Newspace parameters
Level: | \( N \) | \(=\) | \( 1444 = 2^{2} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1444.h (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.720649878242\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(S_{4}\) |
Projective field: | Galois closure of 4.2.27436.1 |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1444\mathbb{Z}\right)^\times\).
\(n\) | \(723\) | \(1085\) |
\(\chi(n)\) | \(1\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
69.1 |
|
0 | −1.22474 | + | 0.707107i | 0 | −0.500000 | − | 0.866025i | 0 | 1.00000 | 0 | 0.500000 | − | 0.866025i | 0 | ||||||||||||||||||||||||
69.2 | 0 | 1.22474 | − | 0.707107i | 0 | −0.500000 | − | 0.866025i | 0 | 1.00000 | 0 | 0.500000 | − | 0.866025i | 0 | |||||||||||||||||||||||||
293.1 | 0 | −1.22474 | − | 0.707107i | 0 | −0.500000 | + | 0.866025i | 0 | 1.00000 | 0 | 0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||
293.2 | 0 | 1.22474 | + | 0.707107i | 0 | −0.500000 | + | 0.866025i | 0 | 1.00000 | 0 | 0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | inner |
19.c | even | 3 | 1 | inner |
19.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1444.1.h.b | 4 | |
19.b | odd | 2 | 1 | inner | 1444.1.h.b | 4 | |
19.c | even | 3 | 1 | 1444.1.c.a | ✓ | 2 | |
19.c | even | 3 | 1 | inner | 1444.1.h.b | 4 | |
19.d | odd | 6 | 1 | 1444.1.c.a | ✓ | 2 | |
19.d | odd | 6 | 1 | inner | 1444.1.h.b | 4 | |
19.e | even | 9 | 6 | 1444.1.j.b | 12 | ||
19.f | odd | 18 | 6 | 1444.1.j.b | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1444.1.c.a | ✓ | 2 | 19.c | even | 3 | 1 | |
1444.1.c.a | ✓ | 2 | 19.d | odd | 6 | 1 | |
1444.1.h.b | 4 | 1.a | even | 1 | 1 | trivial | |
1444.1.h.b | 4 | 19.b | odd | 2 | 1 | inner | |
1444.1.h.b | 4 | 19.c | even | 3 | 1 | inner | |
1444.1.h.b | 4 | 19.d | odd | 6 | 1 | inner | |
1444.1.j.b | 12 | 19.e | even | 9 | 6 | ||
1444.1.j.b | 12 | 19.f | odd | 18 | 6 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{4} - 2T_{3}^{2} + 4 \)
acting on \(S_{1}^{\mathrm{new}}(1444, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} - 2T^{2} + 4 \)
$5$
\( (T^{2} + T + 1)^{2} \)
$7$
\( (T - 1)^{4} \)
$11$
\( (T + 1)^{4} \)
$13$
\( T^{4} \)
$17$
\( (T^{2} + T + 1)^{2} \)
$19$
\( T^{4} \)
$23$
\( T^{4} \)
$29$
\( T^{4} - 2T^{2} + 4 \)
$31$
\( T^{4} \)
$37$
\( (T^{2} + 2)^{2} \)
$41$
\( T^{4} - 2T^{2} + 4 \)
$43$
\( (T^{2} - T + 1)^{2} \)
$47$
\( (T^{2} - T + 1)^{2} \)
$53$
\( T^{4} \)
$59$
\( T^{4} - 2T^{2} + 4 \)
$61$
\( (T^{2} - T + 1)^{2} \)
$67$
\( T^{4} \)
$71$
\( T^{4} - 2T^{2} + 4 \)
$73$
\( (T^{2} + T + 1)^{2} \)
$79$
\( T^{4} \)
$83$
\( T^{4} \)
$89$
\( T^{4} \)
$97$
\( T^{4} \)
show more
show less