# Properties

 Label 1444.1.c.a.721.2 Level $1444$ Weight $1$ Character 1444.721 Analytic conductor $0.721$ Analytic rank $0$ Dimension $2$ Projective image $S_{4}$ CM/RM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1444 = 2^{2} \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 1444.c (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.720649878242$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-2})$$ Defining polynomial: $$x^{2} + 2$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$S_{4}$$ Projective field: Galois closure of 4.2.27436.1 Artin image: $\GL(2,3)$ Artin field: Galois closure of 8.2.14301947824.1

## Embedding invariants

 Embedding label 721.2 Root $$-1.41421i$$ of defining polynomial Character $$\chi$$ $$=$$ 1444.721 Dual form 1444.1.c.a.721.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.41421i q^{3} +1.00000 q^{5} +1.00000 q^{7} -1.00000 q^{9} +O(q^{10})$$ $$q+1.41421i q^{3} +1.00000 q^{5} +1.00000 q^{7} -1.00000 q^{9} -1.00000 q^{11} +1.41421i q^{15} +1.00000 q^{17} +1.41421i q^{21} -1.41421i q^{29} -1.41421i q^{33} +1.00000 q^{35} +1.41421i q^{37} -1.41421i q^{41} -1.00000 q^{43} -1.00000 q^{45} -1.00000 q^{47} +1.41421i q^{51} -1.00000 q^{55} -1.41421i q^{59} -1.00000 q^{61} -1.00000 q^{63} +1.41421i q^{71} +1.00000 q^{73} -1.00000 q^{77} -1.00000 q^{81} +1.00000 q^{85} +2.00000 q^{87} +1.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 2q^{5} + 2q^{7} - 2q^{9} + O(q^{10})$$ $$2q + 2q^{5} + 2q^{7} - 2q^{9} - 2q^{11} + 2q^{17} + 2q^{35} - 2q^{43} - 2q^{45} - 2q^{47} - 2q^{55} - 2q^{61} - 2q^{63} + 2q^{73} - 2q^{77} - 2q^{81} + 2q^{85} + 4q^{87} + 2q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1444\mathbb{Z}\right)^\times$$.

 $$n$$ $$723$$ $$1085$$ $$\chi(n)$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$4$$ 0 0
$$5$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$6$$ 0 0
$$7$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$8$$ 0 0
$$9$$ −1.00000 −1.00000
$$10$$ 0 0
$$11$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$12$$ 0 0
$$13$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$14$$ 0 0
$$15$$ 1.41421i 1.41421i
$$16$$ 0 0
$$17$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$18$$ 0 0
$$19$$ 0 0
$$20$$ 0 0
$$21$$ 1.41421i 1.41421i
$$22$$ 0 0
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$32$$ 0 0
$$33$$ − 1.41421i − 1.41421i
$$34$$ 0 0
$$35$$ 1.00000 1.00000
$$36$$ 0 0
$$37$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$42$$ 0 0
$$43$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$44$$ 0 0
$$45$$ −1.00000 −1.00000
$$46$$ 0 0
$$47$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 1.41421i 1.41421i
$$52$$ 0 0
$$53$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$54$$ 0 0
$$55$$ −1.00000 −1.00000
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$60$$ 0 0
$$61$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$62$$ 0 0
$$63$$ −1.00000 −1.00000
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$72$$ 0 0
$$73$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −1.00000 −1.00000
$$78$$ 0 0
$$79$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$80$$ 0 0
$$81$$ −1.00000 −1.00000
$$82$$ 0 0
$$83$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$84$$ 0 0
$$85$$ 1.00000 1.00000
$$86$$ 0 0
$$87$$ 2.00000 2.00000
$$88$$ 0 0
$$89$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$98$$ 0 0
$$99$$ 1.00000 1.00000
$$100$$ 0 0
$$101$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$102$$ 0 0
$$103$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$104$$ 0 0
$$105$$ 1.41421i 1.41421i
$$106$$ 0 0
$$107$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$108$$ 0 0
$$109$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$110$$ 0 0
$$111$$ −2.00000 −2.00000
$$112$$ 0 0
$$113$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 1.00000 1.00000
$$120$$ 0 0
$$121$$ 0 0
$$122$$ 0 0
$$123$$ 2.00000 2.00000
$$124$$ 0 0
$$125$$ −1.00000 −1.00000
$$126$$ 0 0
$$127$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$128$$ 0 0
$$129$$ − 1.41421i − 1.41421i
$$130$$ 0 0
$$131$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$138$$ 0 0
$$139$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$140$$ 0 0
$$141$$ − 1.41421i − 1.41421i
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ − 1.41421i − 1.41421i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$150$$ 0 0
$$151$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$152$$ 0 0
$$153$$ −1.00000 −1.00000
