Properties

Label 1440.4.a.bj.1.3
Level $1440$
Weight $4$
Character 1440.1
Self dual yes
Analytic conductor $84.963$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.16773.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 17x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.08359\) of defining polynomial
Character \(\chi\) \(=\) 1440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +10.3344 q^{7} +O(q^{10})\) \(q+5.00000 q^{5} +10.3344 q^{7} -57.3715 q^{11} -22.3003 q^{13} +106.375 q^{17} -43.7741 q^{19} +16.4428 q^{23} +25.0000 q^{25} +57.5481 q^{29} +175.855 q^{31} +51.6718 q^{35} -280.672 q^{37} -157.622 q^{41} -457.950 q^{43} -18.6412 q^{47} -236.201 q^{49} -370.446 q^{53} -286.858 q^{55} -416.374 q^{59} +867.344 q^{61} -111.501 q^{65} -37.8452 q^{67} +83.6286 q^{71} -12.1984 q^{73} -592.898 q^{77} -175.260 q^{79} -572.402 q^{83} +531.873 q^{85} +622.972 q^{89} -230.459 q^{91} -218.870 q^{95} -1215.34 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 15 q^{5} - 14 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 15 q^{5} - 14 q^{7} - 22 q^{11} + 8 q^{13} + 34 q^{17} + 4 q^{19} - 176 q^{23} + 75 q^{25} - 98 q^{29} - 88 q^{31} - 70 q^{35} + 284 q^{37} + 8 q^{41} - 504 q^{43} - 280 q^{47} - 409 q^{49} + 150 q^{53} - 110 q^{55} - 350 q^{59} + 350 q^{61} + 40 q^{65} - 804 q^{67} - 500 q^{71} - 486 q^{73} - 788 q^{77} - 1592 q^{79} + 684 q^{83} + 170 q^{85} + 668 q^{89} - 1920 q^{91} + 20 q^{95} - 1394 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 10.3344 0.558003 0.279001 0.960291i \(-0.409997\pi\)
0.279001 + 0.960291i \(0.409997\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −57.3715 −1.57256 −0.786280 0.617870i \(-0.787996\pi\)
−0.786280 + 0.617870i \(0.787996\pi\)
\(12\) 0 0
\(13\) −22.3003 −0.475768 −0.237884 0.971294i \(-0.576454\pi\)
−0.237884 + 0.971294i \(0.576454\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 106.375 1.51763 0.758813 0.651309i \(-0.225780\pi\)
0.758813 + 0.651309i \(0.225780\pi\)
\(18\) 0 0
\(19\) −43.7741 −0.528551 −0.264275 0.964447i \(-0.585133\pi\)
−0.264275 + 0.964447i \(0.585133\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 16.4428 0.149068 0.0745339 0.997218i \(-0.476253\pi\)
0.0745339 + 0.997218i \(0.476253\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 57.5481 0.368497 0.184249 0.982880i \(-0.441015\pi\)
0.184249 + 0.982880i \(0.441015\pi\)
\(30\) 0 0
\(31\) 175.855 1.01885 0.509426 0.860514i \(-0.329858\pi\)
0.509426 + 0.860514i \(0.329858\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 51.6718 0.249546
\(36\) 0 0
\(37\) −280.672 −1.24709 −0.623543 0.781789i \(-0.714307\pi\)
−0.623543 + 0.781789i \(0.714307\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −157.622 −0.600402 −0.300201 0.953876i \(-0.597054\pi\)
−0.300201 + 0.953876i \(0.597054\pi\)
\(42\) 0 0
\(43\) −457.950 −1.62411 −0.812055 0.583580i \(-0.801651\pi\)
−0.812055 + 0.583580i \(0.801651\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −18.6412 −0.0578532 −0.0289266 0.999582i \(-0.509209\pi\)
−0.0289266 + 0.999582i \(0.509209\pi\)
\(48\) 0 0
\(49\) −236.201 −0.688633
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −370.446 −0.960088 −0.480044 0.877244i \(-0.659379\pi\)
−0.480044 + 0.877244i \(0.659379\pi\)
\(54\) 0 0
\(55\) −286.858 −0.703270
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −416.374 −0.918768 −0.459384 0.888238i \(-0.651930\pi\)
−0.459384 + 0.888238i \(0.651930\pi\)
\(60\) 0 0
\(61\) 867.344 1.82052 0.910262 0.414032i \(-0.135880\pi\)
0.910262 + 0.414032i \(0.135880\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −111.501 −0.212770
\(66\) 0 0
\(67\) −37.8452 −0.0690078 −0.0345039 0.999405i \(-0.510985\pi\)
−0.0345039 + 0.999405i \(0.510985\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 83.6286 0.139787 0.0698936 0.997554i \(-0.477734\pi\)
0.0698936 + 0.997554i \(0.477734\pi\)
\(72\) 0 0
\(73\) −12.1984 −0.0195578 −0.00977889 0.999952i \(-0.503113\pi\)
