Properties

 Label 1440.4.a.d.1.1 Level $1440$ Weight $4$ Character 1440.1 Self dual yes Analytic conductor $84.963$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1440,4,Mod(1,1440)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1440, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1440.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1440 = 2^{5} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1440.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$84.9627504083$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 480) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1440.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-5.00000 q^{5} -12.0000 q^{7} +O(q^{10})$$ $$q-5.00000 q^{5} -12.0000 q^{7} +24.0000 q^{11} +38.0000 q^{13} +6.00000 q^{17} +104.000 q^{19} -100.000 q^{23} +25.0000 q^{25} -230.000 q^{29} -56.0000 q^{31} +60.0000 q^{35} +190.000 q^{37} -202.000 q^{41} -148.000 q^{43} -124.000 q^{47} -199.000 q^{49} -206.000 q^{53} -120.000 q^{55} +128.000 q^{59} +190.000 q^{61} -190.000 q^{65} -204.000 q^{67} +440.000 q^{71} +1210.00 q^{73} -288.000 q^{77} +816.000 q^{79} +1412.00 q^{83} -30.0000 q^{85} +214.000 q^{89} -456.000 q^{91} -520.000 q^{95} +1202.00 q^{97} +O(q^{100})$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −5.00000 −0.447214
$$6$$ 0 0
$$7$$ −12.0000 −0.647939 −0.323970 0.946068i $$-0.605018\pi$$
−0.323970 + 0.946068i $$0.605018\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 24.0000 0.657843 0.328921 0.944357i $$-0.393315\pi$$
0.328921 + 0.944357i $$0.393315\pi$$
$$12$$ 0 0
$$13$$ 38.0000 0.810716 0.405358 0.914158i $$-0.367147\pi$$
0.405358 + 0.914158i $$0.367147\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 6.00000 0.0856008 0.0428004 0.999084i $$-0.486372\pi$$
0.0428004 + 0.999084i $$0.486372\pi$$
$$18$$ 0 0
$$19$$ 104.000 1.25575 0.627875 0.778314i $$-0.283925\pi$$
0.627875 + 0.778314i $$0.283925\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −100.000 −0.906584 −0.453292 0.891362i $$-0.649751\pi$$
−0.453292 + 0.891362i $$0.649751\pi$$
$$24$$ 0 0
$$25$$ 25.0000 0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −230.000 −1.47276 −0.736378 0.676570i $$-0.763465\pi$$
−0.736378 + 0.676570i $$0.763465\pi$$
$$30$$ 0 0
$$31$$ −56.0000 −0.324448 −0.162224 0.986754i $$-0.551867\pi$$
−0.162224 + 0.986754i $$0.551867\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 60.0000 0.289767
$$36$$ 0 0
$$37$$ 190.000 0.844211 0.422106 0.906547i $$-0.361291\pi$$
0.422106 + 0.906547i $$0.361291\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −202.000 −0.769441 −0.384721 0.923033i $$-0.625702\pi$$
−0.384721 + 0.923033i $$0.625702\pi$$
$$42$$ 0 0
$$43$$ −148.000 −0.524879 −0.262439 0.964948i $$-0.584527\pi$$
−0.262439 + 0.964948i $$0.584527\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −124.000 −0.384835 −0.192418 0.981313i $$-0.561633\pi$$
−0.192418 + 0.981313i $$0.561633\pi$$
$$48$$ 0 0
$$49$$ −199.000 −0.580175
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −206.000 −0.533892 −0.266946 0.963711i $$-0.586015\pi$$
−0.266946 + 0.963711i $$0.586015\pi$$
$$54$$ 0 0
$$55$$ −120.000 −0.294196
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 128.000 0.282444 0.141222 0.989978i $$-0.454897\pi$$
0.141222 + 0.989978i $$0.454897\pi$$
$$60$$ 0 0
$$61$$ 190.000 0.398803 0.199402 0.979918i $$-0.436100\pi$$
0.199402 + 0.979918i $$0.436100\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −190.000 −0.362563
$$66$$ 0 0
$$67$$ −204.000 −0.371979 −0.185989 0.982552i $$-0.559549\pi$$
−0.185989 + 0.982552i $$0.559549\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 440.000 0.735470 0.367735 0.929931i $$-0.380133\pi$$
0.367735 + 0.929931i $$0.380133\pi$$
$$72$$ 0 0
$$73$$ 1210.00 1.94000 0.969999 0.243111i $$-0.0781678\pi$$
0.969999 + 0.243111i $$0.0781678\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −288.000 −0.426242
$$78$$ 0 0
$$79$$ 816.000 1.16212 0.581058 0.813862i $$-0.302639\pi$$
