Properties

Label 1440.4.a.bk.1.2
Level $1440$
Weight $4$
Character 1440.1
Self dual yes
Analytic conductor $84.963$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.16773.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 17x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.06301\) of defining polynomial
Character \(\chi\) \(=\) 1440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +1.74795 q^{7} +O(q^{10})\) \(q+5.00000 q^{5} +1.74795 q^{7} -28.9759 q^{11} -48.2362 q^{13} -16.2198 q^{17} -130.692 q^{19} +182.188 q^{23} +25.0000 q^{25} -291.384 q^{29} +219.636 q^{31} +8.73976 q^{35} +436.044 q^{37} +339.840 q^{41} +316.505 q^{43} -335.605 q^{47} -339.945 q^{49} +520.736 q^{53} -144.880 q^{55} +589.386 q^{59} -566.087 q^{61} -241.181 q^{65} +407.400 q^{67} +486.328 q^{71} +143.417 q^{73} -50.6485 q^{77} +968.012 q^{79} -532.718 q^{83} -81.0989 q^{85} -67.8074 q^{89} -84.3145 q^{91} -653.461 q^{95} +218.087 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 15 q^{5} + 14 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 15 q^{5} + 14 q^{7} + 22 q^{11} + 8 q^{13} + 34 q^{17} - 4 q^{19} + 176 q^{23} + 75 q^{25} - 98 q^{29} + 88 q^{31} + 70 q^{35} + 284 q^{37} + 8 q^{41} + 504 q^{43} + 280 q^{47} - 409 q^{49} + 150 q^{53} + 110 q^{55} + 350 q^{59} + 350 q^{61} + 40 q^{65} + 804 q^{67} + 500 q^{71} - 486 q^{73} - 788 q^{77} + 1592 q^{79} - 684 q^{83} + 170 q^{85} + 668 q^{89} + 1920 q^{91} - 20 q^{95} - 1394 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 1.74795 0.0943805 0.0471903 0.998886i \(-0.484973\pi\)
0.0471903 + 0.998886i \(0.484973\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −28.9759 −0.794234 −0.397117 0.917768i \(-0.629989\pi\)
−0.397117 + 0.917768i \(0.629989\pi\)
\(12\) 0 0
\(13\) −48.2362 −1.02910 −0.514550 0.857460i \(-0.672041\pi\)
−0.514550 + 0.857460i \(0.672041\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −16.2198 −0.231404 −0.115702 0.993284i \(-0.536912\pi\)
−0.115702 + 0.993284i \(0.536912\pi\)
\(18\) 0 0
\(19\) −130.692 −1.57804 −0.789022 0.614365i \(-0.789412\pi\)
−0.789022 + 0.614365i \(0.789412\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 182.188 1.65169 0.825844 0.563899i \(-0.190699\pi\)
0.825844 + 0.563899i \(0.190699\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −291.384 −1.86582 −0.932909 0.360113i \(-0.882738\pi\)
−0.932909 + 0.360113i \(0.882738\pi\)
\(30\) 0 0
\(31\) 219.636 1.27251 0.636254 0.771480i \(-0.280483\pi\)
0.636254 + 0.771480i \(0.280483\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.73976 0.0422083
\(36\) 0 0
\(37\) 436.044 1.93744 0.968718 0.248165i \(-0.0798274\pi\)
0.968718 + 0.248165i \(0.0798274\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 339.840 1.29449 0.647245 0.762282i \(-0.275921\pi\)
0.647245 + 0.762282i \(0.275921\pi\)
\(42\) 0 0
\(43\) 316.505 1.12248 0.561239 0.827654i \(-0.310325\pi\)
0.561239 + 0.827654i \(0.310325\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −335.605 −1.04155 −0.520777 0.853693i \(-0.674358\pi\)
−0.520777 + 0.853693i \(0.674358\pi\)
\(48\) 0 0
\(49\) −339.945 −0.991092
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 520.736 1.34960 0.674798 0.738003i \(-0.264231\pi\)
0.674798 + 0.738003i \(0.264231\pi\)
\(54\) 0 0
\(55\) −144.880 −0.355192
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 589.386 1.30053 0.650267 0.759706i \(-0.274657\pi\)
0.650267 + 0.759706i \(0.274657\pi\)
\(60\) 0 0
\(61\) −566.087 −1.18820 −0.594099 0.804392i \(-0.702491\pi\)
−0.594099 + 0.804392i \(0.702491\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −241.181 −0.460228
\(66\) 0 0
\(67\) 407.400 0.742862 0.371431 0.928460i \(-0.378867\pi\)
0.371431 + 0.928460i \(0.378867\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 486.328 0.812908 0.406454 0.913671i \(-0.366765\pi\)
0.406454 + 0.913671i \(0.366765\pi\)
\(72\) 0 0
\(73\) 143.417 0.229941 0.114970 0.993369i \(-0.463323\pi\)
