Properties

Label 1440.4.a.z.1.1
Level $1440$
Weight $4$
Character 1440.1
Self dual yes
Analytic conductor $84.963$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.70156\) of defining polynomial
Character \(\chi\) \(=\) 1440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} -18.8062 q^{7} -63.2250 q^{11} +1.58125 q^{13} -135.256 q^{17} -97.2562 q^{19} +41.1938 q^{23} +25.0000 q^{25} +207.675 q^{29} -193.969 q^{31} -94.0312 q^{35} +339.256 q^{37} +490.187 q^{41} -74.3250 q^{43} +544.481 q^{47} +10.6750 q^{49} -663.862 q^{53} -316.125 q^{55} +344.775 q^{59} +5.16251 q^{61} +7.90627 q^{65} +671.475 q^{67} +425.550 q^{71} -94.8375 q^{73} +1189.02 q^{77} -770.681 q^{79} +589.800 q^{83} -676.281 q^{85} +409.813 q^{89} -29.7375 q^{91} -486.281 q^{95} -152.050 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{5} - 12 q^{7} - 24 q^{11} + 80 q^{13} - 40 q^{17} + 36 q^{19} + 108 q^{23} + 50 q^{25} + 108 q^{29} - 516 q^{31} - 60 q^{35} + 448 q^{37} + 212 q^{41} - 456 q^{43} + 756 q^{47} - 286 q^{49}+ \cdots + 1540 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −18.8062 −1.01544 −0.507721 0.861522i \(-0.669512\pi\)
−0.507721 + 0.861522i \(0.669512\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −63.2250 −1.73300 −0.866502 0.499173i \(-0.833637\pi\)
−0.866502 + 0.499173i \(0.833637\pi\)
\(12\) 0 0
\(13\) 1.58125 0.0337355 0.0168677 0.999858i \(-0.494631\pi\)
0.0168677 + 0.999858i \(0.494631\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −135.256 −1.92967 −0.964837 0.262849i \(-0.915338\pi\)
−0.964837 + 0.262849i \(0.915338\pi\)
\(18\) 0 0
\(19\) −97.2562 −1.17432 −0.587161 0.809470i \(-0.699754\pi\)
−0.587161 + 0.809470i \(0.699754\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 41.1938 0.373456 0.186728 0.982412i \(-0.440212\pi\)
0.186728 + 0.982412i \(0.440212\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 207.675 1.32980 0.664901 0.746931i \(-0.268474\pi\)
0.664901 + 0.746931i \(0.268474\pi\)
\(30\) 0 0
\(31\) −193.969 −1.12380 −0.561900 0.827205i \(-0.689930\pi\)
−0.561900 + 0.827205i \(0.689930\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −94.0312 −0.454119
\(36\) 0 0
\(37\) 339.256 1.50739 0.753694 0.657225i \(-0.228270\pi\)
0.753694 + 0.657225i \(0.228270\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 490.187 1.86718 0.933590 0.358342i \(-0.116658\pi\)
0.933590 + 0.358342i \(0.116658\pi\)
\(42\) 0 0
\(43\) −74.3250 −0.263592 −0.131796 0.991277i \(-0.542074\pi\)
−0.131796 + 0.991277i \(0.542074\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 544.481 1.68980 0.844902 0.534922i \(-0.179659\pi\)
0.844902 + 0.534922i \(0.179659\pi\)
\(48\) 0 0
\(49\) 10.6750 0.0311224
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −663.862 −1.72054 −0.860269 0.509840i \(-0.829704\pi\)
−0.860269 + 0.509840i \(0.829704\pi\)
\(54\) 0 0
\(55\) −316.125 −0.775023
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 344.775 0.760778 0.380389 0.924827i \(-0.375790\pi\)
0.380389 + 0.924827i \(0.375790\pi\)
\(60\) 0 0
\(61\) 5.16251 0.0108359 0.00541796 0.999985i \(-0.498275\pi\)
0.00541796 + 0.999985i \(0.498275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.90627 0.0150870
\(66\) 0 0
\(67\) 671.475 1.22438 0.612192 0.790709i \(-0.290288\pi\)
0.612192 + 0.790709i \(0.290288\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 425.550 0.711317 0.355658 0.934616i \(-0.384257\pi\)
0.355658 + 0.934616i \(0.384257\pi\)
\(72\) 0 0
\(73\) −94.8375 −0.152053 −0.0760266 0.997106i \(-0.524223\pi\)
−0.0760266 + 0.997106i \(0.524223\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1189.02 1.75977
\(78\) 0 0
\(79\) −770.681 −1.09757 −0.548787 0.835962i \(-0.684910\pi\)
−0.548787 + 0.835962i \(0.684910\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 589.800 0.779987 0.389994 0.920818i \(-0.372477\pi\)
0.389994 + 0.920818i \(0.372477\pi\)
\(84\) 0 0
\(85\) −676.281 −0.862976
