Properties

Label 1441.1.u.a.916.1
Level $1441$
Weight $1$
Character 1441.916
Analytic conductor $0.719$
Analytic rank $0$
Dimension $20$
Projective image $D_{25}$
CM discriminant -131
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1441 = 11 \cdot 131 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1441.u (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.719152683204\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{50})\)
Defining polynomial: \(x^{20} - x^{15} + x^{10} - x^{5} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{25}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{25} + \cdots)\)

Embedding invariants

Embedding label 916.1
Root \(-0.876307 - 0.481754i\) of defining polynomial
Character \(\chi\) \(=\) 1441.916
Dual form 1441.1.u.a.785.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.613161 - 1.88711i) q^{3} +(0.309017 - 0.951057i) q^{4} +(1.03137 + 0.749337i) q^{5} +(0.598617 - 1.84235i) q^{7} +(-2.37622 + 1.72642i) q^{9} +O(q^{10})\) \(q+(-0.613161 - 1.88711i) q^{3} +(0.309017 - 0.951057i) q^{4} +(1.03137 + 0.749337i) q^{5} +(0.598617 - 1.84235i) q^{7} +(-2.37622 + 1.72642i) q^{9} +(-0.425779 + 0.904827i) q^{11} -1.98423 q^{12} +(0.303189 - 0.220280i) q^{13} +(0.781687 - 2.40578i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(1.03137 - 0.749337i) q^{20} -3.84378 q^{21} +(0.193209 + 0.594636i) q^{25} +(3.10969 + 2.25932i) q^{27} +(-1.56720 - 1.13864i) q^{28} +(1.96858 + 0.248690i) q^{33} +(1.99794 - 1.45159i) q^{35} +(0.907634 + 2.79341i) q^{36} +(-0.601597 - 0.437086i) q^{39} +(0.450527 + 1.38658i) q^{41} +1.07165 q^{43} +(0.728969 + 0.684547i) q^{44} -3.74444 q^{45} +(-0.613161 + 1.88711i) q^{48} +(-2.22691 - 1.61795i) q^{49} +(-0.115808 - 0.356420i) q^{52} +(-0.500000 + 0.363271i) q^{53} +(-1.11716 + 0.614163i) q^{55} +(0.0388067 - 0.119435i) q^{59} +(-2.04648 - 1.48686i) q^{60} +(1.03137 + 0.749337i) q^{61} +(1.75824 + 5.41130i) q^{63} +(-0.809017 + 0.587785i) q^{64} +0.477765 q^{65} +(1.00368 - 0.729215i) q^{75} +(1.41213 + 1.32608i) q^{77} +(-0.393950 - 1.21245i) q^{80} +(1.44922 - 4.46025i) q^{81} +(-1.18779 + 3.65565i) q^{84} -1.61803 q^{89} +(-0.224339 - 0.690446i) q^{91} +(-0.550370 - 2.88514i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 5q^{4} - 5q^{9} + O(q^{10}) \) \( 20q - 5q^{4} - 5q^{9} - 5q^{16} - 5q^{25} + 20q^{33} + 15q^{35} - 5q^{36} - 10q^{39} - 10q^{45} - 5q^{49} - 10q^{53} - 10q^{63} - 5q^{64} - 10q^{75} - 5q^{81} - 10q^{89} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1441\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(1311\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(3\) −0.613161 1.88711i −0.613161 1.88711i −0.425779 0.904827i \(-0.640000\pi\)
−0.187381 0.982287i \(-0.560000\pi\)
\(4\) 0.309017 0.951057i 0.309017 0.951057i
\(5\) 1.03137 + 0.749337i 1.03137 + 0.749337i 0.968583 0.248690i \(-0.0800000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(6\) 0 0
\(7\) 0.598617 1.84235i 0.598617 1.84235i 0.0627905 0.998027i \(-0.480000\pi\)
0.535827 0.844328i \(-0.320000\pi\)
\(8\) 0 0
\(9\) −2.37622 + 1.72642i −2.37622 + 1.72642i
\(10\) 0 0
\(11\) −0.425779 + 0.904827i −0.425779 + 0.904827i
\(12\) −1.98423 −1.98423
\(13\) 0.303189 0.220280i 0.303189 0.220280i −0.425779 0.904827i \(-0.640000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(14\) 0 0
\(15\) 0.781687 2.40578i 0.781687 2.40578i
\(16\) −0.809017 0.587785i −0.809017 0.587785i
\(17\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(18\) 0 0
\(19\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(20\) 1.03137 0.749337i 1.03137 0.749337i
\(21\) −3.84378 −3.84378
