} - 16 q^{69} + ( - 2 \zeta_{6} + 2) q^{71} + (9 \zeta_{6} - 9) q^{73} + 8 q^{75} - 15 q^{77} + ( - 8 \zeta_{6} + 8) q^{79} + ( - 11 \zeta_{6} + 11) q^{81} - 12 q^{83} - 3 \zeta_{6} q^{85} - 4 q^{87} + 12 \zeta_{6} q^{89} + 12 \zeta_{6} q^{91} + (8 \zeta_{6} - 8) q^{93} + (8 \zeta_{6} - 8) q^{97} - 5 \zeta_{6} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + q^{5} - 6 q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + q^{5} - 6 q^{7} - q^{9} + 10 q^{11} - 4 q^{13} - 2 q^{15} + 3 q^{17} - 6 q^{21} - 8 q^{23} + 4 q^{25} + 8 q^{27} - 2 q^{29} - 8 q^{31} + 10 q^{33} - 3 q^{35} - 20 q^{37} - 16 q^{39} + 10 q^{41} - q^{43} - 2 q^{45} + q^{47} + 4 q^{49} - 6 q^{51} - 4 q^{53} + 5 q^{55} + 6 q^{59} + 13 q^{61} + 3 q^{63} - 8 q^{65} - 12 q^{67} - 32 q^{69} + 2 q^{71} - 9 q^{73} + 16 q^{75} - 30 q^{77} + 8 q^{79} + 11 q^{81} - 24 q^{83} - 3 q^{85} - 8 q^{87} + 12 q^{89} + 12 q^{91} - 8 q^{93} - 8 q^{97} - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1444\mathbb{Z}\right)^\times\).

\(n\) \(723\) \(1085\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
429.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.00000 1.73205i 0 0.500000 0.866025i 0 −3.00000 0 −0.500000 0.866025i 0
653.1 0 1.00000 + 1.73205i 0 0.500000 + 0.866025i 0 −3.00000 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1444.2.e.c 2
19.b odd 2 1 1444.2.e.a 2
19.c even 3 1 1444.2.a.a 1
19.c even 3 1 inner 1444.2.e.c 2
19.d odd 6 1 76.2.a.a 1
19.d odd 6 1 1444.2.e.a 2
57.f even 6 1 684.2.a.b 1
76.f even 6 1 304.2.a.a 1
76.g odd 6 1 5776.2.a.p 1
95.h odd 6 1 1900.2.a.b 1
95.l even 12 2 1900.2.c.b 2
133.p even 6 1 3724.2.a.a 1
152.l odd 6 1 1216.2.a.c 1
152.o even 6 1 1216.2.a.q 1
209.g even 6 1 9196.2.a.f 1
228.n odd 6 1 2736.2.a.q 1
380.s even 6 1 7600.2.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.2.a.a 1 19.d odd 6 1
304.2.a.a 1 76.f even 6 1
684.2.a.b 1 57.f even 6 1
1216.2.a.c 1 152.l odd 6 1
1216.2.a.q 1 152.o even 6 1
1444.2.a.a 1 19.c even 3 1
1444.2.e.a 2 19.b odd 2 1
1444.2.e.a 2 19.d odd 6 1
1444.2.e.c 2 1.a even 1 1 trivial
1444.2.e.c 2 19.c even 3 1 inner
1900.2.a.b 1 95.h odd 6 1
1900.2.c.b 2 95.l even 12 2
2736.2.a.q 1 228.n odd 6 1
3724.2.a.a 1 133.p even 6 1
5776.2.a.p 1 76.g odd 6 1
7600.2.a.p 1 380.s even 6 1
9196.2.a.f 1 209.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2T_{3} + 4 \) acting on \(S_{2}^{\mathrm{new}}(1444, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( (T + 3)^{2} \) Copy content Toggle raw display
$11$ \( (T - 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$29$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T + 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$43$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$53$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$59$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$61$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$71$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$73$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$79$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$97$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
show more
show less