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 409.813 0.488090 0.244045 0.969764i \(-0.421525\pi\)
0.244045 + 0.969764i \(0.421525\pi\)
\(90\) 0 0
\(91\) −29.7375 −0.0342564
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −486.281 −0.525173
\(96\) 0 0
\(97\) −152.050 −0.159158 −0.0795790 0.996829i \(-0.525358\pi\)
−0.0795790 + 0.996829i \(0.525358\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 484.325 0.477150 0.238575 0.971124i \(-0.423320\pi\)
0.238575 + 0.971124i \(0.423320\pi\)
\(102\) 0 0
\(103\) −1617.51 −1.54736 −0.773678 0.633579i \(-0.781585\pi\)
−0.773678 + 0.633579i \(0.781585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1010.36 0.912854 0.456427 0.889761i \(-0.349129\pi\)
0.456427 + 0.889761i \(0.349129\pi\)
\(108\) 0 0
\(109\) 1.72487 0.00151571 0.000757857 1.00000i \(-0.499759\pi\)
0.000757857 1.00000i \(0.499759\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 729.119 0.606989 0.303494 0.952833i \(-0.401847\pi\)
0.303494 + 0.952833i \(0.401847\pi\)
\(114\) 0 0
\(115\) 205.969 0.167015
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2543.66 1.95947
\(120\) 0 0
\(121\) 2666.40 2.00331
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −388.481 −0.271434 −0.135717 0.990748i \(-0.543334\pi\)
−0.135717 + 0.990748i \(0.543334\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2777.06 −1.85216 −0.926080 0.377326i \(-0.876844\pi\)
−0.926080 + 0.377326i \(0.876844\pi\)
\(132\) 0 0
\(133\) 1829.02 1.19246
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −173.119 −0.107960 −0.0539800 0.998542i \(-0.517191\pi\)
−0.0539800 + 0.998542i \(0.517191\pi\)
\(138\) 0 0
\(139\) 450.806 0.275086 0.137543 0.990496i \(-0.456080\pi\)
0.137543 + 0.990496i \(0.456080\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −99.9748 −0.0584637
\(144\) 0 0
\(145\) 1038.37 0.594706
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1059.02 0.582273 0.291137 0.956681i \(-0.405967\pi\)
0.291137 + 0.956681i \(0.405967\pi\)
\(150\) 0 0
\(151\) 1273.63 0.686402 0.343201 0.939262i \(-0.388489\pi\)
0.343201 + 0.939262i \(0.388489\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −969.844 −0.502579
\(156\) 0 0
\(157\) −1442.61 −0.733328 −0.366664 0.930353i \(-0.619500\pi\)
−0.366664 + 0.930353i \(0.619500\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −774.700 −0.379223
\(162\) 0 0
\(163\) −2440.35 −1.17266 −0.586328 0.810074i \(-0.699427\pi\)
−0.586328 + 0.810074i \(0.699427\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3655.18 −1.69369 −0.846846 0.531839i \(-0.821501\pi\)
−0.846846 + 0.531839i \(0.821501\pi\)
\(168\) 0 0
\(169\) −2194.50 −0.998862
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3014.75 1.32490 0.662449 0.749107i \(-0.269517\pi\)
0.662449 + 0.749107i \(0.269517\pi\)
\(174\) 0 0
\(175\) −470.156 −0.203088
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1683.04 −0.702772 −0.351386 0.936231i \(-0.614289\pi\)
−0.351386 + 0.936231i \(0.614289\pi\)
\(180\) 0 0
\(181\) −2507.12 −1.02958 −0.514788 0.857318i \(-0.672129\pi\)
−0.514788 + 0.857318i \(0.672129\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1696.28 0.674125
\(186\) 0 0
\(187\) 8551.57 3.34413
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3251.17 1.23166 0.615829 0.787880i \(-0.288821\pi\)
0.615829 + 0.787880i \(0.288821\pi\)
\(192\) 0 0
\(193\) 2468.89 0.920800 0.460400 0.887712i \(-0.347706\pi\)
0.460400 + 0.887712i \(0.347706\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −155.212 −0.0561341 −0.0280671 0.999606i \(-0.508935\pi\)
−0.0280671 + 0.999606i \(0.508935\pi\)
\(198\) 0 0
\(199\) 2117.98 0.754471 0.377235 0.926117i \(-0.376875\pi\)
0.377235 + 0.926117i \(0.376875\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3905.59 −1.35034
\(204\) 0 0
\(205\) 2450.94 0.835029
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6149.02 2.03511
\(210\) 0 0
\(211\) −613.444 −0.200148 −0.100074 0.994980i \(-0.531908\pi\)