0.114970 + 0.993369i \(0.463323\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −50.6485 −0.0749602
\(78\) 0 0
\(79\) 968.012 1.37861 0.689303 0.724473i \(-0.257917\pi\)
0.689303 + 0.724473i \(0.257917\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −532.718 −0.704499 −0.352250 0.935906i \(-0.614583\pi\)
−0.352250 + 0.935906i \(0.614583\pi\)
\(84\) 0 0
\(85\) −81.0989 −0.103487
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −67.8074 −0.0807592 −0.0403796 0.999184i \(-0.512857\pi\)
−0.0403796 + 0.999184i \(0.512857\pi\)
\(90\) 0 0
\(91\) −84.3145 −0.0971271
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −653.461 −0.705723
\(96\) 0 0
\(97\) 218.087 0.228282 0.114141 0.993465i \(-0.463588\pi\)
0.114141 + 0.993465i \(0.463588\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1191.31 −1.17366 −0.586829 0.809711i \(-0.699624\pi\)
−0.586829 + 0.809711i \(0.699624\pi\)
\(102\) 0 0
\(103\) −530.052 −0.507064 −0.253532 0.967327i \(-0.581592\pi\)
−0.253532 + 0.967327i \(0.581592\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −658.684 −0.595116 −0.297558 0.954704i \(-0.596172\pi\)
−0.297558 + 0.954704i \(0.596172\pi\)
\(108\) 0 0
\(109\) 1686.34 1.48185 0.740926 0.671587i \(-0.234387\pi\)
0.740926 + 0.671587i \(0.234387\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −99.1521 −0.0825437 −0.0412719 0.999148i \(-0.513141\pi\)
−0.0412719 + 0.999148i \(0.513141\pi\)
\(114\) 0 0
\(115\) 910.940 0.738657
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −28.3514 −0.0218401
\(120\) 0 0
\(121\) −491.396 −0.369193
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1588.17 1.10966 0.554832 0.831962i \(-0.312782\pi\)
0.554832 + 0.831962i \(0.312782\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −194.359 −0.129628 −0.0648139 0.997897i \(-0.520645\pi\)
−0.0648139 + 0.997897i \(0.520645\pi\)
\(132\) 0 0
\(133\) −228.444 −0.148937
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1100.45 0.686261 0.343130 0.939288i \(-0.388513\pi\)
0.343130 + 0.939288i \(0.388513\pi\)
\(138\) 0 0
\(139\) 2353.62 1.43620 0.718099 0.695941i \(-0.245012\pi\)
0.718099 + 0.695941i \(0.245012\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1397.69 0.817346
\(144\) 0 0
\(145\) −1456.92 −0.834419
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1186.36 0.652284 0.326142 0.945321i \(-0.394251\pi\)
0.326142 + 0.945321i \(0.394251\pi\)
\(150\) 0 0
\(151\) 3235.58 1.74376 0.871880 0.489720i \(-0.162901\pi\)
0.871880 + 0.489720i \(0.162901\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1098.18 0.569083
\(156\) 0 0
\(157\) −1651.82 −0.839680 −0.419840 0.907598i \(-0.637914\pi\)
−0.419840 + 0.907598i \(0.637914\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 318.456 0.155887
\(162\) 0 0
\(163\) 3838.72 1.84461 0.922305 0.386462i \(-0.126303\pi\)
0.922305 + 0.386462i \(0.126303\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2100.49 −0.973299 −0.486650 0.873597i \(-0.661781\pi\)
−0.486650 + 0.873597i \(0.661781\pi\)
\(168\) 0 0
\(169\) 129.728 0.0590477
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3582.79 −1.57453 −0.787266 0.616613i \(-0.788504\pi\)
−0.787266 + 0.616613i \(0.788504\pi\)
\(174\) 0 0
\(175\) 43.6988 0.0188761
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2433.21 −1.01601 −0.508007 0.861353i \(-0.669618\pi\)
−0.508007 + 0.861353i \(0.669618\pi\)
\(180\) 0 0
\(181\) 572.506 0.235105 0.117553 0.993067i \(-0.462495\pi\)
0.117553 + 0.993067i \(0.462495\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2180.22 0.866448
\(186\) 0 0
\(187\) 469.983 0.183789
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −491.456 −0.186181 −0.0930903 0.995658i \(-0.529675\pi\)
−0.0930903 + 0.995658i \(0.529675\pi\)
\(192\) 0 0
\(193\) 2798.12 1.04359 0.521795 0.853071i \(-0.325263\pi\)
0.521795 + 0.853071i \(0.325263\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3111.06 −1.12515 −0.562574 0.826747i \(-0.690189\pi\)
−0.562574 + 0.826747i \(0.690189\pi\)
\(198\) 0 0
