Properties

Label 1440.4.f.e.289.1
Level $1440$
Weight $4$
Character 1440.289
Analytic conductor $84.963$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(289,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(84.9627504083\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 289.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1440.289
Dual form 1440.4.f.e.289.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(11.0000 - 2.00000i) q^{5} +O(q^{10})\) \(q+(11.0000 - 2.00000i) q^{5} -92.0000i q^{13} +104.000i q^{17} +(117.000 - 44.0000i) q^{25} +130.000 q^{29} -396.000i q^{37} -230.000 q^{41} +343.000 q^{49} -572.000i q^{53} -830.000 q^{61} +(-184.000 - 1012.00i) q^{65} +592.000i q^{73} +(208.000 + 1144.00i) q^{85} +1670.00 q^{89} -1816.00i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 22 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 22 q^{5} + 234 q^{25} + 260 q^{29} - 460 q^{41} + 686 q^{49} - 1660 q^{61} - 368 q^{65} + 416 q^{85} + 3340 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 11.0000 2.00000i 0.983870 0.178885i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 92.0000i 1.96279i −0.192012 0.981393i \(-0.561501\pi\)
0.192012 0.981393i \(-0.438499\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 104.000i 1.48375i 0.670540 + 0.741874i \(0.266063\pi\)
−0.670540 + 0.741874i \(0.733937\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 117.000 44.0000i 0.936000 0.352000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 130.000 0.832427 0.416214 0.909267i \(-0.363357\pi\)
0.416214 + 0.909267i \(0.363357\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 396.000i 1.75951i −0.475424 0.879757i \(-0.657705\pi\)
0.475424 0.879757i \(-0.342295\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −230.000 −0.876097 −0.438048 0.898951i \(-0.644330\pi\)
−0.438048 + 0.898951i \(0.644330\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 343.000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 572.000i 1.48246i −0.671253 0.741229i \(-0.734243\pi\)
0.671253 0.741229i \(-0.265757\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −830.000 −1.74214 −0.871071 0.491158i \(-0.836574\pi\)
−0.871071 + 0.491158i \(0.836574\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −184.000 1012.00i −0.351114 1.93113i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 592.000i 0.949156i 0.880214 + 0.474578i \(0.157399\pi\)
−0.880214 + 0.474578i \(0.842601\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 208.000 + 1144.00i 0.265421 + 1.45981i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1670.00 1.98898 0.994492 0.104809i \(-0.0334231\pi\)
0.994492 + 0.104809i \(0.0334231\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1816.00i 1.90090i −0.310884 0.950448i \(-0.600625\pi\)
0.310884 0.950448i \(-0.399375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −598.000 −0.589141 −0.294570 0.955630i \(-0.595177\pi\)
−0.294570 + 0.955630i \(0.595177\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 1746.00 1.53428 0.767140 0.641480i \(-0.221679\pi\)
0.767140 + 0.641480i \(0.221679\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1328.00i 1.10556i −0.833329 0.552778i \(-0.813568\pi\)
0.833329 0.552778i \(-0.186432\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1199.00 718.000i 0.857935 0.513759i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2776.00i 1.73117i 0.500766 + 0.865583i \(0.333052\pi\)
−0.500766 + 0.865583i \(0.666948\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1430.00 260.000i 0.819000 0.148909i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3514.00 −1.93207 −0.966034 0.258415i \(-0.916800\pi\)
−0.966034 + 0.258415i \(0.916800\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3924.00i 1.99471i −0.0726920 0.997354i \(-0.523159\pi\)
0.0726920 0.997354i \(-0.476841\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −6267.00 −2.85253
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2012.00i 0.884217i −0.896962 0.442108i \(-0.854231\pi\)
0.896962 0.442108i \(-0.145769\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 3942.00 1.61882 0.809410 0.587243i \(-0.199787\pi\)
0.809410 + 0.587243i \(0.199787\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −792.000 4356.00i −0.314751 1.73113i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 72.0000i 0.0268532i −0.999910 0.0134266i \(-0.995726\pi\)
0.999910 0.0134266i \(-0.00427395\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5404.00i 1.95441i −0.212295 0.977206i \(-0.568094\pi\)