−0.100074 + 0.994980i \(0.531908\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −371.625 −0.117882
\(216\) 0 0
\(217\) 3647.82 1.14115
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −213.875 −0.0650985
\(222\) 0 0
\(223\) 1153.26 0.346313 0.173156 0.984894i \(-0.444603\pi\)
0.173156 + 0.984894i \(0.444603\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4873.65 −1.42500 −0.712501 0.701671i \(-0.752438\pi\)
−0.712501 + 0.701671i \(0.752438\pi\)
\(228\) 0 0
\(229\) 597.163 0.172321 0.0861607 0.996281i \(-0.472540\pi\)
0.0861607 + 0.996281i \(0.472540\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5302.61 1.49092 0.745462 0.666548i \(-0.232229\pi\)
0.745462 + 0.666548i \(0.232229\pi\)
\(234\) 0 0
\(235\) 2722.41 0.755703
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3571.31 0.966565 0.483282 0.875464i \(-0.339444\pi\)
0.483282 + 0.875464i \(0.339444\pi\)
\(240\) 0 0
\(241\) 4796.98 1.28216 0.641080 0.767474i \(-0.278487\pi\)
0.641080 + 0.767474i \(0.278487\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 53.3749 0.0139184
\(246\) 0 0
\(247\) −153.787 −0.0396163
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2441.44 0.613953 0.306976 0.951717i \(-0.400683\pi\)
0.306976 + 0.951717i \(0.400683\pi\)
\(252\) 0 0
\(253\) −2604.47 −0.647201
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4163.17 1.01047 0.505236 0.862981i \(-0.331405\pi\)
0.505236 + 0.862981i \(0.331405\pi\)
\(258\) 0 0
\(259\) −6380.14 −1.53067
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −543.694 −0.127474 −0.0637369 0.997967i \(-0.520302\pi\)
−0.0637369 + 0.997967i \(0.520302\pi\)
\(264\) 0 0
\(265\) −3319.31 −0.769448
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −992.325 −0.224919 −0.112459 0.993656i \(-0.535873\pi\)
−0.112459 + 0.993656i \(0.535873\pi\)
\(270\) 0 0
\(271\) 5302.11 1.18849 0.594244 0.804285i \(-0.297452\pi\)
0.594244 + 0.804285i \(0.297452\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1580.62 −0.346601
\(276\) 0 0
\(277\) −929.107 −0.201533 −0.100766 0.994910i \(-0.532129\pi\)
−0.100766 + 0.994910i \(0.532129\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7372.24 1.56509 0.782546 0.622593i \(-0.213921\pi\)
0.782546 + 0.622593i \(0.213921\pi\)
\(282\) 0 0
\(283\) −4510.05 −0.947331 −0.473665 0.880705i \(-0.657069\pi\)
−0.473665 + 0.880705i \(0.657069\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9218.59 −1.89601
\(288\) 0 0
\(289\) 13381.2 2.72364
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4358.94 −0.869119 −0.434559 0.900643i \(-0.643096\pi\)
−0.434559 + 0.900643i \(0.643096\pi\)
\(294\) 0 0
\(295\) 1723.88 0.340230
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 65.1378 0.0125987
\(300\) 0 0
\(301\) 1397.77 0.267662
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 25.8125 0.00484597
\(306\) 0 0
\(307\) 788.962 0.146673 0.0733363 0.997307i \(-0.476635\pi\)
0.0733363 + 0.997307i \(0.476635\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 956.062 0.174319 0.0871597 0.996194i \(-0.472221\pi\)
0.0871597 + 0.996194i \(0.472221\pi\)
\(312\) 0 0
\(313\) −728.887 −0.131627 −0.0658133 0.997832i \(-0.520964\pi\)
−0.0658133 + 0.997832i \(0.520964\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −816.788 −0.144717 −0.0723586 0.997379i \(-0.523053\pi\)
−0.0723586 + 0.997379i \(0.523053\pi\)
\(318\) 0 0
\(319\) −13130.2 −2.30455
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13154.5 2.26606
\(324\) 0 0
\(325\) 39.5314 0.00674709
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10239.6 −1.71590
\(330\) 0 0
\(331\) 3787.26 0.628902 0.314451 0.949274i \(-0.398180\pi\)
0.314451 + 0.949274i \(0.398180\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3357.37 0.547561
\(336\) 0 0
\(337\) −4959.79 −0.801712 −0.400856 0.916141i \(-0.631287\pi\)
−0.400856 + 0.916141i \(0.631287\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12263.7 1.94755
\(342\) 0 0