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$164$$ 0 0
$$165$$ − 1.41421i − 1.41421i
$$166$$ 0 0
$$167$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$168$$ 0 0
$$169$$ 1.00000 1.00000
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 2.00000 2.00000
$$178$$ 0 0
$$179$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$180$$ 0 0
$$181$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$182$$ 0 0
$$183$$ − 1.41421i − 1.41421i
$$184$$ 0 0
$$185$$ 1.41421i 1.41421i
$$186$$ 0 0
$$187$$ −1.00000 −1.00000
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$192$$ 0 0
$$193$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$198$$ 0 0
$$199$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ − 1.41421i − 1.41421i
$$204$$ 0 0
$$205$$ − 1.41421i − 1.41421i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$212$$ 0 0
$$213$$ −2.00000 −2.00000
$$214$$ 0 0
$$215$$ −1.00000 −1.00000
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 1.41421i 1.41421i
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$228$$ 0 0
$$229$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$230$$ 0 0
$$231$$ − 1.41421i − 1.41421i
$$232$$ 0 0
$$233$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$234$$ 0 0
$$235$$ −1.00000 −1.00000
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$240$$ 0 0
$$241$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$242$$ 0 0
$$243$$ − 1.41421i − 1.41421i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 1.41421i 1.41421i
$$256$$ 0 0
$$257$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$258$$ 0 0
$$259$$ 1.41421i 1.41421i
$$260$$ 0 0
$$261$$ 1.41421i 1.41421i
$$262$$ 0 0
$$263$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$282$$ 0 0
$$283$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ − 1.41421i − 1.41421i
$$288$$ 0 0
$$289$$ 0 0
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$294$$ 0 0
$$295$$ − 1.41421i − 1.41421i
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ −1.00000 −1.00000
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −1.00000 −1.00000
$$306$$ 0 0
$$307$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$308$$ 0 0
$$309$$ −2.00000 −2.00000
$$310$$ 0 0
$$311$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$312$$ 0 0
$$313$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$314$$ 0 0
$$315$$ −1.00000 −1.00000
$$316$$ 0 0
$$317$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$318$$ 0 0
$$319$$ 1.41421i 1.41421i
$$320$$ 0 0
$$321$$ −2.00000 −2.00000
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ −1.00000 −1.00000
$$330$$ 0 0
$$331$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$332$$ 0 0
$$333$$ − 1.41421i − 1.41421i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$338$$ 0 0
$$339$$ 2.00000 2.00000
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ −1.00000 −1.00000
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$348$$ 0 0
$$349$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$354$$ 0 0
$$355$$ 1.41421i 1.41421i
$$356$$ 0 0
$$357$$ 1.41421i 1.41421i
$$358$$ 0 0
$$359$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$360$$ 0 0
$$361$$ 0 0
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 1.00000 1.00000
$$366$$ 0 0
$$367$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$368$$ 0 0
$$369$$ 1.41421i 1.41421i
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$374$$ 0 0
$$375$$ − 1.41421i − 1.41421i
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$380$$ 0 0
$$381$$ 2.00000 2.00000
$$382$$ 0 0
$$383$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$384$$ 0 0
$$385$$ −1.00000 −1.00000
$$386$$ 0 0
$$387$$ 1.00000 1.00000
$$388$$ 0 0
$$389$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ − 1.41421i − 1.41421i
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ −1.00000 −1.00000
$$406$$ 0 0
$$407$$ − 1.41421i − 1.41421i
$$408$$ 0 0
$$409$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$410$$ 0 0
$$411$$ 1.41421i 1.41421i
$$412$$ 0 0
$$413$$ − 1.41421i − 1.41421i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 1.41421i 1.41421i
$$418$$ 0 0
$$419$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$420$$ 0 0
$$421$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$422$$ 0 0
$$423$$ 1.00000 1.00000
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −1.00000 −1.00000
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$432$$ 0 0
$$433$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$434$$ 0 0