0.581058 + 0.813862i $$0.302639\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 1412.00 1.86731 0.933657 0.358167i $$-0.116598\pi$$
0.933657 + 0.358167i $$0.116598\pi$$
$$84$$ 0 0
$$85$$ −30.0000 −0.0382818
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 214.000 0.254876 0.127438 0.991847i $$-0.459325\pi$$
0.127438 + 0.991847i $$0.459325\pi$$
$$90$$ 0 0
$$91$$ −456.000 −0.525294
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −520.000 −0.561588
$$96$$ 0 0
$$97$$ 1202.00 1.25819 0.629096 0.777328i $$-0.283425\pi$$
0.629096 + 0.777328i $$0.283425\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −1342.00 −1.32212 −0.661059 0.750334i $$-0.729893\pi$$
−0.661059 + 0.750334i $$0.729893\pi$$
$$102$$ 0 0
$$103$$ 908.000 0.868620 0.434310 0.900763i $$-0.356992\pi$$
0.434310 + 0.900763i $$0.356992\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 876.000 0.791459 0.395730 0.918367i $$-0.370492\pi$$
0.395730 + 0.918367i $$0.370492\pi$$
$$108$$ 0 0
$$109$$ 302.000 0.265379 0.132690 0.991158i $$-0.457639\pi$$
0.132690 + 0.991158i $$0.457639\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 998.000 0.830831 0.415416 0.909632i $$-0.363636\pi$$
0.415416 + 0.909632i $$0.363636\pi$$
$$114$$ 0 0
$$115$$ 500.000 0.405437
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −72.0000 −0.0554641
$$120$$ 0 0
$$121$$ −755.000 −0.567243
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ −125.000 −0.0894427
$$126$$ 0 0
$$127$$ 836.000 0.584118 0.292059 0.956400i $$-0.405660\pi$$
0.292059 + 0.956400i $$0.405660\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 1480.00 0.987085 0.493543 0.869722i $$-0.335702\pi$$
0.493543 + 0.869722i $$0.335702\pi$$
$$132$$ 0 0
$$133$$ −1248.00 −0.813649
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −1346.00 −0.839391 −0.419695 0.907665i $$-0.637863\pi$$
−0.419695 + 0.907665i $$0.637863\pi$$
$$138$$ 0 0
$$139$$ 824.000 0.502811 0.251406 0.967882i $$-0.419107\pi$$
0.251406 + 0.967882i $$0.419107\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 912.000 0.533324
$$144$$ 0 0
$$145$$ 1150.00 0.658637
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 2450.00 1.34706 0.673530 0.739160i $$-0.264777\pi$$
0.673530 + 0.739160i $$0.264777\pi$$
$$150$$ 0 0
$$151$$ 2696.00 1.45296 0.726481 0.687186i $$-0.241154\pi$$
0.726481 + 0.687186i $$0.241154\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 280.000 0.145098
$$156$$ 0 0
$$157$$ −554.000 −0.281618 −0.140809 0.990037i $$-0.544970\pi$$
−0.140809 + 0.990037i $$0.544970\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 1200.00 0.587411
$$162$$ 0 0
$$163$$ −1364.00 −0.655440 −0.327720 0.944775i $$-0.606280\pi$$
−0.327720 + 0.944775i $$0.606280\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 2004.00 0.928588 0.464294 0.885681i $$-0.346308\pi$$
0.464294 + 0.885681i $$0.346308\pi$$
$$168$$ 0 0
$$169$$ −753.000 −0.342740
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 1546.00 0.679423 0.339712 0.940530i $$-0.389671\pi$$
0.339712 + 0.940530i $$0.389671\pi$$
$$174$$ 0 0
$$175$$ −300.000 −0.129588
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 1072.00 0.447626 0.223813 0.974632i $$-0.428150\pi$$
0.223813 + 0.974632i $$0.428150\pi$$
$$180$$ 0 0
$$181$$ −3754.00 −1.54162 −0.770808 0.637067i $$-0.780147\pi$$
−0.770808 + 0.637067i $$0.780147\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −950.000 −0.377543
$$186$$ 0 0
$$187$$ 144.000 0.0563119
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −1224.00 −0.463694 −0.231847 0.972752i $$-0.574477\pi$$
−0.231847 + 0.972752i $$0.574477\pi$$
$$192$$ 0 0
$$193$$ −1694.00 −0.631797 −0.315898 0.948793i $$-0.602306\pi$$
−0.315898 + 0.948793i $$0.602306\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −3134.00 −1.13344 −0.566721 0.823909i $$-0.691788\pi$$
−0.566721 + 0.823909i $$0.691788\pi$$
$$198$$ 0 0
$$199$$ 2560.00 0.911928 0.455964 0.889998i $$-0.349295\pi$$
0.455964 + 0.889998i $$0.349295\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 2760.00 0.954256