−0.00977889 + 0.999952i \(0.503113\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −592.898 −0.877493
\(78\) 0 0
\(79\) −175.260 −0.249598 −0.124799 0.992182i \(-0.539829\pi\)
−0.124799 + 0.992182i \(0.539829\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −572.402 −0.756980 −0.378490 0.925605i \(-0.623557\pi\)
−0.378490 + 0.925605i \(0.623557\pi\)
\(84\) 0 0
\(85\) 531.873 0.678703
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 622.972 0.741965 0.370983 0.928640i \(-0.379021\pi\)
0.370983 + 0.928640i \(0.379021\pi\)
\(90\) 0 0
\(91\) −230.459 −0.265480
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −218.870 −0.236375
\(96\) 0 0
\(97\) −1215.34 −1.27216 −0.636080 0.771623i \(-0.719445\pi\)
−0.636080 + 0.771623i \(0.719445\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1557.64 1.53456 0.767282 0.641309i \(-0.221608\pi\)
0.767282 + 0.641309i \(0.221608\pi\)
\(102\) 0 0
\(103\) −1692.90 −1.61948 −0.809742 0.586786i \(-0.800393\pi\)
−0.809742 + 0.586786i \(0.800393\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1746.09 1.57758 0.788790 0.614663i \(-0.210708\pi\)
0.788790 + 0.614663i \(0.210708\pi\)
\(108\) 0 0
\(109\) −213.939 −0.187997 −0.0939984 0.995572i \(-0.529965\pi\)
−0.0939984 + 0.995572i \(0.529965\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −245.278 −0.204193 −0.102096 0.994775i \(-0.532555\pi\)
−0.102096 + 0.994775i \(0.532555\pi\)
\(114\) 0 0
\(115\) 82.2139 0.0666651
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1099.31 0.846839
\(120\) 0 0
\(121\) 1960.49 1.47295
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1234.24 −0.862372 −0.431186 0.902263i \(-0.641905\pi\)
−0.431186 + 0.902263i \(0.641905\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −358.201 −0.238902 −0.119451 0.992840i \(-0.538113\pi\)
−0.119451 + 0.992840i \(0.538113\pi\)
\(132\) 0 0
\(133\) −452.377 −0.294933
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2331.07 1.45370 0.726851 0.686796i \(-0.240983\pi\)
0.726851 + 0.686796i \(0.240983\pi\)
\(138\) 0 0
\(139\) −2213.32 −1.35058 −0.675291 0.737551i \(-0.735982\pi\)
−0.675291 + 0.737551i \(0.735982\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1279.40 0.748174
\(144\) 0 0
\(145\) 287.741 0.164797
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2533.98 −1.39323 −0.696617 0.717443i \(-0.745312\pi\)
−0.696617 + 0.717443i \(0.745312\pi\)
\(150\) 0 0
\(151\) −3508.98 −1.89110 −0.945552 0.325471i \(-0.894477\pi\)
−0.945552 + 0.325471i \(0.894477\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 879.273 0.455644
\(156\) 0 0
\(157\) −520.132 −0.264402 −0.132201 0.991223i \(-0.542204\pi\)
−0.132201 + 0.991223i \(0.542204\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 169.926 0.0831802
\(162\) 0 0
\(163\) 727.388 0.349530 0.174765 0.984610i \(-0.444083\pi\)
0.174765 + 0.984610i \(0.444083\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2812.14 −1.30305 −0.651527 0.758626i \(-0.725871\pi\)
−0.651527 + 0.758626i \(0.725871\pi\)
\(168\) 0 0
\(169\) −1699.70 −0.773645
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2375.56 −1.04399 −0.521996 0.852948i \(-0.674813\pi\)
−0.521996 + 0.852948i \(0.674813\pi\)
\(174\) 0 0
\(175\) 258.359 0.111601
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1677.63 −0.700512 −0.350256 0.936654i \(-0.613905\pi\)
−0.350256 + 0.936654i \(0.613905\pi\)
\(180\) 0 0
\(181\) −1671.89 −0.686580 −0.343290 0.939230i \(-0.611541\pi\)
−0.343290 + 0.939230i \(0.611541\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1403.36 −0.557714
\(186\) 0 0
\(187\) −6102.87 −2.38656
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1270.29 −0.481228 −0.240614 0.970621i \(-0.577349\pi\)
−0.240614 + 0.970621i \(0.577349\pi\)
\(192\) 0 0
\(193\) 482.865 0.180090 0.0900450 0.995938i \(-0.471299\pi\)
0.0900450 + 0.995938i \(0.471299\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1767.21 −0.639128 −0.319564 0.947565i \(-0.603536\pi\)