$$435$$ 2.00000 2.00000
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ − 1.41421i − 1.41421i
$$448$$ 0 0
$$449$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$450$$ 0 0
$$451$$ 1.41421i 1.41421i
$$452$$ 0 0
$$453$$ 2.00000 2.00000
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$462$$ 0 0
$$463$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 1.00000 1.00000
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$492$$ 0 0
$$493$$ − 1.41421i − 1.41421i
$$494$$ 0 0
$$495$$ 1.00000 1.00000
$$496$$ 0 0
$$497$$ 1.41421i 1.41421i
$$498$$ 0 0
$$499$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$500$$ 0 0
$$501$$ 2.00000 2.00000
$$502$$ 0 0
$$503$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 1.41421i 1.41421i
$$508$$ 0 0
$$509$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$510$$ 0 0
$$511$$ 1.00000 1.00000
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 1.41421i 1.41421i
$$516$$ 0 0
$$517$$ 1.00000 1.00000
$$518$$ 0 0
$$519$$ 2.00000 2.00000
$$520$$ 0 0
$$521$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$522$$ 0 0
$$523$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ −1.00000 −1.00000
$$530$$ 0 0
$$531$$ 1.41421i 1.41421i
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 1.41421i 1.41421i
$$536$$ 0 0
$$537$$ 2.00000 2.00000
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$542$$ 0 0
$$543$$ −2.00000 −2.00000
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$548$$ 0 0
$$549$$ 1.00000 1.00000
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ −2.00000 −2.00000
$$556$$ 0 0
$$557$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ − 1.41421i − 1.41421i
$$562$$ 0 0
$$563$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$564$$ 0 0
$$565$$ − 1.41421i − 1.41421i
$$566$$ 0 0
$$567$$ −1.00000 −1.00000
$$568$$ 0 0
$$569$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$570$$ 0 0
$$571$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$572$$ 0 0
$$573$$ 1.41421i 1.41421i
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$594$$ 0 0
$$595$$ 1.00000 1.00000
$$596$$ 0 0
$$597$$ 1.41421i 1.41421i
$$598$$ 0 0
$$599$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$600$$ 0 0
$$601$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$608$$ 0 0
$$609$$ 2.00000 2.00000
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$614$$ 0 0
$$615$$ 2.00000 2.00000
$$616$$ 0 0
$$617$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$618$$ 0 0
$$619$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −1.00000 −1.00000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 1.41421i 1.41421i
$$630$$ 0 0
$$631$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$632$$ 0 0
$$633$$ −2.00000 −2.00000
$$634$$ 0 0
$$635$$ − 1.41421i − 1.41421i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ − 1.41421i − 1.41421i
$$640$$ 0 0
$$641$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$642$$ 0 0
$$643$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$644$$ 0 0
$$645$$ − 1.41421i − 1.41421i
$$646$$ 0 0
$$647$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$648$$ 0 0
$$649$$ 1.41421i 1.41421i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$654$$ 0 0
$$655$$ −1.00000 −1.00000
$$656$$ 0 0
$$657$$ −1.00000 −1.00000
$$658$$ 0 0
$$659$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$660$$ 0 0
$$661$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 2.00000 2.00000
$$670$$ 0 0
$$671$$ 1.00000 1.00000
$$672$$ 0 0
$$673$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$684$$ 0 0
$$685$$ 1.00000 1.00000
$$686$$ 0 0
$$687$$ − 1.41421i − 1.41421i
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$692$$ 0 0
$$693$$ 1.00000 1.00000
$$694$$ 0 0
$$695$$ 1.00000 1.00000
$$696$$ 0 0
$$697$$ − 1.41421i − 1.41421i
$$698$$ 0 0
$$699$$ 1.41421i 1.41421i
$$700$$ 0 0
$$701$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ − 1.41421i − 1.41421i
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 1.41421i 1.41421i
$$718$$ 0 0
$$719$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$720$$ 0 0
$$721$$ 1.41421i 1.41421i
$$722$$ 0 0
$$723$$ −2.00000 −2.00000
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$728$$ 0 0
$$729$$ 1.00000 1.00000
$$730$$ 0 0
$$731$$ −1.00000 −1.00000
$$732$$ 0 0
$$733$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$744$$ 0 0
$$745$$ −1.00000 −1.00000
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 1.41421i 1.41421i
$$750$$ 0 0
$$751$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$752$$ 0 0