\(343\) 6249.79 0.983839
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1001.51 0.154939 0.0774697 0.996995i \(-0.475316\pi\)
0.0774697 + 0.996995i \(0.475316\pi\)
\(348\) 0 0
\(349\) −11048.8 −1.69464 −0.847320 0.531083i \(-0.821785\pi\)
−0.847320 + 0.531083i \(0.821785\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1216.63 0.183441 0.0917207 0.995785i \(-0.470763\pi\)
0.0917207 + 0.995785i \(0.470763\pi\)
\(354\) 0 0
\(355\) 2127.75 0.318111
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 967.125 0.142181 0.0710904 0.997470i \(-0.477352\pi\)
0.0710904 + 0.997470i \(0.477352\pi\)
\(360\) 0 0
\(361\) 2599.78 0.379031
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −474.187 −0.0680003
\(366\) 0 0
\(367\) 4356.06 0.619576 0.309788 0.950806i \(-0.399742\pi\)
0.309788 + 0.950806i \(0.399742\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12484.8 1.74711
\(372\) 0 0
\(373\) −319.982 −0.0444183 −0.0222092 0.999753i \(-0.507070\pi\)
−0.0222092 + 0.999753i \(0.507070\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 328.387 0.0448615
\(378\) 0 0
\(379\) 1188.39 0.161065 0.0805326 0.996752i \(-0.474338\pi\)
0.0805326 + 0.996752i \(0.474338\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3150.51 0.420322 0.210161 0.977667i \(-0.432601\pi\)
0.210161 + 0.977667i \(0.432601\pi\)
\(384\) 0 0
\(385\) 5945.12 0.786991
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6201.45 −0.808293 −0.404147 0.914694i \(-0.632431\pi\)
−0.404147 + 0.914694i \(0.632431\pi\)
\(390\) 0 0
\(391\) −5571.71 −0.720649
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3853.41 −0.490850
\(396\) 0 0
\(397\) −4225.39 −0.534172 −0.267086 0.963673i \(-0.586061\pi\)
−0.267086 + 0.963673i \(0.586061\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5691.02 0.708719 0.354359 0.935109i \(-0.384699\pi\)
0.354359 + 0.935109i \(0.384699\pi\)
\(402\) 0 0
\(403\) −306.714 −0.0379119
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21449.5 −2.61231
\(408\) 0 0
\(409\) 2831.60 0.342331 0.171166 0.985242i \(-0.445247\pi\)
0.171166 + 0.985242i \(0.445247\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6483.92 −0.772526
\(414\) 0 0
\(415\) 2949.00 0.348821
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13660.9 1.59279 0.796395 0.604776i \(-0.206738\pi\)
0.796395 + 0.604776i \(0.206738\pi\)
\(420\) 0 0
\(421\) 9252.46 1.07111 0.535555 0.844500i \(-0.320102\pi\)
0.535555 + 0.844500i \(0.320102\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3381.41 −0.385935
\(426\) 0 0
\(427\) −97.0874 −0.0110033
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −397.275 −0.0443992 −0.0221996 0.999754i \(-0.507067\pi\)
−0.0221996 + 0.999754i \(0.507067\pi\)
\(432\) 0 0
\(433\) −1122.39 −0.124569 −0.0622846 0.998058i \(-0.519839\pi\)
−0.0622846 + 0.998058i \(0.519839\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4006.35 −0.438558
\(438\) 0 0
\(439\) −17424.7 −1.89439 −0.947193 0.320665i \(-0.896094\pi\)
−0.947193 + 0.320665i \(0.896094\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6448.20 0.691565 0.345782 0.938315i \(-0.387614\pi\)
0.345782 + 0.938315i \(0.387614\pi\)
\(444\) 0 0
\(445\) 2049.06 0.218281
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9622.97 1.01144 0.505720 0.862698i \(-0.331227\pi\)
0.505720 + 0.862698i \(0.331227\pi\)
\(450\) 0 0
\(451\) −30992.1 −3.23583
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −148.687 −0.0153199
\(456\) 0 0
\(457\) 6424.55 0.657610 0.328805 0.944398i \(-0.393354\pi\)
0.328805 + 0.944398i \(0.393354\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7773.75 −0.785379 −0.392689 0.919671i \(-0.628455\pi\)
−0.392689 + 0.919671i \(0.628455\pi\)
\(462\) 0 0
\(463\) −7122.96 −0.714972 −0.357486 0.933919i \(-0.616366\pi\)
−0.357486 + 0.933919i \(0.616366\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4292.21 0.425310 0.212655 0.977127i \(-0.431789\pi\)
0.212655 + 0.977127i \(0.431789\pi\)