$$204$$ 0 0
$$205$$ 1010.00 0.344105
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 2496.00 0.826086
$$210$$ 0 0
$$211$$ −1856.00 −0.605556 −0.302778 0.953061i $$-0.597914\pi$$
−0.302778 + 0.953061i $$0.597914\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 740.000 0.234733
$$216$$ 0 0
$$217$$ 672.000 0.210223
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 228.000 0.0693979
$$222$$ 0 0
$$223$$ 1596.00 0.479265 0.239632 0.970864i $$-0.422973\pi$$
0.239632 + 0.970864i $$0.422973\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 3996.00 1.16839 0.584193 0.811614i $$-0.301411\pi$$
0.584193 + 0.811614i $$0.301411\pi$$
$$228$$ 0 0
$$229$$ −6090.00 −1.75737 −0.878687 0.477399i $$-0.841580\pi$$
−0.878687 + 0.477399i $$0.841580\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 894.000 0.251364 0.125682 0.992071i $$-0.459888\pi$$
0.125682 + 0.992071i $$0.459888\pi$$
$$234$$ 0 0
$$235$$ 620.000 0.172104
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 6336.00 1.71482 0.857410 0.514635i $$-0.172072\pi$$
0.857410 + 0.514635i $$0.172072\pi$$
$$240$$ 0 0
$$241$$ 338.000 0.0903423 0.0451711 0.998979i $$-0.485617\pi$$
0.0451711 + 0.998979i $$0.485617\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 995.000 0.259462
$$246$$ 0 0
$$247$$ 3952.00 1.01806
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 4872.00 1.22517 0.612585 0.790404i $$-0.290130\pi$$
0.612585 + 0.790404i $$0.290130\pi$$
$$252$$ 0 0
$$253$$ −2400.00 −0.596390
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 1878.00 0.455823 0.227911 0.973682i $$-0.426810\pi$$
0.227911 + 0.973682i $$0.426810\pi$$
$$258$$ 0 0
$$259$$ −2280.00 −0.546997
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −2244.00 −0.526125 −0.263063 0.964779i $$-0.584733\pi$$
−0.263063 + 0.964779i $$0.584733\pi$$
$$264$$ 0 0
$$265$$ 1030.00 0.238764
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 4314.00 0.977804 0.488902 0.872339i $$-0.337398\pi$$
0.488902 + 0.872339i $$0.337398\pi$$
$$270$$ 0 0
$$271$$ −6392.00 −1.43279 −0.716395 0.697694i $$-0.754209\pi$$
−0.716395 + 0.697694i $$0.754209\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 600.000 0.131569
$$276$$ 0 0
$$277$$ 4398.00 0.953972 0.476986 0.878911i $$-0.341729\pi$$
0.476986 + 0.878911i $$0.341729\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 7622.00 1.61812 0.809058 0.587729i $$-0.199978\pi$$
0.809058 + 0.587729i $$0.199978\pi$$
$$282$$ 0 0
$$283$$ 1020.00 0.214250 0.107125 0.994246i $$-0.465836\pi$$
0.107125 + 0.994246i $$0.465836\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 2424.00 0.498551
$$288$$ 0 0
$$289$$ −4877.00 −0.992673
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 3746.00 0.746907 0.373453 0.927649i $$-0.378174\pi$$
0.373453 + 0.927649i $$0.378174\pi$$
$$294$$ 0 0
$$295$$ −640.000 −0.126313
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −3800.00 −0.734982
$$300$$ 0 0
$$301$$ 1776.00 0.340089
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −950.000 −0.178350
$$306$$ 0 0
$$307$$ 9700.00 1.80328 0.901642 0.432483i $$-0.142362\pi$$
0.901642 + 0.432483i $$0.142362\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −4152.00 −0.757036 −0.378518 0.925594i $$-0.623566\pi$$
−0.378518 + 0.925594i $$0.623566\pi$$
$$312$$ 0 0
$$313$$ 6362.00 1.14889 0.574443 0.818544i $$-0.305219\pi$$
0.574443 + 0.818544i $$0.305219\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −10886.0 −1.92877 −0.964383 0.264511i $$-0.914790\pi$$
−0.964383 + 0.264511i $$0.914790\pi$$
$$318$$ 0 0
$$319$$ −5520.00 −0.968842
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 624.000 0.107493
$$324$$ 0 0
$$325$$ 950.000 0.162143
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 1488.00 0.249350
$$330$$ 0 0
$$331$$ 4128.00 0.685485 0.342742 0.939429i $$-0.388644\pi$$
0.342742 + 0.939429i $$0.388644\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 1020.00 0.166354
$$336$$ 0 0
$$337$$ 12002.0 1.94003 0.970016 0.243042i $$-0.0781453\pi$$