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0.193209 + 0.594636i 0.193209 + 0.594636i
\(26\) 0 0
\(27\) 3.10969 + 2.25932i 3.10969 + 2.25932i
\(28\) −1.56720 1.13864i −1.56720 1.13864i
\(29\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(30\) 0 0
\(31\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(32\) 0 0
\(33\) 1.96858 + 0.248690i 1.96858 + 0.248690i
\(34\) 0 0
\(35\) 1.99794 1.45159i 1.99794 1.45159i
\(36\) 0.907634 + 2.79341i 0.907634 + 2.79341i
\(37\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(38\) 0 0
\(39\) −0.601597 0.437086i −0.601597 0.437086i
\(40\) 0 0
\(41\) 0.450527 + 1.38658i 0.450527 + 1.38658i 0.876307 + 0.481754i \(0.160000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(42\) 0 0
\(43\) 1.07165 1.07165 0.535827 0.844328i \(-0.320000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(44\) 0.728969 + 0.684547i 0.728969 + 0.684547i
\(45\) −3.74444 −3.74444
\(46\) 0 0
\(47\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(48\) −0.613161 + 1.88711i −0.613161 + 1.88711i
\(49\) −2.22691 1.61795i −2.22691 1.61795i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.115808 0.356420i −0.115808 0.356420i
\(53\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(54\) 0 0
\(55\) −1.11716 + 0.614163i −1.11716 + 0.614163i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.0388067 0.119435i 0.0388067 0.119435i −0.929776 0.368125i \(-0.880000\pi\)
0.968583 + 0.248690i \(0.0800000\pi\)
\(60\) −2.04648 1.48686i −2.04648 1.48686i
\(61\) 1.03137 + 0.749337i 1.03137 + 0.749337i 0.968583 0.248690i \(-0.0800000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(62\) 0 0
\(63\) 1.75824 + 5.41130i 1.75824 + 5.41130i
\(64\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(65\) 0.477765 0.477765
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(72\) 0 0
\(73\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(74\) 0 0
\(75\) 1.00368 0.729215i 1.00368 0.729215i
\(76\) 0 0
\(77\) 1.41213 + 1.32608i 1.41213 + 1.32608i
\(78\) 0 0
\(79\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(80\) −0.393950 1.21245i −0.393950 1.21245i
\(81\) 1.44922 4.46025i 1.44922 4.46025i
\(82\) 0 0
\(83\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(84\) −1.18779 + 3.65565i −1.18779 + 3.65565i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(90\) 0 0
\(91\) −0.224339 0.690446i −0.224339 0.690446i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) 0 0
\(99\) −0.550370 2.88514i −0.550370 2.88514i
\(100\) 0.625237 0.625237
\(101\) −0.866986 + 0.629902i −0.866986 + 0.629902i −0.929776 0.368125i \(-0.880000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(102\) 0 0
\(103\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(104\) 0 0
\(105\) −3.96438 2.88029i −3.96438 2.88029i
\(106\) 0 0
\(107\) 0.0388067 + 0.119435i 0.0388067 + 0.119435i 0.968583 0.248690i \(-0.0800000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(108\) 3.10969 2.25932i 3.10969 2.25932i
\(109\) 1.45794 1.45794 0.728969 0.684547i \(-0.240000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.56720 + 1.13864i −1.56720 + 1.13864i
\(113\) −0.263146 0.809880i −0.263146 0.809880i −0.992115 0.125333i \(-0.960000\pi\)
0.728969 0.684547i \(-0.240000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.340147 + 1.04687i −0.340147 + 1.04687i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.637424 0.770513i −0.637424 0.770513i
\(122\) 0 0
\(123\) 2.34039 1.70039i 2.34039 1.70039i
\(124\) 0 0
\(125\) 0.147638 0.454382i 0.147638 0.454382i
\(126\) 0 0
\(127\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(128\) 0 0