\(199\) 33.7597 0.0120259 0.00601297 0.999982i \(-0.498086\pi\)
0.00601297 + 0.999982i \(0.498086\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −509.326 −0.176097
\(204\) 0 0
\(205\) 1699.20 0.578914
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3786.93 1.25334
\(210\) 0 0
\(211\) 2956.21 0.964521 0.482260 0.876028i \(-0.339816\pi\)
0.482260 + 0.876028i \(0.339816\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1582.53 0.501988
\(216\) 0 0
\(217\) 383.913 0.120100
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 782.380 0.238138
\(222\) 0 0
\(223\) 6111.29 1.83517 0.917583 0.397544i \(-0.130138\pi\)
0.917583 + 0.397544i \(0.130138\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5529.84 1.61687 0.808433 0.588588i \(-0.200316\pi\)
0.808433 + 0.588588i \(0.200316\pi\)
\(228\) 0 0
\(229\) −2033.37 −0.586765 −0.293382 0.955995i \(-0.594781\pi\)
−0.293382 + 0.955995i \(0.594781\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4598.67 1.29300 0.646500 0.762914i \(-0.276232\pi\)
0.646500 + 0.762914i \(0.276232\pi\)
\(234\) 0 0
\(235\) −1678.03 −0.465797
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1866.96 0.505286 0.252643 0.967560i \(-0.418700\pi\)
0.252643 + 0.967560i \(0.418700\pi\)
\(240\) 0 0
\(241\) 1313.63 0.351112 0.175556 0.984469i \(-0.443828\pi\)
0.175556 + 0.984469i \(0.443828\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1699.72 −0.443230
\(246\) 0 0
\(247\) 6304.09 1.62397
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4412.72 1.10967 0.554837 0.831959i \(-0.312781\pi\)
0.554837 + 0.831959i \(0.312781\pi\)
\(252\) 0 0
\(253\) −5279.07 −1.31183
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −858.193 −0.208298 −0.104149 0.994562i \(-0.533212\pi\)
−0.104149 + 0.994562i \(0.533212\pi\)
\(258\) 0 0
\(259\) 762.183 0.182856
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5550.09 −1.30127 −0.650634 0.759392i \(-0.725497\pi\)
−0.650634 + 0.759392i \(0.725497\pi\)
\(264\) 0 0
\(265\) 2603.68 0.603557
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7497.76 −1.69943 −0.849715 0.527242i \(-0.823226\pi\)
−0.849715 + 0.527242i \(0.823226\pi\)
\(270\) 0 0
\(271\) −2085.27 −0.467421 −0.233711 0.972306i \(-0.575087\pi\)
−0.233711 + 0.972306i \(0.575087\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −724.398 −0.158847
\(276\) 0 0
\(277\) 3545.01 0.768949 0.384474 0.923136i \(-0.374383\pi\)
0.384474 + 0.923136i \(0.374383\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 791.597 0.168052 0.0840262 0.996464i \(-0.473222\pi\)
0.0840262 + 0.996464i \(0.473222\pi\)
\(282\) 0 0
\(283\) −807.921 −0.169703 −0.0848514 0.996394i \(-0.527042\pi\)
−0.0848514 + 0.996394i \(0.527042\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 594.024 0.122175
\(288\) 0 0
\(289\) −4649.92 −0.946452
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2084.86 −0.415696 −0.207848 0.978161i \(-0.566646\pi\)
−0.207848 + 0.978161i \(0.566646\pi\)
\(294\) 0 0
\(295\) 2946.93 0.581616
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8788.05 −1.69975
\(300\) 0 0
\(301\) 553.236 0.105940
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2830.44 −0.531378
\(306\) 0 0
\(307\) 5952.64 1.10663 0.553315 0.832972i \(-0.313363\pi\)
0.553315 + 0.832972i \(0.313363\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8347.40 1.52199 0.760993 0.648760i \(-0.224712\pi\)
0.760993 + 0.648760i \(0.224712\pi\)
\(312\) 0 0
\(313\) −2717.74 −0.490786 −0.245393 0.969424i \(-0.578917\pi\)
−0.245393 + 0.969424i \(0.578917\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4175.01 0.739722 0.369861 0.929087i \(-0.379405\pi\)
0.369861 + 0.929087i \(0.379405\pi\)
\(318\) 0 0
\(319\) 8443.13 1.48189
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2119.80 0.365166
\(324\) 0 0
\(325\) −1205.90 −0.205820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −586.622 −0.0983024
\(330\) 0 0
\(331\) 9455.96 1.57023 0.785115 0.619350i \(-0.212604\pi\)