0.970016 + 0.243042i $$0.0781453\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −1344.00 −0.213436
$$342$$ 0 0
$$343$$ 6504.00 1.02386
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −6276.00 −0.970932 −0.485466 0.874256i $$-0.661350\pi$$
−0.485466 + 0.874256i $$0.661350\pi$$
$$348$$ 0 0
$$349$$ −9362.00 −1.43592 −0.717960 0.696084i $$-0.754924\pi$$
−0.717960 + 0.696084i $$0.754924\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 838.000 0.126352 0.0631760 0.998002i $$-0.479877\pi$$
0.0631760 + 0.998002i $$0.479877\pi$$
$$354$$ 0 0
$$355$$ −2200.00 −0.328912
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 6896.00 1.01381 0.506904 0.862003i $$-0.330790\pi$$
0.506904 + 0.862003i $$0.330790\pi$$
$$360$$ 0 0
$$361$$ 3957.00 0.576906
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −6050.00 −0.867593
$$366$$ 0 0
$$367$$ −1132.00 −0.161008 −0.0805040 0.996754i $$-0.525653\pi$$
−0.0805040 + 0.996754i $$0.525653\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 2472.00 0.345930
$$372$$ 0 0
$$373$$ −12578.0 −1.74602 −0.873008 0.487705i $$-0.837834\pi$$
−0.873008 + 0.487705i $$0.837834\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −8740.00 −1.19399
$$378$$ 0 0
$$379$$ 11752.0 1.59277 0.796385 0.604790i $$-0.206743\pi$$
0.796385 + 0.604790i $$0.206743\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 7372.00 0.983529 0.491764 0.870728i $$-0.336352\pi$$
0.491764 + 0.870728i $$0.336352\pi$$
$$384$$ 0 0
$$385$$ 1440.00 0.190621
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −6654.00 −0.867278 −0.433639 0.901087i $$-0.642771\pi$$
−0.433639 + 0.901087i $$0.642771\pi$$
$$390$$ 0 0
$$391$$ −600.000 −0.0776044
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ −4080.00 −0.519714
$$396$$ 0 0
$$397$$ 4278.00 0.540823 0.270411 0.962745i $$-0.412840\pi$$
0.270411 + 0.962745i $$0.412840\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −9074.00 −1.13001 −0.565005 0.825088i $$-0.691126\pi$$
−0.565005 + 0.825088i $$0.691126\pi$$
$$402$$ 0 0
$$403$$ −2128.00 −0.263035
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 4560.00 0.555358
$$408$$ 0 0
$$409$$ 6682.00 0.807833 0.403916 0.914796i $$-0.367649\pi$$
0.403916 + 0.914796i $$0.367649\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ −1536.00 −0.183006
$$414$$ 0 0
$$415$$ −7060.00 −0.835089
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −4832.00 −0.563386 −0.281693 0.959505i $$-0.590896\pi$$
−0.281693 + 0.959505i $$0.590896\pi$$
$$420$$ 0 0
$$421$$ 3974.00 0.460050 0.230025 0.973185i $$-0.426119\pi$$
0.230025 + 0.973185i $$0.426119\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 150.000 0.0171202
$$426$$ 0 0
$$427$$ −2280.00 −0.258400
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −1112.00 −0.124276 −0.0621382 0.998068i $$-0.519792\pi$$
−0.0621382 + 0.998068i $$0.519792\pi$$
$$432$$ 0 0
$$433$$ 1106.00 0.122751 0.0613753 0.998115i $$-0.480451\pi$$
0.0613753 + 0.998115i $$0.480451\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −10400.0 −1.13844
$$438$$ 0 0
$$439$$ −9280.00 −1.00891 −0.504454 0.863439i $$-0.668306\pi$$
−0.504454 + 0.863439i $$0.668306\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −7004.00 −0.751174 −0.375587 0.926787i $$-0.622559\pi$$
−0.375587 + 0.926787i $$0.622559\pi$$
$$444$$ 0 0
$$445$$ −1070.00 −0.113984
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 11502.0 1.20894 0.604469 0.796629i $$-0.293385\pi$$
0.604469 + 0.796629i $$0.293385\pi$$
$$450$$ 0 0
$$451$$ −4848.00 −0.506172
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 2280.00 0.234919
$$456$$ 0 0
$$457$$ 11578.0 1.18511 0.592556 0.805529i $$-0.298119\pi$$
0.592556 + 0.805529i $$0.298119\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 6362.00 0.642750 0.321375 0.946952i $$-0.395855\pi$$
0.321375 + 0.946952i $$0.395855\pi$$
$$462$$ 0 0
$$463$$ 2892.00 0.290286 0.145143 0.989411i $$-0.453636\pi$$
0.145143 + 0.989411i $$0.453636\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 11036.0 1.09354 0.546772 0.837281i $$-0.315856\pi$$
