Properties

Label 1440.4.a.bg.1.2
Level $1440$
Weight $4$
Character 1440.1
Self dual yes
Analytic conductor $84.963$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.70156\) of defining polynomial
Character \(\chi\) \(=\) 1440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +18.8062 q^{7} +63.2250 q^{11} +1.58125 q^{13} -135.256 q^{17} +97.2562 q^{19} -41.1938 q^{23} +25.0000 q^{25} +207.675 q^{29} +193.969 q^{31} +94.0312 q^{35} +339.256 q^{37} +490.187 q^{41} +74.3250 q^{43} -544.481 q^{47} +10.6750 q^{49} -663.862 q^{53} +316.125 q^{55} -344.775 q^{59} +5.16251 q^{61} +7.90627 q^{65} -671.475 q^{67} -425.550 q^{71} -94.8375 q^{73} +1189.02 q^{77} +770.681 q^{79} -589.800 q^{83} -676.281 q^{85} +409.813 q^{89} +29.7375 q^{91} +486.281 q^{95} -152.050 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{5} + 12 q^{7} + 24 q^{11} + 80 q^{13} - 40 q^{17} - 36 q^{19} - 108 q^{23} + 50 q^{25} + 108 q^{29} + 516 q^{31} + 60 q^{35} + 448 q^{37} + 212 q^{41} + 456 q^{43} - 756 q^{47} - 286 q^{49}+ \cdots + 1540 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 18.8062 1.01544 0.507721 0.861522i \(-0.330488\pi\)
0.507721 + 0.861522i \(0.330488\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 63.2250 1.73300 0.866502 0.499173i \(-0.166363\pi\)
0.866502 + 0.499173i \(0.166363\pi\)
\(12\) 0 0
\(13\) 1.58125 0.0337355 0.0168677 0.999858i \(-0.494631\pi\)
0.0168677 + 0.999858i \(0.494631\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −135.256 −1.92967 −0.964837 0.262849i \(-0.915338\pi\)
−0.964837 + 0.262849i \(0.915338\pi\)
\(18\) 0 0
\(19\) 97.2562 1.17432 0.587161 0.809470i \(-0.300246\pi\)
0.587161 + 0.809470i \(0.300246\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −41.1938 −0.373456 −0.186728 0.982412i \(-0.559788\pi\)
−0.186728 + 0.982412i \(0.559788\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 207.675 1.32980 0.664901 0.746931i \(-0.268474\pi\)
0.664901 + 0.746931i \(0.268474\pi\)
\(30\) 0 0
\(31\) 193.969 1.12380 0.561900 0.827205i \(-0.310070\pi\)
0.561900 + 0.827205i \(0.310070\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 94.0312 0.454119
\(36\) 0 0
\(37\) 339.256 1.50739 0.753694 0.657225i \(-0.228270\pi\)
0.753694 + 0.657225i \(0.228270\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 490.187 1.86718 0.933590 0.358342i \(-0.116658\pi\)
0.933590 + 0.358342i \(0.116658\pi\)
\(42\) 0 0
\(43\) 74.3250 0.263592 0.131796 0.991277i \(-0.457926\pi\)
0.131796 + 0.991277i \(0.457926\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −544.481 −1.68980 −0.844902 0.534922i \(-0.820341\pi\)
−0.844902 + 0.534922i \(0.820341\pi\)
\(48\) 0 0
\(49\) 10.6750 0.0311224
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −663.862 −1.72054 −0.860269 0.509840i \(-0.829704\pi\)
−0.860269 + 0.509840i \(0.829704\pi\)
\(54\) 0 0
\(55\) 316.125 0.775023
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −344.775 −0.760778 −0.380389 0.924827i \(-0.624210\pi\)
−0.380389 + 0.924827i \(0.624210\pi\)
\(60\) 0 0
\(61\) 5.16251 0.0108359 0.00541796 0.999985i \(-0.498275\pi\)
0.00541796 + 0.999985i \(0.498275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.90627 0.0150870
\(66\) 0 0
\(67\) −671.475 −1.22438 −0.612192 0.790709i \(-0.709712\pi\)
−0.612192 + 0.790709i \(0.709712\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −425.550 −0.711317 −0.355658 0.934616i \(-0.615743\pi\)
−0.355658 + 0.934616i \(0.615743\pi\)
\(72\) 0 0
\(73\) −94.8375 −0.152053 −0.0760266 0.997106i \(-0.524223\pi\)
−0.0760266 + 0.997106i \(0.524223\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1189.02 1.75977
