Newspace parameters
Level: | \( N \) | \(=\) | \( 1444 = 2^{2} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1444.l (of order \(18\), degree \(6\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.720649878242\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{18})\) |
Coefficient field: | 12.0.6053445140625.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} - 4x^{9} + 17x^{6} + 4x^{3} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{5}\) |
Projective field: | Galois closure of 5.1.2085136.1 |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 4x^{9} + 17x^{6} + 4x^{3} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{9} + 21 ) / 34 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{10} + 55\nu ) / 34 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -\nu^{11} - 55\nu^{2} ) / 34 \)
|
\(\beta_{5}\) | \(=\) |
\( ( \nu^{11} + 89\nu^{2} ) / 34 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -4\nu^{9} + 17\nu^{6} - 85\nu^{3} + 1 ) / 34 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 4\nu^{10} - 17\nu^{7} + 68\nu^{4} + 16\nu ) / 17 \)
|
\(\beta_{8}\) | \(=\) |
\( ( -4\nu^{9} + 17\nu^{6} - 68\nu^{3} + 1 ) / 17 \)
|
\(\beta_{9}\) | \(=\) |
\( ( -12\nu^{10} + 51\nu^{7} - 221\nu^{4} + 3\nu ) / 34 \)
|
\(\beta_{10}\) | \(=\) |
\( ( -12\nu^{11} + 51\nu^{8} - 221\nu^{5} + 3\nu^{2} ) / 34 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 21\nu^{11} - 85\nu^{8} + 357\nu^{5} + 84\nu^{2} ) / 34 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{5} + \beta_{4} \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{8} - 2\beta_{6} \)
|
\(\nu^{4}\) | \(=\) |
\( -2\beta_{9} - 3\beta_{7} + 3\beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( -3\beta_{11} - 5\beta_{10} + 3\beta_{5} \)
|
\(\nu^{6}\) | \(=\) |
\( 5\beta_{8} - 8\beta_{6} + 8\beta_{2} - 5 \)
|
\(\nu^{7}\) | \(=\) |
\( -8\beta_{9} - 13\beta_{7} + 8\beta_{3} \)
|
\(\nu^{8}\) | \(=\) |
\( -13\beta_{11} - 21\beta_{10} - 21\beta_{4} \)
|
\(\nu^{9}\) | \(=\) |
\( 34\beta_{2} - 21 \)
|
\(\nu^{10}\) | \(=\) |
\( 34\beta_{3} - 55\beta_1 \)
|
\(\nu^{11}\) | \(=\) |
\( -55\beta_{5} - 89\beta_{4} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1444\mathbb{Z}\right)^\times\).
\(n\) | \(723\) | \(1085\) |
\(\chi(n)\) | \(-1\) | \(-\beta_{5} + \beta_{11}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 |
|
−0.939693 | − | 0.342020i | 0 | 0.766044 | + | 0.642788i | −1.23949 | + | 1.04005i | 0 | 0 | −0.500000 | − | 0.866025i | −0.939693 | + | 0.342020i | 1.52045 | − | 0.553400i | ||||||||||||||||||||||||||||||||||||||||||
99.2 | −0.939693 | − | 0.342020i | 0 | 0.766044 | + | 0.642788i | 0.473442 | − | 0.397265i | 0 | 0 | −0.500000 | − | 0.866025i | −0.939693 | + | 0.342020i | −0.580762 | + | 0.211380i | |||||||||||||||||||||||||||||||||||||||||||
415.1 | 0.766044 | + | 0.642788i | 0 | 0.173648 | + | 0.984808i | −0.280969 | + | 1.59345i | 0 | 0 | −0.500000 | + | 0.866025i | 0.766044 | − | 0.642788i | −1.23949 | + | 1.04005i | |||||||||||||||||||||||||||||||||||||||||||
415.2 | 0.766044 | + | 0.642788i | 0 | 0.173648 | + | 0.984808i | 0.107320 | − | 0.608645i | 0 | 0 | −0.500000 | + | 0.866025i | 0.766044 | − | 0.642788i | 0.473442 | − | 0.397265i | |||||||||||||||||||||||||||||||||||||||||||
423.1 | −0.939693 | + | 0.342020i | 0 | 0.766044 | − | 0.642788i | −1.23949 | − | 1.04005i | 0 | 0 | −0.500000 | + | 0.866025i | −0.939693 | − | 0.342020i | 1.52045 | + | 0.553400i | |||||||||||||||||||||||||||||||||||||||||||
423.2 | −0.939693 | + | 0.342020i | 0 | 0.766044 | − | 0.642788i | 0.473442 | + | 0.397265i | 0 | 0 | −0.500000 | + | 0.866025i | −0.939693 | − | 0.342020i | −0.580762 | − | 0.211380i | |||||||||||||||||||||||||||||||||||||||||||
595.1 | 0.766044 | − | 0.642788i | 0 | 0.173648 | − | 0.984808i | −0.280969 | − | 1.59345i | 0 | 0 | −0.500000 | − | 0.866025i | 0.766044 | + | 0.642788i | −1.23949 | − | 1.04005i | |||||||||||||||||||||||||||||||||||||||||||
595.2 | 0.766044 | − | 0.642788i | 0 | 0.173648 | − | 0.984808i | 0.107320 | + | 0.608645i | 0 | 0 | −0.500000 | − | 0.866025i | 0.766044 | + | 0.642788i | 0.473442 | + | 0.397265i | |||||||||||||||||||||||||||||||||||||||||||