\(129\) −0.657096 2.02233i −0.657096 2.02233i
\(130\) 0 0
\(131\) 1.00000 1.00000
\(132\) 0.844844 1.79538i 0.844844 1.79538i
\(133\) 0 0
\(134\) 0 0
\(135\) 1.51426 + 4.66040i 1.51426 + 4.66040i
\(136\) 0 0
\(137\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(138\) 0 0
\(139\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(140\) −0.763146 2.34872i −0.763146 2.34872i
\(141\) 0 0
\(142\) 0 0
\(143\) 0.0702235 + 0.368125i 0.0702235 + 0.368125i
\(144\) 2.93717 2.93717
\(145\) 0 0
\(146\) 0 0
\(147\) −1.68779 + 5.19450i −1.68779 + 5.19450i
\(148\) 0 0
\(149\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(150\) 0 0
\(151\) 0.541587 + 1.66683i 0.541587 + 1.66683i 0.728969 + 0.684547i \(0.240000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.601597 + 0.437086i −0.601597 + 0.437086i
\(157\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(158\) 0 0
\(159\) 0.992115 + 0.720814i 0.992115 + 0.720814i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(164\) 1.45794 1.45794
\(165\) 1.84399 + 1.73162i 1.84399 + 1.73162i
\(166\) 0 0
\(167\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(168\) 0 0
\(169\) −0.265616 + 0.817483i −0.265616 + 0.817483i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.331159 1.01920i 0.331159 1.01920i
\(173\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(174\) 0 0
\(175\) 1.21119 1.21119
\(176\) 0.876307 0.481754i 0.876307 0.481754i
\(177\) −0.249182 −0.249182
\(178\) 0 0
\(179\) −0.574633 1.76854i −0.574633 1.76854i −0.637424 0.770513i \(-0.720000\pi\)
0.0627905 0.998027i \(-0.480000\pi\)
\(180\) −1.15710 + 3.56117i −1.15710 + 3.56117i
\(181\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(182\) 0 0
\(183\) 0.781687 2.40578i 0.781687 2.40578i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 6.02398 4.37668i 6.02398 4.37668i
\(190\) 0 0
\(191\) −0.115808 + 0.356420i −0.115808 + 0.356420i −0.992115 0.125333i \(-0.960000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(192\) 1.60528 + 1.16630i 1.60528 + 1.16630i
\(193\) 1.50441 + 1.09302i 1.50441 + 1.09302i 0.968583 + 0.248690i \(0.0800000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(194\) 0 0
\(195\) −0.292947 0.901598i −0.292947 0.901598i
\(196\) −2.22691 + 1.61795i −2.22691 + 1.61795i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.574354 + 1.76768i −0.574354 + 1.76768i
\(206\) 0 0
\(207\) 0 0
\(208\) −0.374763 −0.374763
\(209\) 0 0
\(210\) 0 0
\(211\) 0.688925 0.500534i 0.688925 0.500534i −0.187381 0.982287i \(-0.560000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(212\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(213\) 0 0
\(214\) 0 0
\(215\) 1.10528 + 0.803030i 1.10528 + 0.803030i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0.238883 + 1.25227i 0.238883 + 1.25227i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(224\) 0 0
\(225\) −1.48570 1.07942i −1.48570 1.07942i
\(226\) 0 0
\(227\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(228\) 0 0
\(229\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(230\) 0 0
\(231\) 1.63660 3.47796i 1.63660 3.47796i
\(232\) 0 0
\(233\) 1.50441 1.09302i 1.50441 1.09302i 0.535827 0.844328i \(-0.320000\pi\)
0.968583 0.248690i \(-0.0800000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.101597 0.0738147i −0.101597 0.0738147i
\(237\) 0 0
\(238\) 0 0
\(239\) −0.574633 1.76854i −0.574633 1.76854i −0.637424 0.770513i \(-0.720000\pi\)
0.0627905 0.998027i \(-0.480000\pi\)
\(240\) −2.04648 + 1.48686i −2.04648 + 1.48686i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −5.46182 −5.46182
\(244\) 1.03137 0.749337i 1.03137 0.749337i
