Properties

Label 1440.4.a.l
Level $1440$
Weight $4$
Character orbit 1440.a
Self dual yes
Analytic conductor $84.963$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 5 q^{5} - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 5 q^{5} - 12 q^{7} - 20 q^{11} - 58 q^{13} + 70 q^{17} + 92 q^{19} + 112 q^{23} + 25 q^{25} - 66 q^{29} + 108 q^{31} - 60 q^{35} - 58 q^{37} - 66 q^{41} + 388 q^{43} - 408 q^{47} - 199 q^{49} - 474 q^{53} - 100 q^{55} - 540 q^{59} + 14 q^{61} - 290 q^{65} + 276 q^{67} - 96 q^{71} - 790 q^{73} + 240 q^{77} - 308 q^{79} - 1036 q^{83} + 350 q^{85} - 1210 q^{89} + 696 q^{91} + 460 q^{95} + 1426 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 5.00000 0 −12.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.4.a.l 1
3.b odd 2 1 480.4.a.a 1
4.b odd 2 1 1440.4.a.q 1
12.b even 2 1 480.4.a.h yes 1
15.d odd 2 1 2400.4.a.u 1
24.f even 2 1 960.4.a.p 1
24.h odd 2 1 960.4.a.be 1
60.h even 2 1 2400.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.4.a.a 1 3.b odd 2 1
480.4.a.h yes 1 12.b even 2 1
960.4.a.p 1 24.f even 2 1
960.4.a.be 1 24.h odd 2 1
1440.4.a.l 1 1.a even 1 1 trivial
1440.4.a.q 1 4.b odd 2 1
2400.4.a.b 1 60.h even 2 1
2400.4.a.u 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1440))\):

\( T_{7} + 12 \) Copy content Toggle raw display
\( T_{11} + 20 \) Copy content Toggle raw display
\( T_{17} - 70 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T + 12 \) Copy content Toggle raw display
$11$ \( T + 20 \) Copy content Toggle raw display
$13$ \( T + 58 \) Copy content Toggle raw display
$17$ \( T - 70 \) Copy content Toggle raw display
$19$ \( T - 92 \) Copy content Toggle raw display
$23$ \( T - 112 \) Copy content Toggle raw display
$29$ \( T + 66 \) Copy content Toggle raw display
$31$ \( T - 108 \) Copy content Toggle raw display
$37$ \( T + 58 \) Copy content Toggle raw display
$41$ \( T + 66 \) Copy content Toggle raw display
$43$ \( T - 388 \) Copy content Toggle raw display
$47$ \( T + 408 \) Copy content Toggle raw display
$53$ \( T + 474 \) Copy content Toggle raw display
$59$ \( T + 540 \) Copy content Toggle raw display
$61$ \( T - 14 \) Copy content Toggle raw display
$67$ \( T - 276 \) Copy content Toggle raw display
$71$ \( T + 96 \) Copy content Toggle raw display
$73$ \( T + 790 \) Copy content Toggle raw display
$79$ \( T + 308 \) Copy content Toggle raw display
$83$ \( T + 1036 \) Copy content Toggle raw display
$89$ \( T + 1210 \) Copy content Toggle raw display
$97$ \( T - 1426 \) Copy content Toggle raw display
show more
show less