−0.319564 + 0.947565i \(0.603536\pi\)
\(198\) 0 0
\(199\) −2817.00 −1.00348 −0.501738 0.865020i \(-0.667306\pi\)
−0.501738 + 0.865020i \(0.667306\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 594.723 0.205623
\(204\) 0 0
\(205\) −788.112 −0.268508
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2511.39 0.831178
\(210\) 0 0
\(211\) −4281.22 −1.39683 −0.698415 0.715693i \(-0.746111\pi\)
−0.698415 + 0.715693i \(0.746111\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2289.75 −0.726324
\(216\) 0 0
\(217\) 1817.34 0.568522
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2372.18 −0.722037
\(222\) 0 0
\(223\) 908.793 0.272903 0.136451 0.990647i \(-0.456430\pi\)
0.136451 + 0.990647i \(0.456430\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4177.76 1.22153 0.610766 0.791811i \(-0.290862\pi\)
0.610766 + 0.791811i \(0.290862\pi\)
\(228\) 0 0
\(229\) 2714.79 0.783398 0.391699 0.920093i \(-0.371888\pi\)
0.391699 + 0.920093i \(0.371888\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2783.28 0.782571 0.391285 0.920269i \(-0.372031\pi\)
0.391285 + 0.920269i \(0.372031\pi\)
\(234\) 0 0
\(235\) −93.2061 −0.0258727
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4573.36 1.23777 0.618883 0.785483i \(-0.287585\pi\)
0.618883 + 0.785483i \(0.287585\pi\)
\(240\) 0 0
\(241\) −3901.38 −1.04278 −0.521390 0.853318i \(-0.674586\pi\)
−0.521390 + 0.853318i \(0.674586\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1181.01 −0.307966
\(246\) 0 0
\(247\) 976.173 0.251467
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3014.39 −0.758035 −0.379018 0.925389i \(-0.623738\pi\)
−0.379018 + 0.925389i \(0.623738\pi\)
\(252\) 0 0
\(253\) −943.348 −0.234418
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1980.46 0.480691 0.240345 0.970687i \(-0.422739\pi\)
0.240345 + 0.970687i \(0.422739\pi\)
\(258\) 0 0
\(259\) −2900.56 −0.695878
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1212.21 −0.284213 −0.142107 0.989851i \(-0.545388\pi\)
−0.142107 + 0.989851i \(0.545388\pi\)
\(264\) 0 0
\(265\) −1852.23 −0.429364
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1852.56 0.419898 0.209949 0.977712i \(-0.432670\pi\)
0.209949 + 0.977712i \(0.432670\pi\)
\(270\) 0 0
\(271\) −4855.55 −1.08839 −0.544194 0.838959i \(-0.683165\pi\)
−0.544194 + 0.838959i \(0.683165\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1434.29 −0.314512
\(276\) 0 0
\(277\) 5676.17 1.23122 0.615611 0.788051i \(-0.288909\pi\)
0.615611 + 0.788051i \(0.288909\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8152.07 1.73065 0.865323 0.501214i \(-0.167113\pi\)
0.865323 + 0.501214i \(0.167113\pi\)
\(282\) 0 0
\(283\) −8396.78 −1.76373 −0.881867 0.471498i \(-0.843713\pi\)
−0.881867 + 0.471498i \(0.843713\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1628.93 −0.335026
\(288\) 0 0
\(289\) 6402.56 1.30319
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2103.84 −0.419480 −0.209740 0.977757i \(-0.567262\pi\)
−0.209740 + 0.977757i \(0.567262\pi\)
\(294\) 0 0
\(295\) −2081.87 −0.410885
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −366.679 −0.0709216
\(300\) 0 0
\(301\) −4732.62 −0.906258
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4336.72 0.814163
\(306\) 0 0
\(307\) −1118.19 −0.207879 −0.103939 0.994584i \(-0.533145\pi\)
−0.103939 + 0.994584i \(0.533145\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1525.00 −0.278054 −0.139027 0.990289i \(-0.544398\pi\)
−0.139027 + 0.990289i \(0.544398\pi\)
\(312\) 0 0
\(313\) 4812.52 0.869072 0.434536 0.900655i \(-0.356912\pi\)
0.434536 + 0.900655i \(0.356912\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2600.96 −0.460834 −0.230417 0.973092i \(-0.574009\pi\)
−0.230417 + 0.973092i \(0.574009\pi\)
\(318\) 0 0
\(319\) −3301.63 −0.579484
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4656.45 −0.802142
\(324\) 0 0
\(325\) −557.507 −0.0951535
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −192.645 −0.0322823