\(245\) −1.08439 3.33741i −1.08439 3.33741i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(252\) 5.68978 5.68978
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(257\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.147638 0.454382i 0.147638 0.454382i
\(261\) 0 0
\(262\) 0 0
\(263\) −1.98423 −1.98423 −0.992115 0.125333i \(-0.960000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(264\) 0 0
\(265\) −0.787899 −0.787899
\(266\) 0 0
\(267\) 0.992115 + 3.05342i 0.992115 + 3.05342i
\(268\) 0 0
\(269\) −1.17950 0.856954i −1.17950 0.856954i −0.187381 0.982287i \(-0.560000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(270\) 0 0
\(271\) 0.541587 1.66683i 0.541587 1.66683i −0.187381 0.982287i \(-0.560000\pi\)
0.728969 0.684547i \(-0.240000\pi\)
\(272\) 0 0
\(273\) −1.16539 + 0.846708i −1.16539 + 0.846708i
\(274\) 0 0
\(275\) −0.620307 0.0783630i −0.620307 0.0783630i
\(276\) 0 0
\(277\) −1.41789 + 1.03016i −1.41789 + 1.03016i −0.425779 + 0.904827i \(0.640000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(282\) 0 0
\(283\) −0.613161 1.88711i −0.613161 1.88711i −0.425779 0.904827i \(-0.640000\pi\)
−0.187381 0.982287i \(-0.560000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.82427 2.82427
\(288\) 0 0
\(289\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(294\) 0 0
\(295\) 0.129521 0.0941025i 0.129521 0.0941025i
\(296\) 0 0
\(297\) −3.36833 + 1.85176i −3.36833 + 1.85176i
\(298\) 0 0
\(299\) 0 0
\(300\) −0.383371 1.17989i −0.383371 1.17989i
\(301\) 0.641510 1.97437i 0.641510 1.97437i
\(302\) 0 0
\(303\) 1.72030 + 1.24987i 1.72030 + 1.24987i
\(304\) 0 0
\(305\) 0.502226 + 1.54569i 0.502226 + 1.54569i
\(306\) 0 0
\(307\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(308\) 1.69755 0.933237i 1.69755 0.933237i
\(309\) 0 0
\(310\) 0 0
\(311\) 0.331159 + 1.01920i 0.331159 + 1.01920i 0.968583 + 0.248690i \(0.0800000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(314\) 0 0
\(315\) −2.24149 + 6.89859i −2.24149 + 6.89859i
\(316\) 0 0
\(317\) 0.688925 0.500534i 0.688925 0.500534i −0.187381 0.982287i \(-0.560000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.27485 −1.27485
\(321\) 0.201592 0.146465i 0.201592 0.146465i
\(322\) 0 0
\(323\) 0 0
\(324\) −3.79411 2.75658i −3.79411 2.75658i
\(325\) 0.189565 + 0.137727i 0.189565 + 0.137727i
\(326\) 0 0
\(327\) −0.893950 2.75129i −0.893950 2.75129i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 3.10969 + 2.25932i 3.10969 + 2.25932i
\(337\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(338\) 0 0
\(339\) −1.36699 + 0.993173i −1.36699 + 0.993173i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −2.74670 + 1.99559i −2.74670 + 1.99559i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(350\) 0 0
\(351\) 1.44051 1.44051
\(352\) 0 0
\(353\) 1.45794 1.45794 0.728969 0.684547i \(-0.240000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(360\) 0 0
\(361\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(362\) 0 0
\(363\) −1.06320 + 1.67534i −1.06320 + 1.67534i
\(364\) −0.725978 −0.725978
\(365\) 0 0
\(366\) 0 0
\(367\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(368\) 0 0
\(369\) −3.46438 2.51702i −3.46438 2.51702i
\(370\) 0 0
\(371\) 0.369966 + 1.13864i 0.369966 + 1.13864i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −0.947996 −0.947996
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.866986 0.629902i −0.866986 0.629902i 0.0627905 0.998027i \(-0.480000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.41789 + 1.03016i −1.41789 + 1.03016i −0.425779 + 0.904827i \(0.640000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(384\) 0 0