0.785115 + 0.619350i \(0.212604\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2037.00 0.332218
\(336\) 0 0
\(337\) −3821.38 −0.617698 −0.308849 0.951111i \(-0.599944\pi\)
−0.308849 + 0.951111i \(0.599944\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6364.15 −1.01067
\(342\) 0 0
\(343\) −1193.75 −0.187920
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8406.55 −1.30054 −0.650270 0.759704i \(-0.725344\pi\)
−0.650270 + 0.759704i \(0.725344\pi\)
\(348\) 0 0
\(349\) −2414.18 −0.370282 −0.185141 0.982712i \(-0.559274\pi\)
−0.185141 + 0.982712i \(0.559274\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7565.70 1.14074 0.570370 0.821388i \(-0.306800\pi\)
0.570370 + 0.821388i \(0.306800\pi\)
\(354\) 0 0
\(355\) 2431.64 0.363544
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −763.942 −0.112310 −0.0561550 0.998422i \(-0.517884\pi\)
−0.0561550 + 0.998422i \(0.517884\pi\)
\(360\) 0 0
\(361\) 10221.4 1.49022
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 717.085 0.102833
\(366\) 0 0
\(367\) −12441.4 −1.76959 −0.884793 0.465984i \(-0.845701\pi\)
−0.884793 + 0.465984i \(0.845701\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 910.221 0.127376
\(372\) 0 0
\(373\) 8266.81 1.14756 0.573779 0.819010i \(-0.305477\pi\)
0.573779 + 0.819010i \(0.305477\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14055.3 1.92011
\(378\) 0 0
\(379\) 5511.15 0.746936 0.373468 0.927643i \(-0.378169\pi\)
0.373468 + 0.927643i \(0.378169\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2056.33 0.274344 0.137172 0.990547i \(-0.456199\pi\)
0.137172 + 0.990547i \(0.456199\pi\)
\(384\) 0 0
\(385\) −253.243 −0.0335232
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5799.26 −0.755872 −0.377936 0.925832i \(-0.623366\pi\)
−0.377936 + 0.925832i \(0.623366\pi\)
\(390\) 0 0
\(391\) −2955.05 −0.382208
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4840.06 0.616531
\(396\) 0 0
\(397\) −2929.02 −0.370285 −0.185143 0.982712i \(-0.559275\pi\)
−0.185143 + 0.982712i \(0.559275\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13545.0 1.68680 0.843399 0.537288i \(-0.180551\pi\)
0.843399 + 0.537288i \(0.180551\pi\)
\(402\) 0 0
\(403\) −10594.4 −1.30954
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12634.8 −1.53878
\(408\) 0 0
\(409\) 10860.3 1.31298 0.656488 0.754337i \(-0.272041\pi\)
0.656488 + 0.754337i \(0.272041\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1030.22 0.122745
\(414\) 0 0
\(415\) −2663.59 −0.315062
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7253.42 0.845711 0.422856 0.906197i \(-0.361028\pi\)
0.422856 + 0.906197i \(0.361028\pi\)
\(420\) 0 0
\(421\) −4768.55 −0.552030 −0.276015 0.961153i \(-0.589014\pi\)
−0.276015 + 0.961153i \(0.589014\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −405.495 −0.0462809
\(426\) 0 0
\(427\) −989.493 −0.112143
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6035.15 −0.674485 −0.337242 0.941418i \(-0.609494\pi\)
−0.337242 + 0.941418i \(0.609494\pi\)
\(432\) 0 0
\(433\) −2347.84 −0.260577 −0.130289 0.991476i \(-0.541590\pi\)
−0.130289 + 0.991476i \(0.541590\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −23810.5 −2.60644
\(438\) 0 0
\(439\) −8024.30 −0.872389 −0.436195 0.899852i \(-0.643674\pi\)
−0.436195 + 0.899852i \(0.643674\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1463.73 0.156984 0.0784922 0.996915i \(-0.474989\pi\)
0.0784922 + 0.996915i \(0.474989\pi\)
\(444\) 0 0
\(445\) −339.037 −0.0361166
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7194.97 0.756240 0.378120 0.925757i \(-0.376571\pi\)
0.378120 + 0.925757i \(0.376571\pi\)
\(450\) 0 0
\(451\) −9847.18 −1.02813
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −421.573 −0.0434365
\(456\) 0 0
\(457\) −13383.9 −1.36996 −0.684979 0.728563i \(-0.740189\pi\)
−0.684979 + 0.728563i \(0.740189\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10270.0 −1.03757 −0.518786 0.854904i \(-0.673616\pi\)