\(468\) 0 0
\(469\) −12627.9 −1.24329
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4699.20 0.456806
\(474\) 0 0
\(475\) −2431.41 −0.234864
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12607.8 1.20264 0.601321 0.799008i \(-0.294641\pi\)
0.601321 + 0.799008i \(0.294641\pi\)
\(480\) 0 0
\(481\) 536.450 0.0508525
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −760.249 −0.0711776
\(486\) 0 0
\(487\) 14242.9 1.32527 0.662634 0.748943i \(-0.269439\pi\)
0.662634 + 0.748943i \(0.269439\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −19491.8 −1.79156 −0.895778 0.444502i \(-0.853381\pi\)
−0.895778 + 0.444502i \(0.853381\pi\)
\(492\) 0 0
\(493\) −28089.3 −2.56609
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8003.00 −0.722301
\(498\) 0 0
\(499\) 8728.93 0.783087 0.391544 0.920160i \(-0.371941\pi\)
0.391544 + 0.920160i \(0.371941\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10470.8 −0.928175 −0.464087 0.885789i \(-0.653618\pi\)
−0.464087 + 0.885789i \(0.653618\pi\)
\(504\) 0 0
\(505\) 2421.63 0.213388
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4779.80 0.416230 0.208115 0.978104i \(-0.433267\pi\)
0.208115 + 0.978104i \(0.433267\pi\)
\(510\) 0 0
\(511\) 1783.54 0.154401
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8087.53 −0.691998
\(516\) 0 0
\(517\) −34424.8 −2.92844
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20647.1 −1.73621 −0.868104 0.496382i \(-0.834662\pi\)
−0.868104 + 0.496382i \(0.834662\pi\)
\(522\) 0 0
\(523\) −18853.5 −1.57630 −0.788149 0.615484i \(-0.788961\pi\)
−0.788149 + 0.615484i \(0.788961\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 26235.5 2.16857
\(528\) 0 0
\(529\) −10470.1 −0.860531
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 775.111 0.0629902
\(534\) 0 0
\(535\) 5051.81 0.408241
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −674.926 −0.0539353
\(540\) 0 0
\(541\) 8575.48 0.681494 0.340747 0.940155i \(-0.389320\pi\)
0.340747 + 0.940155i \(0.389320\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.62436 0.000677848 0
\(546\) 0 0
\(547\) −14884.0 −1.16343 −0.581715 0.813393i \(-0.697618\pi\)
−0.581715 + 0.813393i \(0.697618\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −20197.7 −1.56162
\(552\) 0 0
\(553\) 14493.6 1.11452
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9780.58 −0.744015 −0.372007 0.928230i \(-0.621330\pi\)
−0.372007 + 0.928230i \(0.621330\pi\)
\(558\) 0 0
\(559\) −117.527 −0.00889240
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25413.3 1.90239 0.951194 0.308594i \(-0.0998583\pi\)
0.951194 + 0.308594i \(0.0998583\pi\)
\(564\) 0 0
\(565\) 3645.59 0.271454
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 766.399 0.0564659 0.0282330 0.999601i \(-0.491012\pi\)
0.0282330 + 0.999601i \(0.491012\pi\)
\(570\) 0 0
\(571\) 2066.98 0.151489 0.0757447 0.997127i \(-0.475867\pi\)
0.0757447 + 0.997127i \(0.475867\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1029.84 0.0746912
\(576\) 0 0
\(577\) 2235.48 0.161290 0.0806448 0.996743i \(-0.474302\pi\)
0.0806448 + 0.996743i \(0.474302\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11091.9 −0.792032
\(582\) 0 0
\(583\) 41972.7 2.98170
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14951.7 −1.05131 −0.525657 0.850697i \(-0.676180\pi\)
−0.525657 + 0.850697i \(0.676180\pi\)
\(588\) 0 0
\(589\) 18864.7 1.31970
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14265.4 −0.987872 −0.493936 0.869498i \(-0.664442\pi\)
−0.493936 + 0.869498i \(0.664442\pi\)
\(594\) 0 0
\(595\) 12718.3 0.876302
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16069.6 1.09614 0.548068 0.836434i \(-0.315364\pi\)
0.548068 + 0.836434i \(0.315364\pi\)
\(600\) 0 0
\(601\) 19227.5 1.30500 0.652501 0.757788i \(-0.273720\pi\)
0.652501 + 0.757788i \(0.273720\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 13332.0 0.895906
\(606\) 0 0