0.212295 0.977206i \(-0.431906\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2530.00 + 460.000i −0.861965 + 0.156721i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9568.00 2.91228
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 6390.00 1.84394 0.921972 0.387257i \(-0.126577\pi\)
0.921972 + 0.387257i \(0.126577\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7088.00i 1.99292i −0.0840693 0.996460i \(-0.526792\pi\)
0.0840693 0.996460i \(-0.473208\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 5310.00 1.41928 0.709641 0.704563i \(-0.248857\pi\)
0.709641 + 0.704563i \(0.248857\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3773.00 686.000i 0.983870 0.178885i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8096.00i 1.96504i −0.186164 0.982519i \(-0.559606\pi\)
0.186164 0.982519i \(-0.440394\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) −1144.00 6292.00i −0.265190 1.45855i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3406.00 0.771998 0.385999 0.922499i \(-0.373857\pi\)
0.385999 + 0.922499i \(0.373857\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1316.00i 0.285454i 0.989762 + 0.142727i \(0.0455871\pi\)
−0.989762 + 0.142727i \(0.954413\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7430.00 −1.57735 −0.788677 0.614807i \(-0.789234\pi\)
−0.788677 + 0.614807i \(0.789234\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5903.00 −1.20151
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3452.00i 0.688287i 0.938917 + 0.344143i \(0.111831\pi\)
−0.938917 + 0.344143i \(0.888169\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9130.00 + 1660.00i −1.71404 + 0.311644i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 8712.00i 1.57326i −0.617423 0.786632i \(-0.711823\pi\)
0.617423 0.786632i \(-0.288177\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4676.00i 0.828487i −0.910166 0.414243i \(-0.864046\pi\)
0.910166 0.414243i \(-0.135954\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −4048.00 10764.0i −0.690900 1.83717i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 416.000i 0.0672432i −0.999435 0.0336216i \(-0.989296\pi\)
0.999435 0.0336216i \(-0.0107041\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 9470.00 1.45249 0.726243 0.687438i \(-0.241265\pi\)
0.726243 + 0.687438i \(0.241265\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12848.0i 1.93720i 0.248633 + 0.968598i \(0.420019\pi\)
−0.248633 + 0.968598i \(0.579981\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1184.00 + 6512.00i 0.169790 + 0.933846i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6372.00i 0.884530i 0.896884 + 0.442265i \(0.145825\pi\)
−0.896884 + 0.442265i \(0.854175\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11960.0i 1.63388i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 374.000 0.0487469 0.0243735 0.999703i \(-0.492241\pi\)
0.0243735 + 0.999703i \(0.492241\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 12564.0i 1.58834i 0.607699 + 0.794168i \(0.292093\pi\)
−0.607699 + 0.794168i \(0.707907\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2398.00 0.298629 0.149315 0.988790i \(-0.452293\pi\)
0.149315 + 0.988790i \(0.452293\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −7146.00 −0.863929 −0.431964 0.901891i \(-0.642179\pi\)
−0.431964 + 0.901891i \(0.642179\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 10890.0 1.26068 0.630340 0.776319i \(-0.282916\pi\)
0.630340 + 0.776319i \(0.282916\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4576.00 + 12168.0i 0.522279 + 1.38879i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 17352.0i 1.92583i 0.269807 + 0.962914i \(0.413040\pi\)
−0.269807 + 0.962914i \(0.586960\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 18370.0 3340.00i 1.95690 0.355800i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16114.0 1.69369 0.846845 0.531840i \(-0.178499\pi\)
0.846845 + 0.531840i \(0.178499\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 10456.0i 1.07026i 0.844768 + 0.535132i \(0.179738\pi\)
−0.844768 + 0.535132i \(0.820262\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2318.00 −0.234187 −0.117093 0.993121i \(-0.537358\pi\)
−0.117093 + 0.993121i \(0.537358\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −36432.0 −3.45355
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3632.00 19976.0i −0.340043 1.87023i
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 13520.0i 1.23511i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −6578.00 + 1196.00i −0.579638 + 0.105389i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14270.0 −1.24265 −0.621323 0.783555i \(-0.713404\pi\)