−0.518786 + 0.854904i \(0.673616\pi\)
\(462\) 0 0
\(463\) 7562.55 0.759096 0.379548 0.925172i \(-0.376080\pi\)
0.379548 + 0.925172i \(0.376080\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18059.3 −1.78947 −0.894736 0.446596i \(-0.852636\pi\)
−0.894736 + 0.446596i \(0.852636\pi\)
\(468\) 0 0
\(469\) 712.115 0.0701118
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9171.03 −0.891510
\(474\) 0 0
\(475\) −3267.30 −0.315609
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7023.57 −0.669969 −0.334985 0.942224i \(-0.608731\pi\)
−0.334985 + 0.942224i \(0.608731\pi\)
\(480\) 0 0
\(481\) −21033.1 −1.99382
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1090.44 0.102091
\(486\) 0 0
\(487\) 6354.87 0.591307 0.295653 0.955295i \(-0.404463\pi\)
0.295653 + 0.955295i \(0.404463\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19124.1 1.75775 0.878877 0.477049i \(-0.158294\pi\)
0.878877 + 0.477049i \(0.158294\pi\)
\(492\) 0 0
\(493\) 4726.19 0.431758
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 850.078 0.0767227
\(498\) 0 0
\(499\) −19093.0 −1.71287 −0.856433 0.516258i \(-0.827325\pi\)
−0.856433 + 0.516258i \(0.827325\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5689.49 0.504338 0.252169 0.967683i \(-0.418856\pi\)
0.252169 + 0.967683i \(0.418856\pi\)
\(504\) 0 0
\(505\) −5956.54 −0.524876
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3732.80 0.325056 0.162528 0.986704i \(-0.448035\pi\)
0.162528 + 0.986704i \(0.448035\pi\)
\(510\) 0 0
\(511\) 250.686 0.0217020
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2650.26 −0.226766
\(516\) 0 0
\(517\) 9724.47 0.827237
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9445.51 0.794271 0.397136 0.917760i \(-0.370004\pi\)
0.397136 + 0.917760i \(0.370004\pi\)
\(522\) 0 0
\(523\) 3021.83 0.252649 0.126325 0.991989i \(-0.459682\pi\)
0.126325 + 0.991989i \(0.459682\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3562.44 −0.294464
\(528\) 0 0
\(529\) 21025.5 1.72807
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −16392.6 −1.33216
\(534\) 0 0
\(535\) −3293.42 −0.266144
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9850.21 0.787159
\(540\) 0 0
\(541\) 16850.9 1.33915 0.669574 0.742745i \(-0.266477\pi\)
0.669574 + 0.742745i \(0.266477\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8431.69 0.662704
\(546\) 0 0
\(547\) −3424.29 −0.267664 −0.133832 0.991004i \(-0.542728\pi\)
−0.133832 + 0.991004i \(0.542728\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 38081.6 2.94434
\(552\) 0 0
\(553\) 1692.04 0.130114
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2100.17 −0.159761 −0.0798807 0.996804i \(-0.525454\pi\)
−0.0798807 + 0.996804i \(0.525454\pi\)
\(558\) 0 0
\(559\) −15267.0 −1.15514
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20424.7 −1.52895 −0.764475 0.644654i \(-0.777002\pi\)
−0.764475 + 0.644654i \(0.777002\pi\)
\(564\) 0 0
\(565\) −495.760 −0.0369147
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 24001.0 1.76832 0.884161 0.467182i \(-0.154731\pi\)
0.884161 + 0.467182i \(0.154731\pi\)
\(570\) 0 0
\(571\) −11915.7 −0.873305 −0.436653 0.899630i \(-0.643836\pi\)
−0.436653 + 0.899630i \(0.643836\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4554.70 0.330338
\(576\) 0 0
\(577\) 18995.8 1.37055 0.685273 0.728286i \(-0.259683\pi\)
0.685273 + 0.728286i \(0.259683\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −931.166 −0.0664910
\(582\) 0 0
\(583\) −15088.8 −1.07189
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21167.0 −1.48834 −0.744170 0.667990i \(-0.767155\pi\)
−0.744170 + 0.667990i \(0.767155\pi\)
\(588\) 0 0
\(589\) −28704.7 −2.00807
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −820.766 −0.0568378 −0.0284189 0.999596i \(-0.509047\pi\)
−0.0284189 + 0.999596i \(0.509047\pi\)
\(594\) 0 0
\(595\) −141.757 −0.00976718
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −23985.1 −1.63607 −0.818035 0.575168i \(-0.804937\pi\)