\(78\) 0 0
\(79\) 770.681 1.09757 0.548787 0.835962i \(-0.315090\pi\)
0.548787 + 0.835962i \(0.315090\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −589.800 −0.779987 −0.389994 0.920818i \(-0.627523\pi\)
−0.389994 + 0.920818i \(0.627523\pi\)
\(84\) 0 0
\(85\) −676.281 −0.862976
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 409.813 0.488090 0.244045 0.969764i \(-0.421525\pi\)
0.244045 + 0.969764i \(0.421525\pi\)
\(90\) 0 0
\(91\) 29.7375 0.0342564
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 486.281 0.525173
\(96\) 0 0
\(97\) −152.050 −0.159158 −0.0795790 0.996829i \(-0.525358\pi\)
−0.0795790 + 0.996829i \(0.525358\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 484.325 0.477150 0.238575 0.971124i \(-0.423320\pi\)
0.238575 + 0.971124i \(0.423320\pi\)
\(102\) 0 0
\(103\) 1617.51 1.54736 0.773678 0.633579i \(-0.218415\pi\)
0.773678 + 0.633579i \(0.218415\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1010.36 −0.912854 −0.456427 0.889761i \(-0.650871\pi\)
−0.456427 + 0.889761i \(0.650871\pi\)
\(108\) 0 0
\(109\) 1.72487 0.00151571 0.000757857 1.00000i \(-0.499759\pi\)
0.000757857 1.00000i \(0.499759\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 729.119 0.606989 0.303494 0.952833i \(-0.401847\pi\)
0.303494 + 0.952833i \(0.401847\pi\)
\(114\) 0 0
\(115\) −205.969 −0.167015
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2543.66 −1.95947
\(120\) 0 0
\(121\) 2666.40 2.00331
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 388.481 0.271434 0.135717 0.990748i \(-0.456666\pi\)
0.135717 + 0.990748i \(0.456666\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2777.06 1.85216 0.926080 0.377326i \(-0.123156\pi\)
0.926080 + 0.377326i \(0.123156\pi\)
\(132\) 0 0
\(133\) 1829.02 1.19246
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −173.119 −0.107960 −0.0539800 0.998542i \(-0.517191\pi\)
−0.0539800 + 0.998542i \(0.517191\pi\)
\(138\) 0 0
\(139\) −450.806 −0.275086 −0.137543 0.990496i \(-0.543920\pi\)
−0.137543 + 0.990496i \(0.543920\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 99.9748 0.0584637
\(144\) 0 0
\(145\) 1038.37 0.594706
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1059.02 0.582273 0.291137 0.956681i \(-0.405967\pi\)
0.291137 + 0.956681i \(0.405967\pi\)
\(150\) 0 0
\(151\) −1273.63 −0.686402 −0.343201 0.939262i \(-0.611511\pi\)
−0.343201 + 0.939262i \(0.611511\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 969.844 0.502579
\(156\) 0 0
\(157\) −1442.61 −0.733328 −0.366664 0.930353i \(-0.619500\pi\)
−0.366664 + 0.930353i \(0.619500\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −774.700 −0.379223
\(162\) 0 0
\(163\) 2440.35 1.17266 0.586328 0.810074i \(-0.300573\pi\)
0.586328 + 0.810074i \(0.300573\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3655.18 1.69369 0.846846 0.531839i \(-0.178499\pi\)
0.846846 + 0.531839i \(0.178499\pi\)
\(168\) 0 0
\(169\) −2194.50 −0.998862
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3014.75 1.32490 0.662449 0.749107i \(-0.269517\pi\)
0.662449 + 0.749107i \(0.269517\pi\)
\(174\) 0 0
\(175\) 470.156 0.203088
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1683.04 0.702772 0.351386 0.936231i \(-0.385711\pi\)
0.351386 + 0.936231i \(0.385711\pi\)
\(180\) 0 0
\(181\) −2507.12 −1.02958 −0.514788 0.857318i \(-0.672129\pi\)
−0.514788 + 0.857318i \(0.672129\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1696.28 0.674125
\(186\) 0 0
\(187\) −8551.57 −3.34413
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3251.17 −1.23166 −0.615829 0.787880i \(-0.711179\pi\)