\(607\) 22962.2 1.53543 0.767716 0.640790i \(-0.221393\pi\)
0.767716 + 0.640790i \(0.221393\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 860.963 0.0570063
\(612\) 0 0
\(613\) 23035.5 1.51777 0.758887 0.651223i \(-0.225744\pi\)
0.758887 + 0.651223i \(0.225744\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17460.2 −1.13926 −0.569628 0.821903i \(-0.692913\pi\)
−0.569628 + 0.821903i \(0.692913\pi\)
\(618\) 0 0
\(619\) 14611.4 0.948759 0.474380 0.880320i \(-0.342672\pi\)
0.474380 + 0.880320i \(0.342672\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7707.04 −0.495627
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −45886.5 −2.90877
\(630\) 0 0
\(631\) −4126.33 −0.260327 −0.130164 0.991493i \(-0.541550\pi\)
−0.130164 + 0.991493i \(0.541550\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1942.41 −0.121389
\(636\) 0 0
\(637\) 16.8799 0.00104993
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21550.1 1.32789 0.663946 0.747780i \(-0.268880\pi\)
0.663946 + 0.747780i \(0.268880\pi\)
\(642\) 0 0
\(643\) 13528.4 0.829718 0.414859 0.909886i \(-0.363831\pi\)
0.414859 + 0.909886i \(0.363831\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3157.14 0.191839 0.0959197 0.995389i \(-0.469421\pi\)
0.0959197 + 0.995389i \(0.469421\pi\)
\(648\) 0 0
\(649\) −21798.4 −1.31843
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9644.38 −0.577969 −0.288984 0.957334i \(-0.593318\pi\)
−0.288984 + 0.957334i \(0.593318\pi\)
\(654\) 0 0
\(655\) −13885.3 −0.828311
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19276.7 −1.13948 −0.569738 0.821826i \(-0.692955\pi\)
−0.569738 + 0.821826i \(0.692955\pi\)
\(660\) 0 0
\(661\) −7366.06 −0.433444 −0.216722 0.976233i \(-0.569537\pi\)
−0.216722 + 0.976233i \(0.569537\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9145.12 0.533282
\(666\) 0 0
\(667\) 8554.91 0.496623
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −326.400 −0.0187787
\(672\) 0 0
\(673\) 3283.74 0.188081 0.0940407 0.995568i \(-0.470022\pi\)
0.0940407 + 0.995568i \(0.470022\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8895.32 0.504985 0.252493 0.967599i \(-0.418750\pi\)
0.252493 + 0.967599i \(0.418750\pi\)
\(678\) 0 0
\(679\) 2859.49 0.161616
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14632.3 −0.819751 −0.409875 0.912141i \(-0.634428\pi\)
−0.409875 + 0.912141i \(0.634428\pi\)
\(684\) 0 0
\(685\) −865.593 −0.0482812
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1049.74 −0.0580432
\(690\) 0 0
\(691\) 7677.28 0.422659 0.211330 0.977415i \(-0.432221\pi\)
0.211330 + 0.977415i \(0.432221\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2254.03 0.123022
\(696\) 0 0
\(697\) −66300.9 −3.60305
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2348.58 −0.126540 −0.0632700 0.997996i \(-0.520153\pi\)
−0.0632700 + 0.997996i \(0.520153\pi\)
\(702\) 0 0
\(703\) −32994.8 −1.77016
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9108.34 −0.484518
\(708\) 0 0
\(709\) −30897.1 −1.63662 −0.818310 0.574777i \(-0.805089\pi\)
−0.818310 + 0.574777i \(0.805089\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7990.30 −0.419690
\(714\) 0 0
\(715\) −499.874 −0.0261458
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7448.66 −0.386353 −0.193177 0.981164i \(-0.561879\pi\)
−0.193177 + 0.981164i \(0.561879\pi\)
\(720\) 0 0
\(721\) 30419.2 1.57125
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5191.87 0.265961
\(726\) 0 0
\(727\) 5301.58 0.270460 0.135230 0.990814i \(-0.456823\pi\)
0.135230 + 0.990814i \(0.456823\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 10052.9 0.508647
\(732\) 0 0
\(733\) −18909.0 −0.952825 −0.476413 0.879222i \(-0.658063\pi\)
−0.476413 + 0.879222i \(0.658063\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −42454.0 −2.12186
\(738\) 0 0
\(739\) 30354.5 1.51097 0.755486 0.655165i \(-0.227401\pi\)
0.755486 + 0.655165i \(0.227401\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26539.9 −1.31044 −0.655219 0.755439i \(-0.727424\pi\)
