Newspace parameters
Level: | \( N \) | \(=\) | \( 1441 = 11 \cdot 131 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1441.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(11.5064429313\) |
Analytic rank: | \(1\) |
Dimension: | \(23\) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.78830 | −0.518611 | 5.77463 | −0.346547 | 1.44605 | 3.25187 | −10.5248 | −2.73104 | 0.966278 | ||||||||||||||||||
1.2 | −2.56442 | 0.292938 | 4.57625 | 3.66360 | −0.751215 | −5.05392 | −6.60659 | −2.91419 | −9.39502 | ||||||||||||||||||
1.3 | −2.50019 | 3.16294 | 4.25093 | −4.26480 | −7.90794 | −1.67608 | −5.62776 | 7.00418 | 10.6628 | ||||||||||||||||||
1.4 | −2.24881 | −1.99348 | 3.05713 | −0.623302 | 4.48295 | 4.70119 | −2.37729 | 0.973955 | 1.40169 | ||||||||||||||||||
1.5 | −1.84752 | 2.72852 | 1.41334 | 1.47029 | −5.04100 | −2.80791 | 1.08387 | 4.44483 | −2.71640 | ||||||||||||||||||
1.6 | −1.75710 | −2.59102 | 1.08739 | 2.84782 | 4.55267 | 2.84815 | 1.60354 | 3.71338 | −5.00390 | ||||||||||||||||||
1.7 | −1.59929 | 1.84862 | 0.557714 | −2.20532 | −2.95647 | 0.234218 | 2.30663 | 0.417399 | 3.52693 | ||||||||||||||||||
1.8 | −1.52508 | −0.420875 | 0.325868 | −3.40099 | 0.641868 | −3.60038 | 2.55318 | −2.82286 | 5.18678 | ||||||||||||||||||
1.9 | −1.24808 | −0.917360 | −0.442292 | 1.92098 | 1.14494 | 0.0608487 | 3.04818 | −2.15845 | −2.39755 | ||||||||||||||||||
1.10 | −1.00403 | 1.28366 | −0.991926 | 0.810675 | −1.28883 | −2.46332 | 3.00398 | −1.35222 | −0.813941 | ||||||||||||||||||
1.11 | −0.363851 | −2.50967 | −1.86761 | −1.53260 | 0.913144 | −1.87155 | 1.40723 | 3.29843 | 0.557639 | ||||||||||||||||||
1.12 | −0.288878 | 2.13203 | −1.91655 | −3.62334 | −0.615896 | 3.72928 | 1.13141 | 1.54555 | 1.04670 | ||||||||||||||||||
1.13 | −0.169669 | −1.85024 | −1.97121 | −3.73136 | 0.313927 | 1.69497 | 0.673790 | 0.423370 | 0.633095 | ||||||||||||||||||
1.14 | 0.338964 | 0.415229 | −1.88510 | 2.48639 | 0.140748 | 1.37068 | −1.31691 | −2.82758 | 0.842796 | ||||||||||||||||||
1.15 | 0.495822 | −0.133739 | −1.75416 | −0.493567 | −0.0663105 | 1.67893 | −1.86140 | −2.98211 | −0.244721 | ||||||||||||||||||
1.16 | 0.665447 | −3.11635 | −1.55718 | −0.365961 | −2.07377 | −1.41982 | −2.36711 | 6.71165 | −0.243528 | ||||||||||||||||||
1.17 | 0.714474 | 2.60520 | −1.48953 | −0.266226 | 1.86135 | −4.25119 | −2.49318 | 3.78706 | −0.190211 | ||||||||||||||||||
1.18 | 1.32496 | 0.816970 | −0.244480 | −1.13056 | 1.08245 | 0.353069 | −2.97385 | −2.33256 | −1.49794 | ||||||||||||||||||
1.19 | 1.34408 | −2.56743 | −0.193462 | 4.05031 | −3.45081 | −3.27147 | −2.94818 | 3.59168 | 5.44393 | ||||||||||||||||||
1.20 | 1.75422 | −0.900924 | 1.07730 | 1.37756 | −1.58042 | −1.58298 | −1.61862 | −2.18834 | 2.41656 | ||||||||||||||||||
See all 23 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(11\) | \(-1\) |
\(131\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1441.2.a.c | ✓ | 23 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1441.2.a.c | ✓ | 23 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{23} + 7 T_{2}^{22} - 6 T_{2}^{21} - 140 T_{2}^{20} - 138 T_{2}^{19} + 1131 T_{2}^{18} + 2001 T_{2}^{17} - 4693 T_{2}^{16} - 11448 T_{2}^{15} + 10339 T_{2}^{14} + 35570 T_{2}^{13} - 10374 T_{2}^{12} - 64708 T_{2}^{11} + \cdots + 16 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1441))\).