−0.621323 + 0.783555i \(0.713404\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −23738.0 −1.99612 −0.998062 0.0622265i \(-0.980180\pi\)
−0.998062 + 0.0622265i \(0.980180\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 12167.0 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 21160.0i 1.71959i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5922.00 −0.470622 −0.235311 0.971920i \(-0.575611\pi\)
−0.235311 + 0.971920i \(0.575611\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19206.0 3492.00i 1.50953 0.274460i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24836.0i 1.88929i 0.328093 + 0.944646i \(0.393594\pi\)
−0.328093 + 0.944646i \(0.606406\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) −2656.00 14608.0i −0.197768 1.08772i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26806.0 −1.97498 −0.987492 0.157669i \(-0.949602\pi\)
−0.987492 + 0.157669i \(0.949602\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 27504.0i 1.98441i −0.124603 0.992207i \(-0.539766\pi\)
0.124603 0.992207i \(-0.460234\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24368.0i 1.68748i 0.536755 + 0.843738i \(0.319650\pi\)
−0.536755 + 0.843738i \(0.680350\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 17030.0 1.15585 0.577927 0.816089i \(-0.303862\pi\)
0.577927 + 0.816089i \(0.303862\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14641.0 + 2662.00i −0.983870 + 0.178885i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 19548.0i 1.28799i 0.765031 + 0.643994i \(0.222724\pi\)
−0.765031 + 0.643994i \(0.777276\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26464.0i 1.72674i 0.504569 + 0.863372i \(0.331652\pi\)
−0.504569 + 0.863372i \(0.668348\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11753.0 10296.0i 0.752192 0.658944i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 41184.0 2.61067
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 31556.0i 1.96279i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 28850.0 1.77770 0.888851 0.458197i \(-0.151505\pi\)
0.888851 + 0.458197i \(0.151505\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1012.00i 0.0606472i −0.999540 0.0303236i \(-0.990346\pi\)
0.999540 0.0303236i \(-0.00965378\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 25850.0 1.52110 0.760551 0.649278i \(-0.224929\pi\)
0.760551 + 0.649278i \(0.224929\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 34632.0i 1.98360i 0.127784 + 0.991802i \(0.459214\pi\)
−0.127784 + 0.991802i \(0.540786\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 34996.0i 1.98671i 0.115072 + 0.993357i \(0.463290\pi\)
−0.115072 + 0.993357i \(0.536710\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 5552.00 + 30536.0i 0.309680 + 1.70324i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −52624.0 −2.90975
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 23920.0i 1.29991i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20030.0 1.07920 0.539602 0.841920i \(-0.318575\pi\)
0.539602 + 0.841920i \(0.318575\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −36810.0 −1.94983 −0.974914 0.222580i \(-0.928552\pi\)
−0.974914 + 0.222580i \(0.928552\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15210.0 5720.00i 0.779152 0.293014i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 8732.00i 0.440005i 0.975499 + 0.220003i \(0.0706066\pi\)
−0.975499 + 0.220003i \(0.929393\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −38654.0 + 7028.00i −1.90090 + 0.345619i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22516.0i 1.08105i 0.841327 + 0.540527i \(0.181775\pi\)
−0.841327 + 0.540527i \(0.818225\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31882.0 −1.51869 −0.759344 0.650689i \(-0.774480\pi\)
−0.759344 + 0.650689i \(0.774480\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 9650.00 0.452520 0.226260 0.974067i \(-0.427350\pi\)
0.226260 + 0.974067i \(0.427350\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 16852.0i 0.784119i 0.919940 + 0.392060i \(0.128237\pi\)
−0.919940 + 0.392060i \(0.871763\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7848.00 43164.0i −0.356824 1.96253i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 76360.0i 3.41945i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16276.0i 0.723370i −0.932300 0.361685i \(-0.882202\pi\)
0.932300 0.361685i \(-0.117798\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0