Newspace parameters
Level: | \( N \) | \(=\) | \( 1444 = 2^{2} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1444.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(11.5303980519\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 76) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −1.00000 | 0 | −1.00000 | 0 | 0 | 0 | −2.00000 | 0 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1444.2.a.b | 1 | |
4.b | odd | 2 | 1 | 5776.2.a.k | 1 | ||
19.b | odd | 2 | 1 | 1444.2.a.c | 1 | ||
19.c | even | 3 | 2 | 76.2.e.a | ✓ | 2 | |
19.d | odd | 6 | 2 | 1444.2.e.b | 2 | ||
57.h | odd | 6 | 2 | 684.2.k.b | 2 | ||
76.d | even | 2 | 1 | 5776.2.a.f | 1 | ||
76.g | odd | 6 | 2 | 304.2.i.a | 2 | ||
95.i | even | 6 | 2 | 1900.2.i.a | 2 | ||
95.m | odd | 12 | 4 | 1900.2.s.a | 4 | ||
152.k | odd | 6 | 2 | 1216.2.i.g | 2 | ||
152.p | even | 6 | 2 | 1216.2.i.c | 2 | ||
228.m | even | 6 | 2 | 2736.2.s.g | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
76.2.e.a | ✓ | 2 | 19.c | even | 3 | 2 | |
304.2.i.a | 2 | 76.g | odd | 6 | 2 | ||
684.2.k.b | 2 | 57.h | odd | 6 | 2 | ||
1216.2.i.c | 2 | 152.p | even | 6 | 2 | ||
1216.2.i.g | 2 | 152.k | odd | 6 | 2 | ||
1444.2.a.b | 1 | 1.a | even | 1 | 1 | trivial | |
1444.2.a.c | 1 | 19.b | odd | 2 | 1 | ||
1444.2.e.b | 2 | 19.d | odd | 6 | 2 | ||
1900.2.i.a | 2 | 95.i | even | 6 | 2 | ||
1900.2.s.a | 4 | 95.m | odd | 12 | 4 | ||
2736.2.s.g | 2 | 228.m | even | 6 | 2 | ||
5776.2.a.f | 1 | 76.d | even | 2 | 1 | ||
5776.2.a.k | 1 | 4.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1444))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T + 1 \)
$5$
\( T + 1 \)
$7$
\( T \)
$11$
\( T + 4 \)
$13$
\( T + 1 \)
$17$
\( T - 3 \)
$19$
\( T \)
$23$
\( T - 5 \)
$29$
\( T - 7 \)
$31$
\( T - 4 \)
$37$
\( T - 10 \)
$41$
\( T + 5 \)
$43$
\( T + 5 \)
$47$
\( T + 7 \)
$53$
\( T - 11 \)
$59$
\( T - 3 \)
$61$
\( T - 11 \)
$67$
\( T + 3 \)
$71$
\( T - 11 \)
$73$
\( T - 15 \)
$79$
\( T + 13 \)
$83$
\( T \)
$89$
\( T - 3 \)
$97$
\( T + 5 \)
show more
show less