\(385\) 0.462756 + 2.42585i 0.462756 + 2.42585i
\(386\) 0 0
\(387\) −2.54648 + 1.85013i −2.54648 + 1.85013i
\(388\) 0 0
\(389\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −0.613161 1.88711i −0.613161 1.88711i
\(394\) 0 0
\(395\) 0 0
\(396\) −2.91401 0.368125i −2.91401 0.368125i
\(397\) 0.125581 0.125581 0.0627905 0.998027i \(-0.480000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.193209 0.594636i 0.193209 0.594636i
\(401\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.331159 + 1.01920i 0.331159 + 1.01920i
\(405\) 4.83692 3.51422i 4.83692 3.51422i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.101597 + 0.0738147i −0.101597 + 0.0738147i −0.637424 0.770513i \(-0.720000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.196811 0.142991i −0.196811 0.142991i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) −3.96438 + 2.88029i −3.96438 + 2.88029i
\(421\) 0.331159 + 1.01920i 0.331159 + 1.01920i 0.968583 + 0.248690i \(0.0800000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.99794 1.45159i 1.99794 1.45159i
\(428\) 0.125581 0.125581
\(429\) 0.651635 0.358239i 0.651635 0.358239i
\(430\) 0 0
\(431\) 0.303189 0.220280i 0.303189 0.220280i −0.425779 0.904827i \(-0.640000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(432\) −1.18779 3.65565i −1.18779 3.65565i
\(433\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.450527 1.38658i 0.450527 1.38658i
\(437\) 0 0
\(438\) 0 0
\(439\) −1.85955 −1.85955 −0.929776 0.368125i \(-0.880000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(440\) 0 0
\(441\) 8.08488 8.08488
\(442\) 0 0
\(443\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(444\) 0 0
\(445\) −1.66880 1.21245i −1.66880 1.21245i
\(446\) 0 0
\(447\) 0 0
\(448\) 0.598617 + 1.84235i 0.598617 + 1.84235i
\(449\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(450\) 0 0
\(451\) −1.44644 0.182728i −1.44644 0.182728i
\(452\) −0.851559 −0.851559
\(453\) 2.81343 2.04407i 2.81343 2.04407i
\(454\) 0 0
\(455\) 0.285999 0.880213i 0.285999 0.880213i
\(456\) 0 0
\(457\) 0.688925 + 0.500534i 0.688925 + 0.500534i 0.876307 0.481754i \(-0.160000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.56720 1.13864i −1.56720 1.13864i −0.929776 0.368125i \(-0.880000\pi\)
−0.637424 0.770513i \(-0.720000\pi\)
\(468\) 0.890518 + 0.646999i 0.890518 + 0.646999i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.456288 + 0.969661i −0.456288 + 0.969661i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.560949 1.72642i 0.560949 1.72642i
\(478\) 0 0
\(479\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.929776 + 0.368125i −0.929776 + 0.368125i
\(485\) 0 0
\(486\) 0 0
\(487\) 0.598617 + 1.84235i 0.598617 + 1.84235i 0.535827 + 0.844328i \(0.320000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(492\) −0.893950 2.75129i −0.893950 2.75129i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.59431 3.38807i 1.59431 3.38807i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(500\) −0.386520 0.280823i −0.386520 0.280823i
\(501\) 0.992115 + 0.720814i 0.992115 + 0.720814i
\(502\) 0 0
\(503\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(504\) 0 0
\(505\) −1.36620 −1.36620
\(506\) 0 0
\(507\) 1.70555 1.70555
\(508\) 0 0
\(509\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) −2.12641 −2.12641
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(522\) 0 0
\(523\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(524\) 0.309017 0.951057i 0.309017 0.951057i
\(525\) −0.742653 2.28565i −0.742653 2.28565i
\(526\) 0 0
\(527\) 0 0
\(528\) −1.44644 1.35830i −1.44644 1.35830i
