Defining parameters
Level: | \( N \) | \(=\) | \( 1444 = 2^{2} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1444.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(190\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1444, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 2 | 32 |
Cusp forms | 4 | 2 | 2 |
Eisenstein series | 30 | 0 | 30 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 2 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1444, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1444.1.c.a | $2$ | $0.721$ | \(\Q(\sqrt{-2}) \) | $S_{4}$ | None | None | \(0\) | \(0\) | \(2\) | \(2\) | \(q-\beta q^{3}+q^{5}+q^{7}-q^{9}-q^{11}-\beta q^{15}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1444, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1444, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)