−0.655219 + 0.755439i \(0.727424\pi\)
\(744\) 0 0
\(745\) 5295.12 0.260400
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19001.1 −0.926951
\(750\) 0 0
\(751\) 23097.1 1.12227 0.561136 0.827724i \(-0.310364\pi\)
0.561136 + 0.827724i \(0.310364\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 6368.16 0.306968
\(756\) 0 0
\(757\) 25979.5 1.24734 0.623672 0.781686i \(-0.285640\pi\)
0.623672 + 0.781686i \(0.285640\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21314.3 1.01530 0.507649 0.861564i \(-0.330515\pi\)
0.507649 + 0.861564i \(0.330515\pi\)
\(762\) 0 0
\(763\) −32.4384 −0.00153912
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 545.177 0.0256652
\(768\) 0 0
\(769\) −2318.70 −0.108731 −0.0543657 0.998521i \(-0.517314\pi\)
−0.0543657 + 0.998521i \(0.517314\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13988.2 0.650868 0.325434 0.945565i \(-0.394490\pi\)
0.325434 + 0.945565i \(0.394490\pi\)
\(774\) 0 0
\(775\) −4849.22 −0.224760
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −47673.8 −2.19267
\(780\) 0 0
\(781\) −26905.4 −1.23272
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7213.03 −0.327954
\(786\) 0 0
\(787\) −9663.71 −0.437705 −0.218853 0.975758i \(-0.570231\pi\)
−0.218853 + 0.975758i \(0.570231\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13712.0 −0.616362
\(792\) 0 0
\(793\) 8.16324 0.000365555 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35878.9 −1.59460 −0.797299 0.603584i \(-0.793739\pi\)
−0.797299 + 0.603584i \(0.793739\pi\)
\(798\) 0 0
\(799\) −73644.5 −3.26077
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5996.10 0.263509
\(804\) 0 0
\(805\) −3873.50 −0.169594
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18021.0 0.783172 0.391586 0.920142i \(-0.371927\pi\)
0.391586 + 0.920142i \(0.371927\pi\)
\(810\) 0 0
\(811\) 31290.5 1.35482 0.677409 0.735606i \(-0.263103\pi\)
0.677409 + 0.735606i \(0.263103\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12201.7 −0.524428
\(816\) 0 0
\(817\) 7228.57 0.309542
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17983.2 −0.764458 −0.382229 0.924068i \(-0.624843\pi\)
−0.382229 + 0.924068i \(0.624843\pi\)
\(822\) 0 0
\(823\) 2663.27 0.112802 0.0564008 0.998408i \(-0.482038\pi\)
0.0564008 + 0.998408i \(0.482038\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21334.0 0.897043 0.448522 0.893772i \(-0.351951\pi\)
0.448522 + 0.893772i \(0.351951\pi\)
\(828\) 0 0
\(829\) −34240.2 −1.43451 −0.717256 0.696810i \(-0.754602\pi\)
−0.717256 + 0.696810i \(0.754602\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1443.86 −0.0600561
\(834\) 0 0
\(835\) −18275.9 −0.757442
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23674.2 0.974165 0.487082 0.873356i \(-0.338061\pi\)
0.487082 + 0.873356i \(0.338061\pi\)
\(840\) 0 0
\(841\) 18739.9 0.768375
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10972.5 −0.446705
\(846\) 0 0
\(847\) −50145.0 −2.03424
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13975.2 0.562944
\(852\) 0 0
\(853\) −6935.77 −0.278401 −0.139201 0.990264i \(-0.544453\pi\)
−0.139201 + 0.990264i \(0.544453\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8482.56 −0.338108 −0.169054 0.985607i \(-0.554071\pi\)
−0.169054 + 0.985607i \(0.554071\pi\)
\(858\) 0 0
\(859\) 37384.8 1.48493 0.742464 0.669886i \(-0.233657\pi\)
0.742464 + 0.669886i \(0.233657\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16182.0 −0.638286 −0.319143 0.947707i \(-0.603395\pi\)
−0.319143 + 0.947707i \(0.603395\pi\)
\(864\) 0 0
\(865\) 15073.7 0.592512
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48726.3 1.90210
\(870\) 0 0
\(871\) 1061.77 0.0413052
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2350.78 −0.0908239
\(876\) 0 0
\(877\) −15908.8 −0.612545 −0.306273 0.951944i \(-0.599082\pi\)
−0.306273 + 0.951944i \(0.599082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 32957.3 1.26034 0.630170 0.776457i \(-0.282985\pi\)