\(330\) 0 0
\(331\) 7973.83 1.32411 0.662056 0.749454i \(-0.269684\pi\)
0.662056 + 0.749454i \(0.269684\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −189.226 −0.0308612
\(336\) 0 0
\(337\) 4760.22 0.769453 0.384727 0.923031i \(-0.374296\pi\)
0.384727 + 0.923031i \(0.374296\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10089.0 −1.60221
\(342\) 0 0
\(343\) −5985.67 −0.942262
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1446.88 0.223840 0.111920 0.993717i \(-0.464300\pi\)
0.111920 + 0.993717i \(0.464300\pi\)
\(348\) 0 0
\(349\) −6332.39 −0.971247 −0.485624 0.874168i \(-0.661407\pi\)
−0.485624 + 0.874168i \(0.661407\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −322.985 −0.0486990 −0.0243495 0.999704i \(-0.507751\pi\)
−0.0243495 + 0.999704i \(0.507751\pi\)
\(354\) 0 0
\(355\) 418.143 0.0625147
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1921.57 0.282497 0.141249 0.989974i \(-0.454888\pi\)
0.141249 + 0.989974i \(0.454888\pi\)
\(360\) 0 0
\(361\) −4942.83 −0.720634
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −60.9921 −0.00874650
\(366\) 0 0
\(367\) −4855.18 −0.690568 −0.345284 0.938498i \(-0.612217\pi\)
−0.345284 + 0.938498i \(0.612217\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3828.32 −0.535732
\(372\) 0 0
\(373\) −206.627 −0.0286830 −0.0143415 0.999897i \(-0.504565\pi\)
−0.0143415 + 0.999897i \(0.504565\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1283.34 −0.175319
\(378\) 0 0
\(379\) 4021.99 0.545107 0.272554 0.962141i \(-0.412132\pi\)
0.272554 + 0.962141i \(0.412132\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9435.15 1.25878 0.629391 0.777088i \(-0.283304\pi\)
0.629391 + 0.777088i \(0.283304\pi\)
\(384\) 0 0
\(385\) −2964.49 −0.392427
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −11462.1 −1.49397 −0.746984 0.664842i \(-0.768499\pi\)
−0.746984 + 0.664842i \(0.768499\pi\)
\(390\) 0 0
\(391\) 1749.10 0.226229
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −876.299 −0.111624
\(396\) 0 0
\(397\) −620.723 −0.0784716 −0.0392358 0.999230i \(-0.512492\pi\)
−0.0392358 + 0.999230i \(0.512492\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2466.48 0.307157 0.153579 0.988136i \(-0.450920\pi\)
0.153579 + 0.988136i \(0.450920\pi\)
\(402\) 0 0
\(403\) −3921.60 −0.484737
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16102.6 1.96112
\(408\) 0 0
\(409\) 3155.44 0.381483 0.190742 0.981640i \(-0.438911\pi\)
0.190742 + 0.981640i \(0.438911\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4302.96 −0.512675
\(414\) 0 0
\(415\) −2862.01 −0.338532
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5651.57 0.658944 0.329472 0.944165i \(-0.393129\pi\)
0.329472 + 0.944165i \(0.393129\pi\)
\(420\) 0 0
\(421\) 3403.15 0.393965 0.196983 0.980407i \(-0.436886\pi\)
0.196983 + 0.980407i \(0.436886\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2659.36 0.303525
\(426\) 0 0
\(427\) 8963.44 1.01586
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13949.4 −1.55898 −0.779488 0.626418i \(-0.784521\pi\)
−0.779488 + 0.626418i \(0.784521\pi\)
\(432\) 0 0
\(433\) −9477.04 −1.05182 −0.525909 0.850541i \(-0.676275\pi\)
−0.525909 + 0.850541i \(0.676275\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −719.768 −0.0787899
\(438\) 0 0
\(439\) 11944.7 1.29860 0.649302 0.760530i \(-0.275061\pi\)
0.649302 + 0.760530i \(0.275061\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13457.6 1.44332 0.721660 0.692248i \(-0.243380\pi\)
0.721660 + 0.692248i \(0.243380\pi\)
\(444\) 0 0
\(445\) 3114.86 0.331817
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13366.9 1.40496 0.702478 0.711706i \(-0.252077\pi\)
0.702478 + 0.711706i \(0.252077\pi\)
\(450\) 0 0
\(451\) 9043.04 0.944169
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1152.29 −0.118726
\(456\) 0 0
\(457\) −11634.1 −1.19086 −0.595429 0.803408i \(-0.703018\pi\)
−0.595429 + 0.803408i \(0.703018\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −13499.4 −1.36384 −0.681921 0.731426i \(-0.738855\pi\)