0.546772 + 0.837281i $$0.315856\pi$$
$$468$$ 0 0
$$469$$ 2448.00 0.241019
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −3552.00 −0.345288
$$474$$ 0 0
$$475$$ 2600.00 0.251150
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 13664.0 1.30339 0.651695 0.758481i $$-0.274058\pi$$
0.651695 + 0.758481i $$0.274058\pi$$
$$480$$ 0 0
$$481$$ 7220.00 0.684415
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −6010.00 −0.562680
$$486$$ 0 0
$$487$$ 4820.00 0.448491 0.224245 0.974533i $$-0.428008\pi$$
0.224245 + 0.974533i $$0.428008\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −17464.0 −1.60517 −0.802586 0.596537i $$-0.796543\pi$$
−0.802586 + 0.596537i $$0.796543\pi$$
$$492$$ 0 0
$$493$$ −1380.00 −0.126069
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ −5280.00 −0.476540
$$498$$ 0 0
$$499$$ 13960.0 1.25238 0.626188 0.779672i $$-0.284614\pi$$
0.626188 + 0.779672i $$0.284614\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −20388.0 −1.80727 −0.903634 0.428305i $$-0.859111\pi$$
−0.903634 + 0.428305i $$0.859111\pi$$
$$504$$ 0 0
$$505$$ 6710.00 0.591269
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 12954.0 1.12805 0.564024 0.825759i $$-0.309253\pi$$
0.564024 + 0.825759i $$0.309253\pi$$
$$510$$ 0 0
$$511$$ −14520.0 −1.25700
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ −4540.00 −0.388459
$$516$$ 0 0
$$517$$ −2976.00 −0.253161
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 3542.00 0.297846 0.148923 0.988849i $$-0.452419\pi$$
0.148923 + 0.988849i $$0.452419\pi$$
$$522$$ 0 0
$$523$$ 1532.00 0.128087 0.0640437 0.997947i $$-0.479600\pi$$
0.0640437 + 0.997947i $$0.479600\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −336.000 −0.0277730
$$528$$ 0 0
$$529$$ −2167.00 −0.178105
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ −7676.00 −0.623798
$$534$$ 0 0
$$535$$ −4380.00 −0.353951
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −4776.00 −0.381664
$$540$$ 0 0
$$541$$ −11826.0 −0.939814 −0.469907 0.882716i $$-0.655713\pi$$
−0.469907 + 0.882716i $$0.655713\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ −1510.00 −0.118681
$$546$$ 0 0
$$547$$ −11260.0 −0.880151 −0.440076 0.897961i $$-0.645048\pi$$
−0.440076 + 0.897961i $$0.645048\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −23920.0 −1.84941
$$552$$ 0 0
$$553$$ −9792.00 −0.752980
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −4374.00 −0.332733 −0.166367 0.986064i $$-0.553203\pi$$
−0.166367 + 0.986064i $$0.553203\pi$$
$$558$$ 0 0
$$559$$ −5624.00 −0.425527
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 11604.0 0.868651 0.434325 0.900756i $$-0.356987\pi$$
0.434325 + 0.900756i $$0.356987\pi$$
$$564$$ 0 0
$$565$$ −4990.00 −0.371559
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 7990.00 0.588679 0.294339 0.955701i $$-0.404900\pi$$
0.294339 + 0.955701i $$0.404900\pi$$
$$570$$ 0 0
$$571$$ −26080.0 −1.91141 −0.955704 0.294329i $$-0.904904\pi$$
−0.955704 + 0.294329i $$0.904904\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −2500.00 −0.181317
$$576$$ 0 0
$$577$$ 13922.0 1.00447 0.502236 0.864731i $$-0.332511\pi$$
0.502236 + 0.864731i $$0.332511\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −16944.0 −1.20991
$$582$$ 0 0
$$583$$ −4944.00 −0.351217
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −26340.0 −1.85208 −0.926038 0.377431i $$-0.876807\pi$$
−0.926038 + 0.377431i $$0.876807\pi$$
$$588$$ 0 0
$$589$$ −5824.00 −0.407426
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 9478.00 0.656349 0.328174 0.944617i $$-0.393567\pi$$
0.328174 + 0.944617i $$0.393567\pi$$
$$594$$ 0 0
$$595$$ 360.000 0.0248043
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −6528.00 −0.445287 −0.222643 0.974900i $$-0.571469\pi$$
−0.222643 + 0.974900i $$0.571469\pi$$
$$600$$ 0 0
$$601$$ 2090.00 0.141852 0.0709259 0.997482i $$-0.477405\pi$$
0.0709259 + 0.997482i $$0.477405\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 3775.00 0.253679