0.630170 + 0.776457i \(0.282985\pi\)
\(882\) 0 0
\(883\) −2932.72 −0.111771 −0.0558856 0.998437i \(-0.517798\pi\)
−0.0558856 + 0.998437i \(0.517798\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10991.8 0.416086 0.208043 0.978120i \(-0.433291\pi\)
0.208043 + 0.978120i \(0.433291\pi\)
\(888\) 0 0
\(889\) 7305.87 0.275626
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −52954.2 −1.98437
\(894\) 0 0
\(895\) −8415.19 −0.314289
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −40282.5 −1.49443
\(900\) 0 0
\(901\) 89791.5 3.32008
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12535.6 −0.460440
\(906\) 0 0
\(907\) −15117.6 −0.553440 −0.276720 0.960951i \(-0.589248\pi\)
−0.276720 + 0.960951i \(0.589248\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25259.2 0.918633 0.459317 0.888273i \(-0.348094\pi\)
0.459317 + 0.888273i \(0.348094\pi\)
\(912\) 0 0
\(913\) −37290.1 −1.35172
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 52226.1 1.88076
\(918\) 0 0
\(919\) 43485.1 1.56087 0.780436 0.625235i \(-0.214997\pi\)
0.780436 + 0.625235i \(0.214997\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 672.903 0.0239966
\(924\) 0 0
\(925\) 8481.41 0.301478
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22312.2 −0.787988 −0.393994 0.919113i \(-0.628907\pi\)
−0.393994 + 0.919113i \(0.628907\pi\)
\(930\) 0 0
\(931\) −1038.21 −0.0365477
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 42757.9 1.49554
\(936\) 0 0
\(937\) −50965.7 −1.77692 −0.888461 0.458951i \(-0.848225\pi\)
−0.888461 + 0.458951i \(0.848225\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 29611.4 1.02583 0.512914 0.858440i \(-0.328566\pi\)
0.512914 + 0.858440i \(0.328566\pi\)
\(942\) 0 0
\(943\) 20192.7 0.697310
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16026.1 −0.549925 −0.274962 0.961455i \(-0.588665\pi\)
−0.274962 + 0.961455i \(0.588665\pi\)
\(948\) 0 0
\(949\) −149.962 −0.00512959
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −41491.2 −1.41032 −0.705159 0.709050i \(-0.749124\pi\)
−0.705159 + 0.709050i \(0.749124\pi\)
\(954\) 0 0
\(955\) 16255.9 0.550814
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3255.71 0.109627
\(960\) 0 0
\(961\) 7832.88 0.262928
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12344.4 0.411794
\(966\) 0 0
\(967\) −16698.6 −0.555317 −0.277658 0.960680i \(-0.589558\pi\)
−0.277658 + 0.960680i \(0.589558\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44370.0 1.46643 0.733213 0.679999i \(-0.238020\pi\)
0.733213 + 0.679999i \(0.238020\pi\)
\(972\) 0 0
\(973\) −8477.97 −0.279333
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12443.8 0.407484 0.203742 0.979025i \(-0.434690\pi\)
0.203742 + 0.979025i \(0.434690\pi\)
\(978\) 0 0
\(979\) −25910.4 −0.845863
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 45382.4 1.47251 0.736253 0.676707i \(-0.236594\pi\)
0.736253 + 0.676707i \(0.236594\pi\)
\(984\) 0 0
\(985\) −776.062 −0.0251040
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3061.73 −0.0984401
\(990\) 0 0
\(991\) −2468.08 −0.0791132 −0.0395566 0.999217i \(-0.512595\pi\)
−0.0395566 + 0.999217i \(0.512595\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10589.9 0.337410
\(996\) 0 0
\(997\) −8805.68 −0.279718 −0.139859 0.990171i \(-0.544665\pi\)
−0.139859 + 0.990171i \(0.544665\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.z.1.1 2
3.2 odd 2 480.4.a.m.1.1 2
4.3 odd 2 1440.4.a.bg.1.2 2
12.11 even 2 480.4.a.q.1.2 yes 2
15.14 odd 2 2400.4.a.bc.1.2 2
24.5 odd 2 960.4.a.bo.1.1 2
24.11 even 2 960.4.a.bm.1.2 2
60.59 even 2 2400.4.a.x.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.m.1.1 2 3.2 odd 2
480.4.a.q.1.2 yes 2 12.11 even 2
960.4.a.bm.1.2 2 24.11 even 2
960.4.a.bo.1.1 2 24.5 odd 2
1440.4.a.z.1.1 2 1.1 even 1 trivial
1440.4.a.bg.1.2 2 4.3 odd 2
2400.4.a.x.1.1 2 60.59 even 2
2400.4.a.bc.1.2 2 15.14 odd 2