−0.681921 + 0.731426i \(0.738855\pi\)
\(462\) 0 0
\(463\) 3591.21 0.360470 0.180235 0.983624i \(-0.442314\pi\)
0.180235 + 0.983624i \(0.442314\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7570.42 0.750144 0.375072 0.926996i \(-0.377618\pi\)
0.375072 + 0.926996i \(0.377618\pi\)
\(468\) 0 0
\(469\) −391.106 −0.0385066
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 26273.3 2.55401
\(474\) 0 0
\(475\) −1094.35 −0.105710
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6459.91 −0.616202 −0.308101 0.951354i \(-0.599693\pi\)
−0.308101 + 0.951354i \(0.599693\pi\)
\(480\) 0 0
\(481\) 6259.06 0.593323
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6076.72 −0.568927
\(486\) 0 0
\(487\) 11097.4 1.03259 0.516294 0.856411i \(-0.327311\pi\)
0.516294 + 0.856411i \(0.327311\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17047.6 −1.56690 −0.783450 0.621455i \(-0.786542\pi\)
−0.783450 + 0.621455i \(0.786542\pi\)
\(492\) 0 0
\(493\) 6121.66 0.559241
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 864.248 0.0780017
\(498\) 0 0
\(499\) −13993.7 −1.25540 −0.627699 0.778456i \(-0.716003\pi\)
−0.627699 + 0.778456i \(0.716003\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19540.5 −1.73214 −0.866071 0.499920i \(-0.833363\pi\)
−0.866071 + 0.499920i \(0.833363\pi\)
\(504\) 0 0
\(505\) 7788.20 0.686278
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6787.91 0.591098 0.295549 0.955328i \(-0.404497\pi\)
0.295549 + 0.955328i \(0.404497\pi\)
\(510\) 0 0
\(511\) −126.063 −0.0109133
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8464.52 −0.724255
\(516\) 0 0
\(517\) 1069.47 0.0909777
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10006.7 0.841465 0.420732 0.907185i \(-0.361773\pi\)
0.420732 + 0.907185i \(0.361773\pi\)
\(522\) 0 0
\(523\) 21487.6 1.79653 0.898265 0.439454i \(-0.144828\pi\)
0.898265 + 0.439454i \(0.144828\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18706.5 1.54624
\(528\) 0 0
\(529\) −11896.6 −0.977779
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3515.02 0.285652
\(534\) 0 0
\(535\) 8730.46 0.705515
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13551.2 1.08292
\(540\) 0 0
\(541\) 13111.1 1.04194 0.520971 0.853574i \(-0.325570\pi\)
0.520971 + 0.853574i \(0.325570\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1069.70 −0.0840747
\(546\) 0 0
\(547\) −4242.34 −0.331608 −0.165804 0.986159i \(-0.553022\pi\)
−0.165804 + 0.986159i \(0.553022\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2519.12 −0.194769
\(552\) 0 0
\(553\) −1811.20 −0.139277
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6390.85 −0.486156 −0.243078 0.970007i \(-0.578157\pi\)
−0.243078 + 0.970007i \(0.578157\pi\)
\(558\) 0 0
\(559\) 10212.4 0.772699
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10303.6 −0.771306 −0.385653 0.922644i \(-0.626024\pi\)
−0.385653 + 0.922644i \(0.626024\pi\)
\(564\) 0 0
\(565\) −1226.39 −0.0913178
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9526.59 −0.701890 −0.350945 0.936396i \(-0.614140\pi\)
−0.350945 + 0.936396i \(0.614140\pi\)
\(570\) 0 0
\(571\) −13652.4 −1.00058 −0.500292 0.865857i \(-0.666774\pi\)
−0.500292 + 0.865857i \(0.666774\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 411.070 0.0298136
\(576\) 0 0
\(577\) −20645.6 −1.48958 −0.744790 0.667299i \(-0.767450\pi\)
−0.744790 + 0.667299i \(0.767450\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5915.41 −0.422397
\(582\) 0 0
\(583\) 21253.1 1.50980
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5652.57 −0.397456 −0.198728 0.980055i \(-0.563681\pi\)
−0.198728 + 0.980055i \(0.563681\pi\)
\(588\) 0 0
\(589\) −7697.87 −0.538515
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7818.01 −0.541395 −0.270697 0.962664i \(-0.587254\pi\)
−0.270697 + 0.962664i \(0.587254\pi\)
\(594\) 0 0
\(595\) 5496.57 0.378718