$$606$$ 0 0
$$607$$ 8788.00 0.587634 0.293817 0.955862i $$-0.405074\pi$$
0.293817 + 0.955862i $$0.405074\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −4712.00 −0.311992
$$612$$ 0 0
$$613$$ −2626.00 −0.173023 −0.0865115 0.996251i $$-0.527572\pi$$
−0.0865115 + 0.996251i $$0.527572\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 29214.0 1.90618 0.953089 0.302691i $$-0.0978852\pi$$
0.953089 + 0.302691i $$0.0978852\pi$$
$$618$$ 0 0
$$619$$ 22984.0 1.49242 0.746208 0.665713i $$-0.231873\pi$$
0.746208 + 0.665713i $$0.231873\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −2568.00 −0.165144
$$624$$ 0 0
$$625$$ 625.000 0.0400000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 1140.00 0.0722651
$$630$$ 0 0
$$631$$ 4472.00 0.282136 0.141068 0.990000i $$-0.454946\pi$$
0.141068 + 0.990000i $$0.454946\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ −4180.00 −0.261226
$$636$$ 0 0
$$637$$ −7562.00 −0.470357
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 8798.00 0.542122 0.271061 0.962562i $$-0.412626\pi$$
0.271061 + 0.962562i $$0.412626\pi$$
$$642$$ 0 0
$$643$$ −29428.0 −1.80486 −0.902432 0.430833i $$-0.858220\pi$$
−0.902432 + 0.430833i $$0.858220\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −4860.00 −0.295311 −0.147656 0.989039i $$-0.547173\pi$$
−0.147656 + 0.989039i $$0.547173\pi$$
$$648$$ 0 0
$$649$$ 3072.00 0.185804
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 6570.00 0.393727 0.196864 0.980431i $$-0.436924\pi$$
0.196864 + 0.980431i $$0.436924\pi$$
$$654$$ 0 0
$$655$$ −7400.00 −0.441438
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ −26496.0 −1.56622 −0.783109 0.621885i $$-0.786367\pi$$
−0.783109 + 0.621885i $$0.786367\pi$$
$$660$$ 0 0
$$661$$ −19642.0 −1.15580 −0.577901 0.816107i $$-0.696128\pi$$
−0.577901 + 0.816107i $$0.696128\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 6240.00 0.363875
$$666$$ 0 0
$$667$$ 23000.0 1.33518
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 4560.00 0.262350
$$672$$ 0 0
$$673$$ −19582.0 −1.12159 −0.560795 0.827954i $$-0.689505\pi$$
−0.560795 + 0.827954i $$0.689505\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 22914.0 1.30082 0.650411 0.759582i $$-0.274597\pi$$
0.650411 + 0.759582i $$0.274597\pi$$
$$678$$ 0 0
$$679$$ −14424.0 −0.815232
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 13764.0 0.771105 0.385553 0.922686i $$-0.374011\pi$$
0.385553 + 0.922686i $$0.374011\pi$$
$$684$$ 0 0
$$685$$ 6730.00 0.375387
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −7828.00 −0.432835
$$690$$ 0 0
$$691$$ −34688.0 −1.90969 −0.954843 0.297109i $$-0.903977\pi$$
−0.954843 + 0.297109i $$0.903977\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −4120.00 −0.224864
$$696$$ 0 0
$$697$$ −1212.00 −0.0658648
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 17226.0 0.928127 0.464064 0.885802i $$-0.346391\pi$$
0.464064 + 0.885802i $$0.346391\pi$$
$$702$$ 0 0
$$703$$ 19760.0 1.06012
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 16104.0 0.856652
$$708$$ 0 0
$$709$$ −12970.0 −0.687022 −0.343511 0.939149i $$-0.611616\pi$$
−0.343511 + 0.939149i $$0.611616\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 5600.00 0.294140
$$714$$ 0 0
$$715$$ −4560.00 −0.238510
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −10832.0 −0.561843 −0.280922 0.959731i $$-0.590640\pi$$
−0.280922 + 0.959731i $$0.590640\pi$$
$$720$$ 0 0
$$721$$ −10896.0 −0.562813
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ −5750.00 −0.294551
$$726$$ 0 0
$$727$$ 35588.0 1.81552 0.907762 0.419486i $$-0.137790\pi$$
0.907762 + 0.419486i $$0.137790\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −888.000 −0.0449300
$$732$$ 0 0
$$733$$ 19238.0 0.969402 0.484701 0.874680i $$-0.338928\pi$$
0.484701 + 0.874680i $$0.338928\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −4896.00 −0.244703
$$738$$ 0 0
$$739$$ −4072.00 −0.202694 −0.101347 0.994851i $$-0.532315\pi$$