−0.818035 + 0.575168i \(0.804937\pi\)
\(600\) 0 0
\(601\) −6991.04 −0.474493 −0.237247 0.971449i \(-0.576245\pi\)
−0.237247 + 0.971449i \(0.576245\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2456.98 −0.165108
\(606\) 0 0
\(607\) −9572.17 −0.640070 −0.320035 0.947406i \(-0.603695\pi\)
−0.320035 + 0.947406i \(0.603695\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16188.3 1.07186
\(612\) 0 0
\(613\) −11648.4 −0.767496 −0.383748 0.923438i \(-0.625367\pi\)
−0.383748 + 0.923438i \(0.625367\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8519.93 0.555915 0.277957 0.960593i \(-0.410343\pi\)
0.277957 + 0.960593i \(0.410343\pi\)
\(618\) 0 0
\(619\) −152.812 −0.00992251 −0.00496125 0.999988i \(-0.501579\pi\)
−0.00496125 + 0.999988i \(0.501579\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −118.524 −0.00762210
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7072.53 −0.448331
\(630\) 0 0
\(631\) −10877.8 −0.686274 −0.343137 0.939285i \(-0.611489\pi\)
−0.343137 + 0.939285i \(0.611489\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7940.86 0.496257
\(636\) 0 0
\(637\) 16397.6 1.01993
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −25590.5 −1.57685 −0.788427 0.615129i \(-0.789104\pi\)
−0.788427 + 0.615129i \(0.789104\pi\)
\(642\) 0 0
\(643\) 4144.13 0.254166 0.127083 0.991892i \(-0.459439\pi\)
0.127083 + 0.991892i \(0.459439\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3745.27 −0.227576 −0.113788 0.993505i \(-0.536299\pi\)
−0.113788 + 0.993505i \(0.536299\pi\)
\(648\) 0 0
\(649\) −17078.0 −1.03293
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1982.21 0.118790 0.0593951 0.998235i \(-0.481083\pi\)
0.0593951 + 0.998235i \(0.481083\pi\)
\(654\) 0 0
\(655\) −971.796 −0.0579713
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6452.60 0.381423 0.190711 0.981646i \(-0.438921\pi\)
0.190711 + 0.981646i \(0.438921\pi\)
\(660\) 0 0
\(661\) −15677.5 −0.922518 −0.461259 0.887265i \(-0.652602\pi\)
−0.461259 + 0.887265i \(0.652602\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1142.22 −0.0666065
\(666\) 0 0
\(667\) −53086.7 −3.08175
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16402.9 0.943706
\(672\) 0 0
\(673\) −7672.17 −0.439436 −0.219718 0.975563i \(-0.570514\pi\)
−0.219718 + 0.975563i \(0.570514\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27895.3 1.58361 0.791806 0.610773i \(-0.209141\pi\)
0.791806 + 0.610773i \(0.209141\pi\)
\(678\) 0 0
\(679\) 381.206 0.0215454
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23138.6 1.29630 0.648150 0.761512i \(-0.275543\pi\)
0.648150 + 0.761512i \(0.275543\pi\)
\(684\) 0 0
\(685\) 5502.25 0.306905
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −25118.3 −1.38887
\(690\) 0 0
\(691\) −16370.6 −0.901257 −0.450629 0.892711i \(-0.648800\pi\)
−0.450629 + 0.892711i \(0.648800\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11768.1 0.642288
\(696\) 0 0
\(697\) −5512.13 −0.299551
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3963.47 0.213550 0.106775 0.994283i \(-0.465948\pi\)
0.106775 + 0.994283i \(0.465948\pi\)
\(702\) 0 0
\(703\) −56987.5 −3.05736
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2082.35 −0.110771
\(708\) 0 0
\(709\) 13370.4 0.708229 0.354115 0.935202i \(-0.384782\pi\)
0.354115 + 0.935202i \(0.384782\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 40015.0 2.10179
\(714\) 0 0
\(715\) 6988.44 0.365528
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12373.7 −0.641809 −0.320904 0.947112i \(-0.603987\pi\)
−0.320904 + 0.947112i \(0.603987\pi\)
\(720\) 0 0
\(721\) −926.506 −0.0478570
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7284.61 −0.373163
\(726\) 0 0
\(727\) −1756.74 −0.0896203 −0.0448102 0.998996i \(-0.514268\pi\)
−0.0448102 + 0.998996i \(0.514268\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5133.64 −0.259746
\(732\) 0 0
\(733\) 4564.43 0.230001 0.115001 0.993365i \(-0.463313\pi\)