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7086.03 −0.483351 −0.241676 0.970357i \(-0.577697\pi\)
−0.241676 + 0.970357i \(0.577697\pi\)
\(600\) 0 0
\(601\) 26401.7 1.79193 0.895963 0.444128i \(-0.146487\pi\)
0.895963 + 0.444128i \(0.146487\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9802.46 0.658722
\(606\) 0 0
\(607\) 13149.4 0.879268 0.439634 0.898177i \(-0.355108\pi\)
0.439634 + 0.898177i \(0.355108\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 415.704 0.0275247
\(612\) 0 0
\(613\) −4922.18 −0.324315 −0.162157 0.986765i \(-0.551845\pi\)
−0.162157 + 0.986765i \(0.551845\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18351.1 1.19739 0.598694 0.800978i \(-0.295686\pi\)
0.598694 + 0.800978i \(0.295686\pi\)
\(618\) 0 0
\(619\) 30123.7 1.95601 0.978007 0.208574i \(-0.0668822\pi\)
0.978007 + 0.208574i \(0.0668822\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6438.02 0.414019
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29856.4 −1.89261
\(630\) 0 0
\(631\) 16825.6 1.06152 0.530758 0.847523i \(-0.321907\pi\)
0.530758 + 0.847523i \(0.321907\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6171.21 −0.385664
\(636\) 0 0
\(637\) 5267.35 0.327629
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −11519.6 −0.709821 −0.354910 0.934900i \(-0.615489\pi\)
−0.354910 + 0.934900i \(0.615489\pi\)
\(642\) 0 0
\(643\) 17883.5 1.09682 0.548411 0.836209i \(-0.315233\pi\)
0.548411 + 0.836209i \(0.315233\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28208.5 1.71405 0.857025 0.515275i \(-0.172310\pi\)
0.857025 + 0.515275i \(0.172310\pi\)
\(648\) 0 0
\(649\) 23888.0 1.44482
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15006.4 −0.899305 −0.449652 0.893204i \(-0.648452\pi\)
−0.449652 + 0.893204i \(0.648452\pi\)
\(654\) 0 0
\(655\) −1791.01 −0.106840
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23076.6 1.36409 0.682047 0.731308i \(-0.261090\pi\)
0.682047 + 0.731308i \(0.261090\pi\)
\(660\) 0 0
\(661\) 1476.85 0.0869030 0.0434515 0.999056i \(-0.486165\pi\)
0.0434515 + 0.999056i \(0.486165\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2261.88 −0.131898
\(666\) 0 0
\(667\) 946.252 0.0549311
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −49760.8 −2.86289
\(672\) 0 0
\(673\) 23118.1 1.32413 0.662064 0.749447i \(-0.269681\pi\)
0.662064 + 0.749447i \(0.269681\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22723.4 −1.29000 −0.645000 0.764182i \(-0.723143\pi\)
−0.645000 + 0.764182i \(0.723143\pi\)
\(678\) 0 0
\(679\) −12559.8 −0.709869
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21993.0 1.23212 0.616060 0.787699i \(-0.288728\pi\)
0.616060 + 0.787699i \(0.288728\pi\)
\(684\) 0 0
\(685\) 11655.4 0.650115
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8261.04 0.456779
\(690\) 0 0
\(691\) 12542.9 0.690527 0.345263 0.938506i \(-0.387790\pi\)
0.345263 + 0.938506i \(0.387790\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11066.6 −0.603999
\(696\) 0 0
\(697\) −16767.0 −0.911186
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29128.1 1.56940 0.784702 0.619873i \(-0.212816\pi\)
0.784702 + 0.619873i \(0.212816\pi\)
\(702\) 0 0
\(703\) 12286.2 0.659148
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16097.2 0.856292
\(708\) 0 0
\(709\) −29067.0 −1.53968 −0.769842 0.638235i \(-0.779665\pi\)
−0.769842 + 0.638235i \(0.779665\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2891.54 0.151878
\(714\) 0 0
\(715\) 6397.00 0.334593
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1699.49 0.0881505 0.0440753 0.999028i \(-0.485966\pi\)
0.0440753 + 0.999028i \(0.485966\pi\)
\(720\) 0 0
\(721\) −17495.1 −0.903677
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1438.70 0.0736995
\(726\) 0 0
\(727\) −6029.01 −0.307570 −0.153785 0.988104i \(-0.549146\pi\)
−0.153785 + 0.988104i \(0.549146\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −48714.3 −2.46479
\(732\) 0 0
\(733\) −24004.9 −1.20960 −0.604802 0.796376i \(-0.706748\pi\)