−0.101347 + 0.994851i $$0.532315\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −31268.0 −1.54389 −0.771946 0.635688i $$-0.780716\pi$$
−0.771946 + 0.635688i $$0.780716\pi$$
$$744$$ 0 0
$$745$$ −12250.0 −0.602423
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −10512.0 −0.512817
$$750$$ 0 0
$$751$$ −28216.0 −1.37099 −0.685497 0.728075i $$-0.740415\pi$$
−0.685497 + 0.728075i $$0.740415\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ −13480.0 −0.649785
$$756$$ 0 0
$$757$$ −33874.0 −1.62638 −0.813191 0.581997i $$-0.802272\pi$$
−0.813191 + 0.581997i $$0.802272\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −5466.00 −0.260371 −0.130186 0.991490i $$-0.541557\pi$$
−0.130186 + 0.991490i $$0.541557\pi$$
$$762$$ 0 0
$$763$$ −3624.00 −0.171950
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 4864.00 0.228982
$$768$$ 0 0
$$769$$ −8878.00 −0.416318 −0.208159 0.978095i $$-0.566747\pi$$
−0.208159 + 0.978095i $$0.566747\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 9538.00 0.443801 0.221900 0.975069i $$-0.428774\pi$$
0.221900 + 0.975069i $$0.428774\pi$$
$$774$$ 0 0
$$775$$ −1400.00 −0.0648897
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −21008.0 −0.966226
$$780$$ 0 0
$$781$$ 10560.0 0.483824
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 2770.00 0.125943
$$786$$ 0 0
$$787$$ −5404.00 −0.244767 −0.122384 0.992483i $$-0.539054\pi$$
−0.122384 + 0.992483i $$0.539054\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −11976.0 −0.538328
$$792$$ 0 0
$$793$$ 7220.00 0.323316
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −16326.0 −0.725592 −0.362796 0.931869i $$-0.618178\pi$$
−0.362796 + 0.931869i $$0.618178\pi$$
$$798$$ 0 0
$$799$$ −744.000 −0.0329422
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 29040.0 1.27621
$$804$$ 0 0
$$805$$ −6000.00 −0.262698
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −26202.0 −1.13871 −0.569353 0.822093i $$-0.692806\pi$$
−0.569353 + 0.822093i $$0.692806\pi$$
$$810$$ 0 0
$$811$$ −26208.0 −1.13476 −0.567378 0.823457i $$-0.692042\pi$$
−0.567378 + 0.823457i $$0.692042\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 6820.00 0.293122
$$816$$ 0 0
$$817$$ −15392.0 −0.659116
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 1986.00 0.0844237 0.0422119 0.999109i $$-0.486560\pi$$
0.0422119 + 0.999109i $$0.486560\pi$$
$$822$$ 0 0
$$823$$ −5236.00 −0.221769 −0.110884 0.993833i $$-0.535368\pi$$
−0.110884 + 0.993833i $$0.535368\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 26044.0 1.09509 0.547545 0.836777i $$-0.315563\pi$$
0.547545 + 0.836777i $$0.315563\pi$$
$$828$$ 0 0
$$829$$ 21246.0 0.890113 0.445057 0.895502i $$-0.353184\pi$$
0.445057 + 0.895502i $$0.353184\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ −1194.00 −0.0496634
$$834$$ 0 0
$$835$$ −10020.0 −0.415277
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 17440.0 0.717635 0.358817 0.933408i $$-0.383180\pi$$
0.358817 + 0.933408i $$0.383180\pi$$
$$840$$ 0 0
$$841$$ 28511.0 1.16901
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 3765.00 0.153278
$$846$$ 0 0
$$847$$ 9060.00 0.367539
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −19000.0 −0.765349
$$852$$ 0 0
$$853$$ 33582.0 1.34798 0.673989 0.738741i $$-0.264579\pi$$
0.673989 + 0.738741i $$0.264579\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 18942.0 0.755013 0.377507 0.926007i $$-0.376782\pi$$
0.377507 + 0.926007i $$0.376782\pi$$
$$858$$ 0 0
$$859$$ 25720.0 1.02160 0.510800 0.859699i $$-0.329349\pi$$
0.510800 + 0.859699i $$0.329349\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −32436.0 −1.27941 −0.639707 0.768619i $$-0.720944\pi$$
−0.639707 + 0.768619i $$0.720944\pi$$
$$864$$ 0 0
$$865$$ −7730.00 −0.303847
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 19584.0 0.764490
$$870$$ 0 0
$$871$$ −7752.00 −0.301569
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 1500.00 0.0579534
$$876$$ 0 0
$$877$$ 8646.00 0.332902 0.166451 0.986050i $$-0.446769\pi$$