0.115001 + 0.993365i \(0.463313\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11804.8 −0.590006
\(738\) 0 0
\(739\) −73.8682 −0.00367698 −0.00183849 0.999998i \(-0.500585\pi\)
−0.00183849 + 0.999998i \(0.500585\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24005.9 −1.18532 −0.592660 0.805453i \(-0.701922\pi\)
−0.592660 + 0.805453i \(0.701922\pi\)
\(744\) 0 0
\(745\) 5931.80 0.291710
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1151.35 −0.0561674
\(750\) 0 0
\(751\) 7708.95 0.374572 0.187286 0.982305i \(-0.440031\pi\)
0.187286 + 0.982305i \(0.440031\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16177.9 0.779833
\(756\) 0 0
\(757\) 18327.3 0.879941 0.439971 0.898012i \(-0.354989\pi\)
0.439971 + 0.898012i \(0.354989\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21820.5 1.03941 0.519705 0.854346i \(-0.326042\pi\)
0.519705 + 0.854346i \(0.326042\pi\)
\(762\) 0 0
\(763\) 2947.64 0.139858
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −28429.7 −1.33838
\(768\) 0 0
\(769\) 19246.4 0.902527 0.451263 0.892391i \(-0.350973\pi\)
0.451263 + 0.892391i \(0.350973\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25012.3 −1.16382 −0.581909 0.813254i \(-0.697694\pi\)
−0.581909 + 0.813254i \(0.697694\pi\)
\(774\) 0 0
\(775\) 5490.89 0.254502
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −44414.4 −2.04276
\(780\) 0 0
\(781\) −14091.8 −0.645639
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8259.11 −0.375516
\(786\) 0 0
\(787\) 28460.6 1.28909 0.644544 0.764568i \(-0.277047\pi\)
0.644544 + 0.764568i \(0.277047\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −173.313 −0.00779052
\(792\) 0 0
\(793\) 27305.9 1.22277
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16315.9 −0.725145 −0.362573 0.931956i \(-0.618101\pi\)
−0.362573 + 0.931956i \(0.618101\pi\)
\(798\) 0 0
\(799\) 5443.44 0.241020
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4155.64 −0.182627
\(804\) 0 0
\(805\) 1592.28 0.0697149
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5461.82 0.237364 0.118682 0.992932i \(-0.462133\pi\)
0.118682 + 0.992932i \(0.462133\pi\)
\(810\) 0 0
\(811\) −23278.4 −1.00791 −0.503956 0.863729i \(-0.668123\pi\)
−0.503956 + 0.863729i \(0.668123\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 19193.6 0.824935
\(816\) 0 0
\(817\) −41364.7 −1.77132
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −879.972 −0.0374071 −0.0187035 0.999825i \(-0.505954\pi\)
−0.0187035 + 0.999825i \(0.505954\pi\)
\(822\) 0 0
\(823\) 12811.2 0.542614 0.271307 0.962493i \(-0.412544\pi\)
0.271307 + 0.962493i \(0.412544\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −29331.8 −1.23333 −0.616666 0.787225i \(-0.711517\pi\)
−0.616666 + 0.787225i \(0.711517\pi\)
\(828\) 0 0
\(829\) −13073.7 −0.547732 −0.273866 0.961768i \(-0.588303\pi\)
−0.273866 + 0.961768i \(0.588303\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5513.83 0.229343
\(834\) 0 0
\(835\) −10502.5 −0.435273
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2423.58 0.0997276 0.0498638 0.998756i \(-0.484121\pi\)
0.0498638 + 0.998756i \(0.484121\pi\)
\(840\) 0 0
\(841\) 60515.8 2.48127
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 648.638 0.0264069
\(846\) 0 0
\(847\) −858.936 −0.0348446
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 79441.9 3.20004
\(852\) 0 0
\(853\) −28668.5 −1.15075 −0.575375 0.817890i \(-0.695144\pi\)
−0.575375 + 0.817890i \(0.695144\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25991.2 −1.03599 −0.517994 0.855384i \(-0.673321\pi\)
−0.517994 + 0.855384i \(0.673321\pi\)
\(858\) 0 0
\(859\) −12131.6 −0.481866 −0.240933 0.970542i \(-0.577453\pi\)
−0.240933 + 0.970542i \(0.577453\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1174.43 0.0463244 0.0231622 0.999732i \(-0.492627\pi\)
0.0231622 + 0.999732i \(0.492627\pi\)
\(864\) 0 0
\(865\) −17913.9 −0.704152
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −28049.0 −1.09493
\(870\) 0 0