−0.615829 + 0.787880i \(0.711179\pi\)
\(192\) 0 0
\(193\) 2468.89 0.920800 0.460400 0.887712i \(-0.347706\pi\)
0.460400 + 0.887712i \(0.347706\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −155.212 −0.0561341 −0.0280671 0.999606i \(-0.508935\pi\)
−0.0280671 + 0.999606i \(0.508935\pi\)
\(198\) 0 0
\(199\) −2117.98 −0.754471 −0.377235 0.926117i \(-0.623125\pi\)
−0.377235 + 0.926117i \(0.623125\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3905.59 1.35034
\(204\) 0 0
\(205\) 2450.94 0.835029
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6149.02 2.03511
\(210\) 0 0
\(211\) 613.444 0.200148 0.100074 0.994980i \(-0.468092\pi\)
0.100074 + 0.994980i \(0.468092\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 371.625 0.117882
\(216\) 0 0
\(217\) 3647.82 1.14115
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −213.875 −0.0650985
\(222\) 0 0
\(223\) −1153.26 −0.346313 −0.173156 0.984894i \(-0.555397\pi\)
−0.173156 + 0.984894i \(0.555397\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4873.65 1.42500 0.712501 0.701671i \(-0.247562\pi\)
0.712501 + 0.701671i \(0.247562\pi\)
\(228\) 0 0
\(229\) 597.163 0.172321 0.0861607 0.996281i \(-0.472540\pi\)
0.0861607 + 0.996281i \(0.472540\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5302.61 1.49092 0.745462 0.666548i \(-0.232229\pi\)
0.745462 + 0.666548i \(0.232229\pi\)
\(234\) 0 0
\(235\) −2722.41 −0.755703
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3571.31 −0.966565 −0.483282 0.875464i \(-0.660556\pi\)
−0.483282 + 0.875464i \(0.660556\pi\)
\(240\) 0 0
\(241\) 4796.98 1.28216 0.641080 0.767474i \(-0.278487\pi\)
0.641080 + 0.767474i \(0.278487\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 53.3749 0.0139184
\(246\) 0 0
\(247\) 153.787 0.0396163
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2441.44 −0.613953 −0.306976 0.951717i \(-0.599317\pi\)
−0.306976 + 0.951717i \(0.599317\pi\)
\(252\) 0 0
\(253\) −2604.47 −0.647201
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4163.17 1.01047 0.505236 0.862981i \(-0.331405\pi\)
0.505236 + 0.862981i \(0.331405\pi\)
\(258\) 0 0
\(259\) 6380.14 1.53067
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 543.694 0.127474 0.0637369 0.997967i \(-0.479698\pi\)
0.0637369 + 0.997967i \(0.479698\pi\)
\(264\) 0 0
\(265\) −3319.31 −0.769448
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −992.325 −0.224919 −0.112459 0.993656i \(-0.535873\pi\)
−0.112459 + 0.993656i \(0.535873\pi\)
\(270\) 0 0
\(271\) −5302.11 −1.18849 −0.594244 0.804285i \(-0.702548\pi\)
−0.594244 + 0.804285i \(0.702548\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1580.62 0.346601
\(276\) 0 0
\(277\) −929.107 −0.201533 −0.100766 0.994910i \(-0.532129\pi\)
−0.100766 + 0.994910i \(0.532129\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7372.24 1.56509 0.782546 0.622593i \(-0.213921\pi\)
0.782546 + 0.622593i \(0.213921\pi\)
\(282\) 0 0
\(283\) 4510.05 0.947331 0.473665 0.880705i \(-0.342931\pi\)
0.473665 + 0.880705i \(0.342931\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9218.59 1.89601
\(288\) 0 0
\(289\) 13381.2 2.72364
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4358.94 −0.869119 −0.434559 0.900643i \(-0.643096\pi\)
−0.434559 + 0.900643i \(0.643096\pi\)
\(294\) 0 0
\(295\) −1723.88 −0.340230
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −65.1378 −0.0125987
\(300\) 0 0
\(301\) 1397.77 0.267662
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 25.8125 0.00484597
\(306\) 0 0
\(307\) −788.962 −0.146673 −0.0733363 0.997307i \(-0.523365\pi\)