−0.604802 + 0.796376i \(0.706748\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2171.24 0.108519
\(738\) 0 0
\(739\) 31261.8 1.55614 0.778068 0.628180i \(-0.216200\pi\)
0.778068 + 0.628180i \(0.216200\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7595.49 0.375036 0.187518 0.982261i \(-0.439956\pi\)
0.187518 + 0.982261i \(0.439956\pi\)
\(744\) 0 0
\(745\) −12669.9 −0.623073
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 18044.7 0.880294
\(750\) 0 0
\(751\) 15968.8 0.775914 0.387957 0.921677i \(-0.373181\pi\)
0.387957 + 0.921677i \(0.373181\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17544.9 −0.845727
\(756\) 0 0
\(757\) 10683.8 0.512956 0.256478 0.966550i \(-0.417438\pi\)
0.256478 + 0.966550i \(0.417438\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 592.024 0.0282009 0.0141004 0.999901i \(-0.495512\pi\)
0.0141004 + 0.999901i \(0.495512\pi\)
\(762\) 0 0
\(763\) −2210.92 −0.104903
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9285.25 0.437120
\(768\) 0 0
\(769\) 14173.1 0.664623 0.332312 0.943170i \(-0.392171\pi\)
0.332312 + 0.943170i \(0.392171\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5085.16 0.236611 0.118306 0.992977i \(-0.462254\pi\)
0.118306 + 0.992977i \(0.462254\pi\)
\(774\) 0 0
\(775\) 4396.36 0.203770
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6899.78 0.317343
\(780\) 0 0
\(781\) −4797.90 −0.219824
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2600.66 −0.118244
\(786\) 0 0
\(787\) 33276.2 1.50720 0.753602 0.657331i \(-0.228315\pi\)
0.753602 + 0.657331i \(0.228315\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2534.79 −0.113940
\(792\) 0 0
\(793\) −19342.0 −0.866147
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2060.07 0.0915575 0.0457788 0.998952i \(-0.485423\pi\)
0.0457788 + 0.998952i \(0.485423\pi\)
\(798\) 0 0
\(799\) −1982.95 −0.0877995
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 699.842 0.0307558
\(804\) 0 0
\(805\) 849.628 0.0371993
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 36723.3 1.59595 0.797973 0.602693i \(-0.205906\pi\)
0.797973 + 0.602693i \(0.205906\pi\)
\(810\) 0 0
\(811\) 2568.35 0.111205 0.0556023 0.998453i \(-0.482292\pi\)
0.0556023 + 0.998453i \(0.482292\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3636.94 0.156315
\(816\) 0 0
\(817\) 20046.3 0.858425
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10030.5 0.426393 0.213196 0.977009i \(-0.431613\pi\)
0.213196 + 0.977009i \(0.431613\pi\)
\(822\) 0 0
\(823\) −34953.3 −1.48043 −0.740216 0.672370i \(-0.765277\pi\)
−0.740216 + 0.672370i \(0.765277\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14173.8 0.595976 0.297988 0.954570i \(-0.403684\pi\)
0.297988 + 0.954570i \(0.403684\pi\)
\(828\) 0 0
\(829\) 15693.6 0.657490 0.328745 0.944419i \(-0.393374\pi\)
0.328745 + 0.944419i \(0.393374\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −25125.8 −1.04509
\(834\) 0 0
\(835\) −14060.7 −0.582743
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 42935.1 1.76673 0.883363 0.468689i \(-0.155274\pi\)
0.883363 + 0.468689i \(0.155274\pi\)
\(840\) 0 0
\(841\) −21077.2 −0.864210
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8498.49 −0.345985
\(846\) 0 0
\(847\) 20260.4 0.821908
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4615.03 −0.185900
\(852\) 0 0
\(853\) 22098.1 0.887017 0.443509 0.896270i \(-0.353734\pi\)
0.443509 + 0.896270i \(0.353734\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27366.0 1.09079 0.545393 0.838180i \(-0.316380\pi\)
0.545393 + 0.838180i \(0.316380\pi\)
\(858\) 0 0
\(859\) −21030.1 −0.835316 −0.417658 0.908604i \(-0.637149\pi\)
−0.417658 + 0.908604i \(0.637149\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17303.3 0.682516 0.341258 0.939970i \(-0.389147\pi\)
0.341258 + 0.939970i \(0.389147\pi\)
\(864\) 0 0
\(865\) −11877.8 −0.466888
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10054.9 0.392509
\(870\) 0 0
\(871\) 843.957 0.0328317