\(871\) −19651.4 −0.764480
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 218.494 0.00844165
\(876\) 0 0
\(877\) −15509.8 −0.597181 −0.298591 0.954381i \(-0.596517\pi\)
−0.298591 + 0.954381i \(0.596517\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1050.07 0.0401565 0.0200783 0.999798i \(-0.493608\pi\)
0.0200783 + 0.999798i \(0.493608\pi\)
\(882\) 0 0
\(883\) −22517.4 −0.858176 −0.429088 0.903263i \(-0.641165\pi\)
−0.429088 + 0.903263i \(0.641165\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2762.26 0.104563 0.0522816 0.998632i \(-0.483351\pi\)
0.0522816 + 0.998632i \(0.483351\pi\)
\(888\) 0 0
\(889\) 2776.05 0.104731
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 43860.9 1.64362
\(894\) 0 0
\(895\) −12166.0 −0.454375
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −63998.4 −2.37427
\(900\) 0 0
\(901\) −8446.22 −0.312302
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2862.53 0.105142
\(906\) 0 0
\(907\) 36714.4 1.34408 0.672040 0.740515i \(-0.265418\pi\)
0.672040 + 0.740515i \(0.265418\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51426.7 1.87030 0.935150 0.354252i \(-0.115264\pi\)
0.935150 + 0.354252i \(0.115264\pi\)
\(912\) 0 0
\(913\) 15436.0 0.559537
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −339.731 −0.0122343
\(918\) 0 0
\(919\) −33475.8 −1.20159 −0.600797 0.799402i \(-0.705150\pi\)
−0.600797 + 0.799402i \(0.705150\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −23458.6 −0.836564
\(924\) 0 0
\(925\) 10901.1 0.387487
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −35514.9 −1.25426 −0.627128 0.778916i \(-0.715770\pi\)
−0.627128 + 0.778916i \(0.715770\pi\)
\(930\) 0 0
\(931\) 44428.1 1.56399
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2349.92 0.0821930
\(936\) 0 0
\(937\) −53917.6 −1.87984 −0.939921 0.341392i \(-0.889102\pi\)
−0.939921 + 0.341392i \(0.889102\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 31034.7 1.07513 0.537567 0.843221i \(-0.319343\pi\)
0.537567 + 0.843221i \(0.319343\pi\)
\(942\) 0 0
\(943\) 61914.8 2.13810
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19423.7 −0.666510 −0.333255 0.942837i \(-0.608147\pi\)
−0.333255 + 0.942837i \(0.608147\pi\)
\(948\) 0 0
\(949\) −6917.89 −0.236632
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −23270.7 −0.790987 −0.395493 0.918469i \(-0.629426\pi\)
−0.395493 + 0.918469i \(0.629426\pi\)
\(954\) 0 0
\(955\) −2457.28 −0.0832625
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1923.53 0.0647697
\(960\) 0 0
\(961\) 18448.9 0.619277
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13990.6 0.466708
\(966\) 0 0
\(967\) −33988.2 −1.13028 −0.565142 0.824993i \(-0.691179\pi\)
−0.565142 + 0.824993i \(0.691179\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31963.3 1.05639 0.528194 0.849124i \(-0.322870\pi\)
0.528194 + 0.849124i \(0.322870\pi\)
\(972\) 0 0
\(973\) 4114.02 0.135549
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 35977.7 1.17813 0.589063 0.808087i \(-0.299497\pi\)
0.589063 + 0.808087i \(0.299497\pi\)
\(978\) 0 0
\(979\) 1964.78 0.0641417
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −34020.8 −1.10386 −0.551931 0.833890i \(-0.686109\pi\)
−0.551931 + 0.833890i \(0.686109\pi\)
\(984\) 0 0
\(985\) −15555.3 −0.503182
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 57663.4 1.85398
\(990\) 0 0
\(991\) 20226.2 0.648343 0.324172 0.945998i \(-0.394914\pi\)
0.324172 + 0.945998i \(0.394914\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 168.799 0.00537817
\(996\) 0 0
\(997\) 19657.5 0.624431 0.312216 0.950011i \(-0.398929\pi\)
0.312216 + 0.950011i \(0.398929\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.bk.1.2 yes 3
3.2 odd 2 1440.4.a.bi.1.2 yes 3
4.3 odd 2 1440.4.a.bj.1.2 yes 3
12.11 even 2 1440.4.a.bh.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1440.4.a.bh.1.2 3 12.11 even 2
1440.4.a.bi.1.2 yes 3 3.2 odd 2
1440.4.a.bj.1.2 yes 3 4.3 odd 2
1440.4.a.bk.1.2 yes 3 1.1 even 1 trivial