−0.0733363 + 0.997307i \(0.523365\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −956.062 −0.174319 −0.0871597 0.996194i \(-0.527779\pi\)
−0.0871597 + 0.996194i \(0.527779\pi\)
\(312\) 0 0
\(313\) −728.887 −0.131627 −0.0658133 0.997832i \(-0.520964\pi\)
−0.0658133 + 0.997832i \(0.520964\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −816.788 −0.144717 −0.0723586 0.997379i \(-0.523053\pi\)
−0.0723586 + 0.997379i \(0.523053\pi\)
\(318\) 0 0
\(319\) 13130.2 2.30455
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −13154.5 −2.26606
\(324\) 0 0
\(325\) 39.5314 0.00674709
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10239.6 −1.71590
\(330\) 0 0
\(331\) −3787.26 −0.628902 −0.314451 0.949274i \(-0.601820\pi\)
−0.314451 + 0.949274i \(0.601820\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3357.37 −0.547561
\(336\) 0 0
\(337\) −4959.79 −0.801712 −0.400856 0.916141i \(-0.631287\pi\)
−0.400856 + 0.916141i \(0.631287\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12263.7 1.94755
\(342\) 0 0
\(343\) −6249.79 −0.983839
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1001.51 −0.154939 −0.0774697 0.996995i \(-0.524684\pi\)
−0.0774697 + 0.996995i \(0.524684\pi\)
\(348\) 0 0
\(349\) −11048.8 −1.69464 −0.847320 0.531083i \(-0.821785\pi\)
−0.847320 + 0.531083i \(0.821785\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1216.63 0.183441 0.0917207 0.995785i \(-0.470763\pi\)
0.0917207 + 0.995785i \(0.470763\pi\)
\(354\) 0 0
\(355\) −2127.75 −0.318111
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −967.125 −0.142181 −0.0710904 0.997470i \(-0.522648\pi\)
−0.0710904 + 0.997470i \(0.522648\pi\)
\(360\) 0 0
\(361\) 2599.78 0.379031
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −474.187 −0.0680003
\(366\) 0 0
\(367\) −4356.06 −0.619576 −0.309788 0.950806i \(-0.600258\pi\)
−0.309788 + 0.950806i \(0.600258\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12484.8 −1.74711
\(372\) 0 0
\(373\) −319.982 −0.0444183 −0.0222092 0.999753i \(-0.507070\pi\)
−0.0222092 + 0.999753i \(0.507070\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 328.387 0.0448615
\(378\) 0 0
\(379\) −1188.39 −0.161065 −0.0805326 0.996752i \(-0.525662\pi\)
−0.0805326 + 0.996752i \(0.525662\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3150.51 −0.420322 −0.210161 0.977667i \(-0.567399\pi\)
−0.210161 + 0.977667i \(0.567399\pi\)
\(384\) 0 0
\(385\) 5945.12 0.786991
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6201.45 −0.808293 −0.404147 0.914694i \(-0.632431\pi\)
−0.404147 + 0.914694i \(0.632431\pi\)
\(390\) 0 0
\(391\) 5571.71 0.720649
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3853.41 0.490850
\(396\) 0 0
\(397\) −4225.39 −0.534172 −0.267086 0.963673i \(-0.586061\pi\)
−0.267086 + 0.963673i \(0.586061\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5691.02 0.708719 0.354359 0.935109i \(-0.384699\pi\)
0.354359 + 0.935109i \(0.384699\pi\)
\(402\) 0 0
\(403\) 306.714 0.0379119
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21449.5 2.61231
\(408\) 0 0
\(409\) 2831.60 0.342331 0.171166 0.985242i \(-0.445247\pi\)
0.171166 + 0.985242i \(0.445247\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6483.92 −0.772526
\(414\) 0 0
\(415\) −2949.00 −0.348821
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13660.9 −1.59279 −0.796395 0.604776i \(-0.793262\pi\)
−0.796395 + 0.604776i \(0.793262\pi\)
\(420\) 0 0
\(421\) 9252.46 1.07111 0.535555 0.844500i \(-0.320102\pi\)
0.535555 + 0.844500i \(0.320102\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3381.41 −0.385935
\(426\) 0 0
\(427\) 97.0874 0.0110033
