Properties

Label 1440.4.f
Level $1440$
Weight $4$
Character orbit 1440.f
Rep. character $\chi_{1440}(289,\cdot)$
Character field $\Q$
Dimension $90$
Newform subspaces $15$
Sturm bound $1152$
Trace bound $25$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(1152\)
Trace bound: \(25\)
Distinguishing \(T_p\): \(7\), \(11\), \(17\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1440, [\chi])\).

Total New Old
Modular forms 896 90 806
Cusp forms 832 90 742
Eisenstein series 64 0 64

Trace form

\( 90 q - 2 q^{5} + 234 q^{25} - 340 q^{29} - 412 q^{41} - 3698 q^{49} + 156 q^{61} + 688 q^{65} + 376 q^{85} - 284 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1440, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1440.4.f.a 1440.f 5.b $2$ $84.963$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 1440.4.f.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-11 i-2)q^{5}+92 i q^{13}-94 i q^{17}+\cdots\)
1440.4.f.b 1440.f 5.b $2$ $84.963$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 1440.4.f.a \(0\) \(0\) \(4\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-11 i+2)q^{5}-92 i q^{13}-94 i q^{17}+\cdots\)
1440.4.f.c 1440.f 5.b $2$ $84.963$ \(\Q(\sqrt{-1}) \) None 480.4.f.a \(0\) \(0\) \(20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-5 i+10)q^{5}+18 i q^{7}-30 q^{11}+\cdots\)
1440.4.f.d 1440.f 5.b $2$ $84.963$ \(\Q(\sqrt{-1}) \) None 480.4.f.a \(0\) \(0\) \(20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(5 i+10)q^{5}+18 i q^{7}+30 q^{11}+\cdots\)
1440.4.f.e 1440.f 5.b $2$ $84.963$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 160.4.c.a \(0\) \(0\) \(22\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(\beta+11)q^{5}+46\beta q^{13}-52\beta q^{17}+\cdots\)
1440.4.f.f 1440.f 5.b $4$ $84.963$ \(\Q(i, \sqrt{89})\) None 480.4.f.c \(0\) \(0\) \(-24\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-6-\beta _{1})q^{5}+11\beta _{2}q^{7}+\beta _{3}q^{11}+\cdots\)
1440.4.f.g 1440.f 5.b $4$ $84.963$ \(\Q(i, \sqrt{5})\) \(\Q(\sqrt{-5}) \) 160.4.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-5\beta _{3}q^{5}+(5\beta _{1}-6\beta _{2})q^{7}+(\beta _{1}+2^{6}\beta _{2}+\cdots)q^{23}+\cdots\)
1440.4.f.h 1440.f 5.b $4$ $84.963$ \(\Q(i, \sqrt{29})\) None 160.4.c.b \(0\) \(0\) \(12\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(3+\beta _{1})q^{5}-\beta _{2}q^{7}-\beta _{3}q^{11}-2\beta _{1}q^{13}+\cdots\)
1440.4.f.i 1440.f 5.b $6$ $84.963$ 6.0.\(\cdots\).1 None 480.4.f.d \(0\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2+\beta _{4})q^{5}+(3\beta _{1}+\beta _{3})q^{7}+(-15+\cdots)q^{11}+\cdots\)
1440.4.f.j 1440.f 5.b $6$ $84.963$ 6.0.\(\cdots\).1 None 480.4.f.d \(0\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2+\beta _{5})q^{5}+(3\beta _{1}+\beta _{3})q^{7}+(15+\cdots)q^{11}+\cdots\)
1440.4.f.k 1440.f 5.b $8$ $84.963$ 8.0.\(\cdots\).22 None 160.4.c.d \(0\) \(0\) \(-32\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-4-\beta _{4}+\beta _{5})q^{5}+(\beta _{1}-\beta _{3})q^{7}+\cdots\)
1440.4.f.l 1440.f 5.b $8$ $84.963$ 8.0.\(\cdots\).9 None 480.4.f.g \(0\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2+\beta _{4})q^{5}+(\beta _{3}+\beta _{6})q^{7}+\beta _{2}q^{11}+\cdots\)
1440.4.f.m 1440.f 5.b $8$ $84.963$ 8.0.\(\cdots\).3 None 480.4.f.f \(0\) \(0\) \(12\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1-\beta _{3})q^{5}+(-4\beta _{5}-\beta _{6})q^{7}+(\beta _{1}+\cdots)q^{11}+\cdots\)
1440.4.f.n 1440.f 5.b $16$ $84.963$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1440.4.f.n \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{5}+\beta _{2}q^{7}+\beta _{1}q^{11}-\beta _{10}q^{13}+\cdots\)
1440.4.f.o 1440.f 5.b $16$ $84.963$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1440.4.f.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{5}+\beta _{8}q^{7}+\beta _{7}q^{11}-\beta _{9}q^{13}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(1440, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1440, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)