Properties

Label 1444.1.j.b
Level $1444$
Weight $1$
Character orbit 1444.j
Analytic conductor $0.721$
Analytic rank $0$
Dimension $12$
Projective image $S_{4}$
CM/RM no
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1444,1,Mod(333,1444)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1444, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 17]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1444.333");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1444 = 2^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1444.j (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.720649878242\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: 12.0.101559956668416.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 8x^{6} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.27436.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{11} - \beta_{5}) q^{3} + ( - \beta_{8} + \beta_{2}) q^{5} + (\beta_{6} - 1) q^{7} + ( - \beta_{10} + \beta_{4}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{11} - \beta_{5}) q^{3} + ( - \beta_{8} + \beta_{2}) q^{5} + (\beta_{6} - 1) q^{7} + ( - \beta_{10} + \beta_{4}) q^{9} + \beta_{6} q^{11} + (\beta_{7} - \beta_1) q^{15} - \beta_{2} q^{17} - \beta_{11} q^{21} + \beta_{7} q^{29} - \beta_{5} q^{33} + \beta_{8} q^{35} + \beta_{9} q^{37} + ( - \beta_{11} + \beta_{5}) q^{41} + (\beta_{8} - \beta_{2}) q^{43} + ( - \beta_{6} + 1) q^{45} + ( - \beta_{10} + \beta_{4}) q^{47} + \beta_1 q^{51} + \beta_{2} q^{55} + \beta_{11} q^{59} - \beta_{4} q^{61} + \beta_{10} q^{63} + \beta_{5} q^{71} + \beta_{8} q^{73} - q^{77} + (\beta_{8} - \beta_{2}) q^{81} + (\beta_{10} - \beta_{4}) q^{85} - 2 \beta_{6} q^{87} + \beta_{4} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{7} + 6 q^{11} + 6 q^{45} - 12 q^{77} - 12 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 8x^{6} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} ) / 8 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{8} ) / 16 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{9} ) / 16 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( \nu^{10} ) / 32 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{11} ) / 32 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{6} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 8\beta_{7} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 16\beta_{8} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 16\beta_{9} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 32\beta_{10} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 32\beta_{11} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1444\mathbb{Z}\right)^\times\).

\(n\) \(723\) \(1085\)
\(\chi(n)\) \(1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
333.1
0.909039 1.08335i
−0.909039 + 1.08335i
0.909039 + 1.08335i
−0.909039 1.08335i
0.483690 + 1.32893i
−0.483690 1.32893i
1.39273 0.245576i
−1.39273 + 0.245576i
0.483690 1.32893i
−0.483690 + 1.32893i
1.39273 + 0.245576i
−1.39273 0.245576i
0 −0.909039 1.08335i 0 −0.939693 0.342020i 0 −0.500000 + 0.866025i 0 −0.173648 + 0.984808i 0
333.2 0 0.909039 + 1.08335i 0 −0.939693 0.342020i 0 −0.500000 + 0.866025i 0 −0.173648 + 0.984808i 0
477.1 0 −0.909039 + 1.08335i 0 −0.939693 + 0.342020i 0 −0.500000 0.866025i 0 −0.173648 0.984808i 0
477.2 0 0.909039 1.08335i 0 −0.939693 + 0.342020i 0 −0.500000 0.866025i 0 −0.173648 0.984808i 0
849.1 0 −0.483690 + 1.32893i 0 0.173648 + 0.984808i 0 −0.500000 + 0.866025i 0 −0.766044 0.642788i 0
849.2 0 0.483690 1.32893i 0 0.173648 + 0.984808i 0 −0.500000 + 0.866025i 0 −0.766044 0.642788i 0
1021.1 0 −1.39273 0.245576i 0 0.766044 + 0.642788i 0 −0.500000 0.866025i 0 0.939693 + 0.342020i 0
1021.2 0 1.39273 + 0.245576i 0 0.766044 + 0.642788i 0 −0.500000 0.866025i 0 0.939693 + 0.342020i 0
1029.1 0 −0.483690 1.32893i 0 0.173648 0.984808i 0 −0.500000 0.866025i 0 −0.766044 + 0.642788i 0
1029.2 0 0.483690 + 1.32893i 0 0.173648 0.984808i 0 −0.500000 0.866025i 0 −0.766044 + 0.642788i 0
1345.1 0 −1.39273 + 0.245576i 0 0.766044 0.642788i 0 −0.500000 + 0.866025i 0 0.939693 0.342020i 0
1345.2 0 1.39273 0.245576i 0 0.766044 0.642788i 0 −0.500000 + 0.866025i 0 0.939693 0.342020i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 333.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 inner
19.c even 3 2 inner
19.d odd 6 2 inner
19.e even 9 3 inner
19.f odd 18 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1444.1.j.b 12
19.b odd 2 1 inner 1444.1.j.b 12
19.c even 3 2 inner 1444.1.j.b 12
19.d odd 6 2 inner 1444.1.j.b 12
19.e even 9 1 1444.1.c.a 2
19.e even 9 2 1444.1.h.b 4
19.e even 9 3 inner 1444.1.j.b 12
19.f odd 18 1 1444.1.c.a 2
19.f odd 18 2 1444.1.h.b 4
19.f odd 18 3 inner 1444.1.j.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1444.1.c.a 2 19.e even 9 1
1444.1.c.a 2 19.f odd 18 1
1444.1.h.b 4 19.e even 9 2
1444.1.h.b 4 19.f odd 18 2
1444.1.j.b 12 1.a even 1 1 trivial
1444.1.j.b 12 19.b odd 2 1 inner
1444.1.j.b 12 19.c even 3 2 inner
1444.1.j.b 12 19.d odd 6 2 inner
1444.1.j.b 12 19.e even 9 3 inner
1444.1.j.b 12 19.f odd 18 3 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 8T_{3}^{6} + 64 \) acting on \(S_{1}^{\mathrm{new}}(1444, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} - 8T^{6} + 64 \) Copy content Toggle raw display
$5$ \( (T^{6} + T^{3} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + T + 1)^{6} \) Copy content Toggle raw display
$11$ \( (T^{2} - T + 1)^{6} \) Copy content Toggle raw display
$13$ \( T^{12} \) Copy content Toggle raw display
$17$ \( (T^{6} + T^{3} + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} \) Copy content Toggle raw display
$23$ \( T^{12} \) Copy content Toggle raw display
$29$ \( T^{12} - 8T^{6} + 64 \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( (T^{2} + 2)^{6} \) Copy content Toggle raw display
$41$ \( T^{12} - 8T^{6} + 64 \) Copy content Toggle raw display
$43$ \( (T^{6} - T^{3} + 1)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} - T^{3} + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} \) Copy content Toggle raw display
$59$ \( T^{12} - 8T^{6} + 64 \) Copy content Toggle raw display
$61$ \( (T^{6} - T^{3} + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{12} \) Copy content Toggle raw display
$71$ \( T^{12} - 8T^{6} + 64 \) Copy content Toggle raw display
$73$ \( (T^{6} + T^{3} + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( T^{12} \) Copy content Toggle raw display
$89$ \( T^{12} \) Copy content Toggle raw display
$97$ \( T^{12} \) Copy content Toggle raw display
show more
show less