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 397.275 0.0443992 0.0221996 0.999754i \(-0.492933\pi\)
0.0221996 + 0.999754i \(0.492933\pi\)
\(432\) 0 0
\(433\) −1122.39 −0.124569 −0.0622846 0.998058i \(-0.519839\pi\)
−0.0622846 + 0.998058i \(0.519839\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4006.35 −0.438558
\(438\) 0 0
\(439\) 17424.7 1.89439 0.947193 0.320665i \(-0.103906\pi\)
0.947193 + 0.320665i \(0.103906\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6448.20 −0.691565 −0.345782 0.938315i \(-0.612386\pi\)
−0.345782 + 0.938315i \(0.612386\pi\)
\(444\) 0 0
\(445\) 2049.06 0.218281
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9622.97 1.01144 0.505720 0.862698i \(-0.331227\pi\)
0.505720 + 0.862698i \(0.331227\pi\)
\(450\) 0 0
\(451\) 30992.1 3.23583
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 148.687 0.0153199
\(456\) 0 0
\(457\) 6424.55 0.657610 0.328805 0.944398i \(-0.393354\pi\)
0.328805 + 0.944398i \(0.393354\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7773.75 −0.785379 −0.392689 0.919671i \(-0.628455\pi\)
−0.392689 + 0.919671i \(0.628455\pi\)
\(462\) 0 0
\(463\) 7122.96 0.714972 0.357486 0.933919i \(-0.383634\pi\)
0.357486 + 0.933919i \(0.383634\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4292.21 −0.425310 −0.212655 0.977127i \(-0.568211\pi\)
−0.212655 + 0.977127i \(0.568211\pi\)
\(468\) 0 0
\(469\) −12627.9 −1.24329
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4699.20 0.456806
\(474\) 0 0
\(475\) 2431.41 0.234864
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12607.8 −1.20264 −0.601321 0.799008i \(-0.705359\pi\)
−0.601321 + 0.799008i \(0.705359\pi\)
\(480\) 0 0
\(481\) 536.450 0.0508525
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −760.249 −0.0711776
\(486\) 0 0
\(487\) −14242.9 −1.32527 −0.662634 0.748943i \(-0.730561\pi\)
−0.662634 + 0.748943i \(0.730561\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19491.8 1.79156 0.895778 0.444502i \(-0.146619\pi\)
0.895778 + 0.444502i \(0.146619\pi\)
\(492\) 0 0
\(493\) −28089.3 −2.56609
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8003.00 −0.722301
\(498\) 0 0
\(499\) −8728.93 −0.783087 −0.391544 0.920160i \(-0.628059\pi\)
−0.391544 + 0.920160i \(0.628059\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10470.8 0.928175 0.464087 0.885789i \(-0.346382\pi\)
0.464087 + 0.885789i \(0.346382\pi\)
\(504\) 0 0
\(505\) 2421.63 0.213388
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4779.80 0.416230 0.208115 0.978104i \(-0.433267\pi\)
0.208115 + 0.978104i \(0.433267\pi\)
\(510\) 0 0
\(511\) −1783.54 −0.154401
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8087.53 0.691998
\(516\) 0 0
\(517\) −34424.8 −2.92844
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20647.1 −1.73621 −0.868104 0.496382i \(-0.834662\pi\)
−0.868104 + 0.496382i \(0.834662\pi\)
\(522\) 0 0
\(523\) 18853.5 1.57630 0.788149 0.615484i \(-0.211039\pi\)
0.788149 + 0.615484i \(0.211039\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −26235.5 −2.16857
\(528\) 0 0
\(529\) −10470.1 −0.860531
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 775.111 0.0629902
\(534\) 0 0
\(535\) −5051.81 −0.408241
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 674.926 0.0539353
\(540\) 0 0
\(541\) 8575.48 0.681494 0.340747 0.940155i \(-0.389320\pi\)
0.340747 + 0.940155i \(0.389320\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.62436 0.000677848 0
\(546\) 0 0
\(547\) 14884.0 1.16343 0.581715 0.813393i \(-0.302382\pi\)
0.581715 + 0.813393i \(0.302382\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20197.7 1.56162