0.166451 + 0.986050i $$0.446769\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −27442.0 −1.04943 −0.524713 0.851279i $$-0.675827\pi$$
−0.524713 + 0.851279i $$0.675827\pi$$
$$882$$ 0 0
$$883$$ −14116.0 −0.537986 −0.268993 0.963142i $$-0.586691\pi$$
−0.268993 + 0.963142i $$0.586691\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −4124.00 −0.156111 −0.0780554 0.996949i $$-0.524871\pi$$
−0.0780554 + 0.996949i $$0.524871\pi$$
$$888$$ 0 0
$$889$$ −10032.0 −0.378473
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −12896.0 −0.483257
$$894$$ 0 0
$$895$$ −5360.00 −0.200184
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 12880.0 0.477833
$$900$$ 0 0
$$901$$ −1236.00 −0.0457016
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 18770.0 0.689432
$$906$$ 0 0
$$907$$ 42100.0 1.54124 0.770622 0.637293i $$-0.219946\pi$$
0.770622 + 0.637293i $$0.219946\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −34152.0 −1.24205 −0.621024 0.783791i $$-0.713283\pi$$
−0.621024 + 0.783791i $$0.713283\pi$$
$$912$$ 0 0
$$913$$ 33888.0 1.22840
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ −17760.0 −0.639571
$$918$$ 0 0
$$919$$ 41984.0 1.50699 0.753495 0.657453i $$-0.228366\pi$$
0.753495 + 0.657453i $$0.228366\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 16720.0 0.596257
$$924$$ 0 0
$$925$$ 4750.00 0.168842
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −48434.0 −1.71051 −0.855257 0.518204i $$-0.826601\pi$$
−0.855257 + 0.518204i $$0.826601\pi$$
$$930$$ 0 0
$$931$$ −20696.0 −0.728554
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ −720.000 −0.0251834
$$936$$ 0 0
$$937$$ −25590.0 −0.892197 −0.446099 0.894984i $$-0.647187\pi$$
−0.446099 + 0.894984i $$0.647187\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 18906.0 0.654961 0.327480 0.944858i $$-0.393800\pi$$
0.327480 + 0.944858i $$0.393800\pi$$
$$942$$ 0 0
$$943$$ 20200.0 0.697564
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 36316.0 1.24616 0.623079 0.782159i $$-0.285882\pi$$
0.623079 + 0.782159i $$0.285882\pi$$
$$948$$ 0 0
$$949$$ 45980.0 1.57279
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −15890.0 −0.540113 −0.270056 0.962844i $$-0.587042\pi$$
−0.270056 + 0.962844i $$0.587042\pi$$
$$954$$ 0 0
$$955$$ 6120.00 0.207370
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 16152.0 0.543874
$$960$$ 0 0
$$961$$ −26655.0 −0.894733
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 8470.00 0.282548
$$966$$ 0 0
$$967$$ 116.000 0.00385761 0.00192880 0.999998i $$-0.499386\pi$$
0.00192880 + 0.999998i $$0.499386\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −4744.00 −0.156789 −0.0783945 0.996922i $$-0.524979\pi$$
−0.0783945 + 0.996922i $$0.524979\pi$$
$$972$$ 0 0
$$973$$ −9888.00 −0.325791
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 18374.0 0.601675 0.300837 0.953675i $$-0.402734\pi$$
0.300837 + 0.953675i $$0.402734\pi$$
$$978$$ 0 0
$$979$$ 5136.00 0.167668
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 13036.0 0.422974 0.211487 0.977381i $$-0.432169\pi$$
0.211487 + 0.977381i $$0.432169\pi$$
$$984$$ 0 0
$$985$$ 15670.0 0.506891
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 14800.0 0.475847
$$990$$ 0 0
$$991$$ 15224.0 0.487998 0.243999 0.969775i $$-0.421541\pi$$
0.243999 + 0.969775i $$0.421541\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ −12800.0 −0.407826
$$996$$ 0 0
$$997$$ −43794.0 −1.39114 −0.695572 0.718457i $$-0.744849\pi$$
−0.695572 + 0.718457i $$0.744849\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.d.1.1 1
3.2 odd 2 480.4.a.j.1.1 yes 1
4.3 odd 2 1440.4.a.g.1.1 1
12.11 even 2 480.4.a.e.1.1 1
15.14 odd 2 2400.4.a.g.1.1 1
24.5 odd 2 960.4.a.d.1.1 1
24.11 even 2 960.4.a.y.1.1 1
60.59 even 2 2400.4.a.p.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.e.1.1 1 12.11 even 2
480.4.a.j.1.1 yes 1 3.2 odd 2
960.4.a.d.1.1 1 24.5 odd 2
960.4.a.y.1.1 1 24.11 even 2
1440.4.a.d.1.1 1 1.1 even 1 trivial
1440.4.a.g.1.1 1 4.3 odd 2
2400.4.a.g.1.1 1 15.14 odd 2
2400.4.a.p.1.1 1 60.59 even 2