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0.113982 + 0.350799i 0.113982 + 0.350799i
\(532\) 0 0
\(533\) 0.442031 + 0.321154i 0.442031 + 0.321154i
\(534\) 0 0
\(535\) −0.0494726 + 0.152261i −0.0494726 + 0.152261i
\(536\) 0 0
\(537\) −2.98509 + 2.16880i −2.98509 + 2.16880i
\(538\) 0 0
\(539\) 2.41213 1.32608i 2.41213 1.32608i
\(540\) 4.90024 4.90024
\(541\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.50368 + 1.09249i 1.50368 + 1.09249i
\(546\) 0 0
\(547\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(548\) 0 0
\(549\) −3.74444 −3.74444
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.331159 1.01920i 0.331159 1.01920i −0.637424 0.770513i \(-0.720000\pi\)
0.968583 0.248690i \(-0.0800000\pi\)
\(558\) 0 0
\(559\) 0.324914 0.236064i 0.324914 0.236064i
\(560\) −2.46959 −2.46959
\(561\) 0 0
\(562\) 0 0
\(563\) −1.41789 + 1.03016i −1.41789 + 1.03016i −0.425779 + 0.904827i \(0.640000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(564\) 0 0
\(565\) 0.335471 1.03247i 0.335471 1.03247i
\(566\) 0 0
\(567\) −7.34982 5.33996i −7.34982 5.33996i
\(568\) 0 0
\(569\) 0.598617 + 1.84235i 0.598617 + 1.84235i 0.535827 + 0.844328i \(0.320000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0.371808 + 0.0469702i 0.371808 + 0.0469702i
\(573\) 0.743615 0.743615
\(574\) 0 0
\(575\) 0 0
\(576\) 0.907634 2.79341i 0.907634 2.79341i
\(577\) −1.17950 0.856954i −1.17950 0.856954i −0.187381 0.982287i \(-0.560000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(578\) 0 0
\(579\) 1.14020 3.50919i 1.14020 3.50919i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.115808 0.607087i −0.115808 0.607087i
\(584\) 0 0
\(585\) −1.13527 + 0.824825i −1.13527 + 0.824825i
\(586\) 0 0
\(587\) −0.115808 + 0.356420i −0.115808 + 0.356420i −0.992115 0.125333i \(-0.960000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(588\) 4.41870 + 3.21038i 4.41870 + 3.21038i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.50441 + 1.09302i 1.50441 + 1.09302i 0.968583 + 0.248690i \(0.0800000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(600\) 0 0
\(601\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.75261 1.75261
\(605\) −0.0800484 1.27233i −0.0800484 1.27233i
\(606\) 0 0
\(607\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.450527 + 1.38658i 0.450527 + 1.38658i 0.876307 + 0.481754i \(0.160000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(614\) 0 0
\(615\) 3.68798 3.68798
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.968583 + 2.98099i −0.968583 + 2.98099i
\(624\) 0.229790 + 0.707220i 0.229790 + 0.707220i
\(625\) 0.998582 0.725513i 0.998582 0.725513i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.263146 + 0.809880i −0.263146 + 0.809880i 0.728969 + 0.684547i \(0.240000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(632\) 0 0
\(633\) −1.36699 0.993173i −1.36699 0.993173i
\(634\) 0 0
\(635\) 0 0
\(636\) 0.992115 0.720814i 0.992115 0.720814i
\(637\) −1.03158 −1.03158
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.598617 + 1.84235i 0.598617 + 1.84235i 0.535827 + 0.844328i \(0.320000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(642\) 0 0
\(643\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(644\) 0 0
\(645\) 0.837697 2.57817i 0.837697 2.57817i
\(646\) 0 0
\(647\) 0.303189 0.220280i 0.303189 0.220280i −0.425779 0.904827i \(-0.640000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(648\) 0 0
\(649\) 0.0915446 + 0.0859661i 0.0915446 + 0.0859661i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.0388067 0.119435i 0.0388067 0.119435i −0.929776 0.368125i \(-0.880000\pi\)