967.1 | 0.173648 | − | 0.984808i | 0 | −0.939693 | − | 0.342020i | −0.580762 | + | 0.211380i | 0 | 0 | −0.500000 | + | 0.866025i | 0.173648 | + | 0.984808i | 0.107320 | + | 0.608645i | |||||||||||||||||||||||||||||||||||||||||||
967.2 | 0.173648 | − | 0.984808i | 0 | −0.939693 | − | 0.342020i | 1.52045 | − | 0.553400i | 0 | 0 | −0.500000 | + | 0.866025i | 0.173648 | + | 0.984808i | −0.280969 | − | 1.59345i | |||||||||||||||||||||||||||||||||||||||||||
1111.1 | 0.173648 | + | 0.984808i | 0 | −0.939693 | + | 0.342020i | −0.580762 | − | 0.211380i | 0 | 0 | −0.500000 | − | 0.866025i | 0.173648 | − | 0.984808i | 0.107320 | − | 0.608645i | |||||||||||||||||||||||||||||||||||||||||||
1111.2 | 0.173648 | + | 0.984808i | 0 | −0.939693 | + | 0.342020i | 1.52045 | + | 0.553400i | 0 | 0 | −0.500000 | − | 0.866025i | 0.173648 | − | 0.984808i | −0.280969 | + | 1.59345i | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-1}) \) |
19.c | even | 3 | 2 | inner |
19.e | even | 9 | 3 | inner |
76.g | odd | 6 | 2 | inner |
76.l | odd | 18 | 3 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1444.1.l.a | 12 | |
4.b | odd | 2 | 1 | CM | 1444.1.l.a | 12 | |
19.b | odd | 2 | 1 | 1444.1.l.b | 12 | ||
19.c | even | 3 | 2 | inner | 1444.1.l.a | 12 | |
19.d | odd | 6 | 2 | 1444.1.l.b | 12 | ||
19.e | even | 9 | 1 | 1444.1.b.b | yes | 2 | |
19.e | even | 9 | 2 | 1444.1.g.a | 4 | ||
19.e | even | 9 | 3 | inner | 1444.1.l.a | 12 | |
19.f | odd | 18 | 1 | 1444.1.b.a | ✓ | 2 | |
19.f | odd | 18 | 2 | 1444.1.g.b | 4 | ||
19.f | odd | 18 | 3 | 1444.1.l.b | 12 | ||
76.d | even | 2 | 1 | 1444.1.l.b | 12 | ||
76.f | even | 6 | 2 | 1444.1.l.b | 12 | ||
76.g | odd | 6 | 2 | inner | 1444.1.l.a | 12 | |
76.k | even | 18 | 1 | 1444.1.b.a | ✓ | 2 | |
76.k | even | 18 | 2 | 1444.1.g.b | 4 | ||
76.k | even | 18 | 3 | 1444.1.l.b | 12 | ||
76.l | odd | 18 | 1 | 1444.1.b.b | yes | 2 | |
76.l | odd | 18 | 2 | 1444.1.g.a | 4 | ||
76.l | odd | 18 | 3 | inner | 1444.1.l.a | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1444.1.b.a | ✓ | 2 | 19.f | odd | 18 | 1 | |
1444.1.b.a | ✓ | 2 | 76.k | even | 18 | 1 | |
1444.1.b.b | yes | 2 | 19.e | even | 9 | 1 | |
1444.1.b.b | yes | 2 | 76.l | odd | 18 | 1 | |
1444.1.g.a | 4 | 19.e | even | 9 | 2 | ||
1444.1.g.a | 4 | 76.l | odd | 18 | 2 | ||
1444.1.g.b | 4 | 19.f | odd | 18 | 2 | ||
1444.1.g.b | 4 | 76.k | even | 18 | 2 | ||
1444.1.l.a | 12 | 1.a | even | 1 | 1 | trivial | |
1444.1.l.a | 12 | 4.b | odd | 2 | 1 | CM | |
1444.1.l.a | 12 | 19.c | even | 3 | 2 | inner | |
1444.1.l.a | 12 | 19.e | even | 9 | 3 | inner | |
1444.1.l.a | 12 | 76.g | odd | 6 | 2 | inner | |
1444.1.l.a | 12 | 76.l | odd | 18 | 3 | inner | |
1444.1.l.b | 12 | 19.b | odd | 2 | 1 | ||
1444.1.l.b | 12 | 19.d | odd | 6 | 2 | ||
1444.1.l.b | 12 | 19.f | odd | 18 | 3 | ||
1444.1.l.b | 12 | 76.d | even | 2 | 1 | ||
1444.1.l.b | 12 | 76.f | even | 6 | 2 | ||
1444.1.l.b | 12 | 76.k | even | 18 | 3 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{13}^{12} - 4T_{13}^{9} + 17T_{13}^{6} + 4T_{13}^{3} + 1 \)
acting on \(S_{1}^{\mathrm{new}}(1444, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{6} + T^{3} + 1)^{2} \)
$3$
\( T^{12} \)
$5$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
$7$
\( T^{12} \)
$11$
\( T^{12} \)
$13$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
$17$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
$19$
\( T^{12} \)
$23$
\( T^{12} \)
$29$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
$31$
\( T^{12} \)
$37$
\( (T^{2} + T - 1)^{6} \)
$41$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
$43$
\( T^{12} \)
$47$
\( T^{12} \)
$53$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
$59$
\( T^{12} \)
$61$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
$67$
\( T^{12} \)
$71$
\( T^{12} \)
$73$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
$79$
\( T^{12} \)
$83$
\( T^{12} \)
$89$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
$97$
\( T^{12} - 4 T^{9} + 17 T^{6} + 4 T^{3} + \cdots + 1 \)
show more
show less