\(552\) 0 0
\(553\) 14493.6 1.11452
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9780.58 −0.744015 −0.372007 0.928230i \(-0.621330\pi\)
−0.372007 + 0.928230i \(0.621330\pi\)
\(558\) 0 0
\(559\) 117.527 0.00889240
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25413.3 −1.90239 −0.951194 0.308594i \(-0.900142\pi\)
−0.951194 + 0.308594i \(0.900142\pi\)
\(564\) 0 0
\(565\) 3645.59 0.271454
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 766.399 0.0564659 0.0282330 0.999601i \(-0.491012\pi\)
0.0282330 + 0.999601i \(0.491012\pi\)
\(570\) 0 0
\(571\) −2066.98 −0.151489 −0.0757447 0.997127i \(-0.524133\pi\)
−0.0757447 + 0.997127i \(0.524133\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1029.84 −0.0746912
\(576\) 0 0
\(577\) 2235.48 0.161290 0.0806448 0.996743i \(-0.474302\pi\)
0.0806448 + 0.996743i \(0.474302\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11091.9 −0.792032
\(582\) 0 0
\(583\) −41972.7 −2.98170
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14951.7 1.05131 0.525657 0.850697i \(-0.323820\pi\)
0.525657 + 0.850697i \(0.323820\pi\)
\(588\) 0 0
\(589\) 18864.7 1.31970
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14265.4 −0.987872 −0.493936 0.869498i \(-0.664442\pi\)
−0.493936 + 0.869498i \(0.664442\pi\)
\(594\) 0 0
\(595\) −12718.3 −0.876302
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16069.6 −1.09614 −0.548068 0.836434i \(-0.684636\pi\)
−0.548068 + 0.836434i \(0.684636\pi\)
\(600\) 0 0
\(601\) 19227.5 1.30500 0.652501 0.757788i \(-0.273720\pi\)
0.652501 + 0.757788i \(0.273720\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 13332.0 0.895906
\(606\) 0 0
\(607\) −22962.2 −1.53543 −0.767716 0.640790i \(-0.778607\pi\)
−0.767716 + 0.640790i \(0.778607\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −860.963 −0.0570063
\(612\) 0 0
\(613\) 23035.5 1.51777 0.758887 0.651223i \(-0.225744\pi\)
0.758887 + 0.651223i \(0.225744\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17460.2 −1.13926 −0.569628 0.821903i \(-0.692913\pi\)
−0.569628 + 0.821903i \(0.692913\pi\)
\(618\) 0 0
\(619\) −14611.4 −0.948759 −0.474380 0.880320i \(-0.657328\pi\)
−0.474380 + 0.880320i \(0.657328\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7707.04 0.495627
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −45886.5 −2.90877
\(630\) 0 0
\(631\) 4126.33 0.260327 0.130164 0.991493i \(-0.458450\pi\)
0.130164 + 0.991493i \(0.458450\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1942.41 0.121389
\(636\) 0 0
\(637\) 16.8799 0.00104993
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21550.1 1.32789 0.663946 0.747780i \(-0.268880\pi\)
0.663946 + 0.747780i \(0.268880\pi\)
\(642\) 0 0
\(643\) −13528.4 −0.829718 −0.414859 0.909886i \(-0.636169\pi\)
−0.414859 + 0.909886i \(0.636169\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3157.14 −0.191839 −0.0959197 0.995389i \(-0.530579\pi\)
−0.0959197 + 0.995389i \(0.530579\pi\)
\(648\) 0 0
\(649\) −21798.4 −1.31843
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9644.38 −0.577969 −0.288984 0.957334i \(-0.593318\pi\)
−0.288984 + 0.957334i \(0.593318\pi\)
\(654\) 0 0
\(655\) 13885.3 0.828311
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19276.7 1.13948 0.569738 0.821826i \(-0.307045\pi\)
0.569738 + 0.821826i \(0.307045\pi\)
\(660\) 0 0
\(661\) −7366.06 −0.433444 −0.216722 0.976233i \(-0.569537\pi\)
−0.216722 + 0.976233i \(0.569537\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9145.12 0.533282
\(666\) 0 0
\(667\) −8554.91 −0.496623
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 326.400 0.0187787
