Defining parameters
Level: | \( N \) | \(=\) | \( 1444 = 2^{2} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1444.h (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(190\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1444, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 6 | 60 |
Cusp forms | 6 | 6 | 0 |
Eisenstein series | 60 | 0 | 60 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 4 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1444, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||||
1444.1.h.a | \(2\) | \(0.721\) | \(\Q(\sqrt{-3}) \) | \(D_{3}\) | \(\Q(\sqrt{-19}) \) | None | \(0\) | \(0\) | \(1\) | \(-2\) | \(q-\zeta_{6}^{2}q^{5}-q^{7}-\zeta_{6}q^{9}-q^{11}-\zeta_{6}^{2}q^{17}+\cdots\) |
1444.1.h.b | \(4\) | \(0.721\) | \(\Q(\sqrt{-2}, \sqrt{-3})\) | \(S_{4}\) | None | None | \(0\) | \(0\) | \(-2\) | \(4\) | \(q+\beta _{1}q^{3}+(-1+\beta _{2})q^{5}+q^{7}+\beta _{2}q^{9}+\cdots\) |