0.968583 + 0.248690i \(0.0800000\pi\)
\(654\) 0 0
\(655\) 1.03137 + 0.749337i 1.03137 + 0.749337i
\(656\) 0.450527 1.38658i 0.450527 1.38658i
\(657\) 0 0
\(658\) 0 0
\(659\) 1.93717 1.93717 0.968583 0.248690i \(-0.0800000\pi\)
0.968583 + 0.248690i \(0.0800000\pi\)
\(660\) 2.21670 1.21864i 2.21670 1.21864i
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(669\) 0 0
\(670\) 0 0
\(671\) −1.11716 + 0.614163i −1.11716 + 0.614163i
\(672\) 0 0
\(673\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(674\) 0 0
\(675\) −0.742653 + 2.28565i −0.742653 + 2.28565i
\(676\) 0.695393 + 0.505233i 0.695393 + 0.505233i
\(677\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.866986 0.629902i −0.866986 0.629902i
\(689\) −0.0715733 + 0.220280i −0.0715733 + 0.220280i
\(690\) 0 0
\(691\) −1.56720 + 1.13864i −1.56720 + 1.13864i −0.637424 + 0.770513i \(0.720000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(692\) 0 0
\(693\) −5.64491 0.713118i −5.64491 0.713118i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −2.98509 2.16880i −2.98509 2.16880i
\(700\) 0.374278 1.15191i 0.374278 1.15191i
\(701\) 0.541587 + 1.66683i 0.541587 + 1.66683i 0.728969 + 0.684547i \(0.240000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.187381 0.982287i −0.187381 0.982287i
\(705\) 0 0
\(706\) 0 0
\(707\) 0.641510 + 1.97437i 0.641510 + 1.97437i
\(708\) −0.0770013 + 0.236986i −0.0770013 + 0.236986i
\(709\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −0.203423 + 0.432295i −0.203423 + 0.432295i
\(716\) −1.85955 −1.85955
\(717\) −2.98509 + 2.16880i −2.98509 + 2.16880i
\(718\) 0 0
\(719\) −0.263146 + 0.809880i −0.263146 + 0.809880i 0.728969 + 0.684547i \(0.240000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(720\) 3.02932 + 2.20093i 3.02932 + 2.20093i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.89975 + 5.84683i 1.89975 + 5.84683i
\(730\) 0 0
\(731\) 0 0
\(732\) −2.04648 1.48686i −2.04648 1.48686i
\(733\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(734\) 0 0
\(735\) −5.63317 + 4.09274i −5.63317 + 4.09274i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.60528 1.16630i 1.60528 1.16630i 0.728969 0.684547i \(-0.240000\pi\)
0.876307 0.481754i \(-0.160000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.243271 0.243271
\(750\) 0 0
\(751\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.690441 + 2.12496i −0.690441 + 2.12496i
\(756\) −2.30095 7.08161i −2.30095 7.08161i
\(757\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(762\) 0 0
\(763\) 0.872746 2.68604i 0.872746 2.68604i
\(764\) 0.303189 + 0.220280i 0.303189 + 0.220280i
\(765\) 0 0
\(766\) 0 0
\(767\) −0.0145433 0.0447596i −0.0145433 0.0447596i
\(768\) 1.60528 1.16630i 1.60528 1.16630i
\(769\) −0.851559 −0.851559 −0.425779 0.904827i \(-0.640000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.50441 1.09302i 1.50441 1.09302i
\(773\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −0.947996 −0.947996
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.850604 + 2.61789i 0.850604 + 2.61789i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.60528 + 1.16630i 1.60528 + 1.16630i 0.876307 + 0.481754i \(0.160000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(788\) 0 0
\(789\) 1.21665 + 3.74447i 1.21665 + 3.74447i
\(790\) 0 0
\(791\) −1.64961 −1.64961
\(792\) 0 0
\(793\) 0.477765 0.477765
\(794\) 0 0
\(795\) 0.483109 + 1.48686i 0.483109 + 1.48686i
\(796\) 0 0
\(797\) 1.50441 + 1.09302i 1.50441 + 1.09302i 0.968583 + 0.248690i \(0.0800000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 3.84480 2.79341i 3.84480 2.79341i
\(802\) 0 0
\(803\) 0 0
\(804\) 0