$$753$$ 1.41421i 1.41421i
$$754$$ 0 0
$$755$$ − 1.41421i − 1.41421i
$$756$$ 0 0
$$757$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ −1.00000 −1.00000
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ −2.00000 −2.00000
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ − 1.41421i − 1.41421i
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$788$$ 0 0
$$789$$ 1.41421i 1.41421i
$$790$$ 0 0
$$791$$ − 1.41421i − 1.41421i
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$798$$ 0 0
$$799$$ −1.00000 −1.00000
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −1.00000 −1.00000
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$810$$ 0 0
$$811$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 0 0
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$822$$ 0 0
$$823$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$828$$ 0 0
$$829$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$830$$ 0 0
$$831$$ 1.41421i 1.41421i
$$832$$ 0 0
$$833$$ 0 0
$$834$$ 0 0
$$835$$ − 1.41421i − 1.41421i
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$840$$ 0 0
$$841$$ −1.00000 −1.00000
$$842$$ 0 0
$$843$$ −2.00000 −2.00000
$$844$$ 0 0
$$845$$ 1.00000 1.00000
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 1.41421i 1.41421i
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$858$$ 0 0
$$859$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$860$$ 0 0
$$861$$ 2.00000 2.00000
$$862$$ 0 0
$$863$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$864$$ 0 0
$$865$$ − 1.41421i − 1.41421i
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ −1.00000 −1.00000
$$876$$ 0 0
$$877$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$882$$ 0 0
$$883$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$884$$ 0 0
$$885$$ 2.00000 2.00000
$$886$$ 0 0
$$887$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$888$$ 0 0
$$889$$ − 1.41421i − 1.41421i
$$890$$ 0 0
$$891$$ 1.00000 1.00000
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ − 1.41421i − 1.41421i
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ − 1.41421i − 1.41421i
$$904$$ 0 0
$$905$$ 1.41421i 1.41421i
$$906$$ 0 0
$$907$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 0 0
$$915$$ − 1.41421i − 1.41421i
$$916$$ 0 0
$$917$$ −1.00000 −1.00000
$$918$$ 0 0
$$919$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ − 1.41421i − 1.41421i
$$928$$ 0 0
$$929$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 0 0
$$933$$ − 1.41421i − 1.41421i
$$934$$ 0 0
$$935$$ −1.00000 −1.00000
$$936$$ 0 0
$$937$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ 0 0
$$951$$ −2.00000 −2.00000
$$952$$ 0 0
$$953$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$954$$ 0 0
$$955$$ 1.00000 1.00000
$$956$$ 0 0
$$957$$ −2.00000 −2.00000
$$958$$ 0 0
$$959$$ 1.00000 1.00000
$$960$$ 0 0
$$961$$ 1.00000 1.00000
$$962$$ 0 0
$$963$$ − 1.41421i − 1.41421i
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$972$$ 0 0
$$973$$ 1.00000 1.00000
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ − 1.41421i − 1.41421i
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ − 1.41421i − 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 1.00000 1.00000
$$996$$ 0 0
$$997$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1444.1.c.a.721.2 yes 2
19.2 odd 18 1444.1.j.b.1345.2 12
19.3 odd 18 1444.1.j.b.333.1 12
19.4 even 9 1444.1.j.b.1029.1 12
19.5 even 9 1444.1.j.b.849.2 12
19.6 even 9 1444.1.j.b.477.1 12
19.7 even 3 1444.1.h.b.293.1 4
19.8 odd 6 1444.1.h.b.69.1 4
19.9 even 9 1444.1.j.b.1021.2 12
19.10 odd 18 1444.1.j.b.1021.1 12
19.11 even 3 1444.1.h.b.69.2 4
19.12 odd 6 1444.1.h.b.293.2 4
19.13 odd 18 1444.1.j.b.477.2 12
19.14 odd 18 1444.1.j.b.849.1 12
19.15 odd 18 1444.1.j.b.1029.2 12
19.16 even 9 1444.1.j.b.333.2 12
19.17 even 9 1444.1.j.b.1345.1 12
19.18 odd 2 inner 1444.1.c.a.721.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
1444.1.c.a.721.1 2 19.18 odd 2 inner
1444.1.c.a.721.2 yes 2 1.1 even 1 trivial
1444.1.h.b.69.1 4 19.8 odd 6
1444.1.h.b.69.2 4 19.11 even 3
1444.1.h.b.293.1 4 19.7 even 3
1444.1.h.b.293.2 4 19.12 odd 6
1444.1.j.b.333.1 12 19.3 odd 18
1444.1.j.b.333.2 12 19.16 even 9
1444.1.j.b.477.1 12 19.6 even 9
1444.1.j.b.477.2 12 19.13 odd 18
1444.1.j.b.849.1 12 19.14 odd 18
1444.1.j.b.849.2 12 19.5 even 9
1444.1.j.b.1021.1 12 19.10 odd 18
1444.1.j.b.1021.2 12 19.9 even 9
1444.1.j.b.1029.1 12 19.4 even 9
1444.1.j.b.1029.2 12 19.15 odd 18
1444.1.j.b.1345.1 12 19.17 even 9
1444.1.j.b.1345.2 12 19.2 odd 18