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1291.79 0.0499093
\(876\) 0 0
\(877\) 13678.2 0.526659 0.263330 0.964706i \(-0.415179\pi\)
0.263330 + 0.964706i \(0.415179\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −21656.6 −0.828183 −0.414092 0.910235i \(-0.635901\pi\)
−0.414092 + 0.910235i \(0.635901\pi\)
\(882\) 0 0
\(883\) −2409.29 −0.0918222 −0.0459111 0.998946i \(-0.514619\pi\)
−0.0459111 + 0.998946i \(0.514619\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30291.4 1.14666 0.573330 0.819325i \(-0.305651\pi\)
0.573330 + 0.819325i \(0.305651\pi\)
\(888\) 0 0
\(889\) −12755.1 −0.481206
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 816.002 0.0305783
\(894\) 0 0
\(895\) −8388.13 −0.313279
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10120.1 0.375444
\(900\) 0 0
\(901\) −39406.0 −1.45705
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8359.47 −0.307048
\(906\) 0 0
\(907\) 8343.45 0.305446 0.152723 0.988269i \(-0.451196\pi\)
0.152723 + 0.988269i \(0.451196\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25369.4 −0.922641 −0.461320 0.887234i \(-0.652624\pi\)
−0.461320 + 0.887234i \(0.652624\pi\)
\(912\) 0 0
\(913\) 32839.6 1.19040
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3701.78 −0.133308
\(918\) 0 0
\(919\) 37432.5 1.34362 0.671808 0.740726i \(-0.265518\pi\)
0.671808 + 0.740726i \(0.265518\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1864.94 −0.0665062
\(924\) 0 0
\(925\) −7016.80 −0.249417
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −41578.0 −1.46839 −0.734193 0.678941i \(-0.762439\pi\)
−0.734193 + 0.678941i \(0.762439\pi\)
\(930\) 0 0
\(931\) 10339.5 0.363977
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −30514.4 −1.06730
\(936\) 0 0
\(937\) 16023.2 0.558649 0.279325 0.960197i \(-0.409889\pi\)
0.279325 + 0.960197i \(0.409889\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3075.17 −0.106533 −0.0532665 0.998580i \(-0.516963\pi\)
−0.0532665 + 0.998580i \(0.516963\pi\)
\(942\) 0 0
\(943\) −2591.75 −0.0895006
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 46724.7 1.60332 0.801662 0.597778i \(-0.203950\pi\)
0.801662 + 0.597778i \(0.203950\pi\)
\(948\) 0 0
\(949\) 272.028 0.00930496
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5521.52 −0.187681 −0.0938403 0.995587i \(-0.529914\pi\)
−0.0938403 + 0.995587i \(0.529914\pi\)
\(954\) 0 0
\(955\) −6351.43 −0.215212
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24090.1 0.811169
\(960\) 0 0
\(961\) 1133.82 0.0380593
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2414.33 0.0805387
\(966\) 0 0
\(967\) −41158.9 −1.36875 −0.684374 0.729131i \(-0.739925\pi\)
−0.684374 + 0.729131i \(0.739925\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −54672.7 −1.80693 −0.903466 0.428660i \(-0.858986\pi\)
−0.903466 + 0.428660i \(0.858986\pi\)
\(972\) 0 0
\(973\) −22873.2 −0.753629
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −44517.0 −1.45775 −0.728876 0.684646i \(-0.759957\pi\)
−0.728876 + 0.684646i \(0.759957\pi\)
\(978\) 0 0
\(979\) −35740.9 −1.16679
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −33117.6 −1.07456 −0.537278 0.843405i \(-0.680547\pi\)
−0.537278 + 0.843405i \(0.680547\pi\)
\(984\) 0 0
\(985\) −8836.03 −0.285827
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7529.98 −0.242103
\(990\) 0 0
\(991\) 54402.1 1.74383 0.871917 0.489653i \(-0.162877\pi\)
0.871917 + 0.489653i \(0.162877\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14085.0 −0.448768
\(996\) 0 0
\(997\) 55607.7 1.76641 0.883207 0.468984i \(-0.155380\pi\)
0.883207 + 0.468984i \(0.155380\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.bj.1.3 yes 3
3.2 odd 2 1440.4.a.bh.1.3 3
4.3 odd 2 1440.4.a.bk.1.1 yes 3
12.11 even 2 1440.4.a.bi.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1440.4.a.bh.1.3 3 3.2 odd 2
1440.4.a.bi.1.1 yes 3 12.11 even 2
1440.4.a.bj.1.3 yes 3 1.1 even 1 trivial
1440.4.a.bk.1.1 yes 3 4.3 odd 2