\(672\) 0 0
\(673\) 3283.74 0.188081 0.0940407 0.995568i \(-0.470022\pi\)
0.0940407 + 0.995568i \(0.470022\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8895.32 0.504985 0.252493 0.967599i \(-0.418750\pi\)
0.252493 + 0.967599i \(0.418750\pi\)
\(678\) 0 0
\(679\) −2859.49 −0.161616
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14632.3 0.819751 0.409875 0.912141i \(-0.365572\pi\)
0.409875 + 0.912141i \(0.365572\pi\)
\(684\) 0 0
\(685\) −865.593 −0.0482812
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1049.74 −0.0580432
\(690\) 0 0
\(691\) −7677.28 −0.422659 −0.211330 0.977415i \(-0.567779\pi\)
−0.211330 + 0.977415i \(0.567779\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2254.03 −0.123022
\(696\) 0 0
\(697\) −66300.9 −3.60305
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2348.58 −0.126540 −0.0632700 0.997996i \(-0.520153\pi\)
−0.0632700 + 0.997996i \(0.520153\pi\)
\(702\) 0 0
\(703\) 32994.8 1.77016
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9108.34 0.484518
\(708\) 0 0
\(709\) −30897.1 −1.63662 −0.818310 0.574777i \(-0.805089\pi\)
−0.818310 + 0.574777i \(0.805089\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7990.30 −0.419690
\(714\) 0 0
\(715\) 499.874 0.0261458
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7448.66 0.386353 0.193177 0.981164i \(-0.438121\pi\)
0.193177 + 0.981164i \(0.438121\pi\)
\(720\) 0 0
\(721\) 30419.2 1.57125
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5191.87 0.265961
\(726\) 0 0
\(727\) −5301.58 −0.270460 −0.135230 0.990814i \(-0.543177\pi\)
−0.135230 + 0.990814i \(0.543177\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10052.9 −0.508647
\(732\) 0 0
\(733\) −18909.0 −0.952825 −0.476413 0.879222i \(-0.658063\pi\)
−0.476413 + 0.879222i \(0.658063\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −42454.0 −2.12186
\(738\) 0 0
\(739\) −30354.5 −1.51097 −0.755486 0.655165i \(-0.772599\pi\)
−0.755486 + 0.655165i \(0.772599\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26539.9 1.31044 0.655219 0.755439i \(-0.272576\pi\)
0.655219 + 0.755439i \(0.272576\pi\)
\(744\) 0 0
\(745\) 5295.12 0.260400
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19001.1 −0.926951
\(750\) 0 0
\(751\) −23097.1 −1.12227 −0.561136 0.827724i \(-0.689636\pi\)
−0.561136 + 0.827724i \(0.689636\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6368.16 −0.306968
\(756\) 0 0
\(757\) 25979.5 1.24734 0.623672 0.781686i \(-0.285640\pi\)
0.623672 + 0.781686i \(0.285640\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21314.3 1.01530 0.507649 0.861564i \(-0.330515\pi\)
0.507649 + 0.861564i \(0.330515\pi\)
\(762\) 0 0
\(763\) 32.4384 0.00153912
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −545.177 −0.0256652
\(768\) 0 0
\(769\) −2318.70 −0.108731 −0.0543657 0.998521i \(-0.517314\pi\)
−0.0543657 + 0.998521i \(0.517314\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13988.2 0.650868 0.325434 0.945565i \(-0.394490\pi\)
0.325434 + 0.945565i \(0.394490\pi\)
\(774\) 0 0
\(775\) 4849.22 0.224760
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 47673.8 2.19267
\(780\) 0 0
\(781\) −26905.4 −1.23272
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7213.03 −0.327954
\(786\) 0 0
\(787\) 9663.71 0.437705 0.218853 0.975758i \(-0.429769\pi\)
0.218853 + 0.975758i \(0.429769\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 13712.0 0.616362
\(792\) 0 0
\(793\) 8.16324 0.000365555 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35878.9 −1.59460 −0.797299 0.603584i \(-0.793739\pi\)
−0.797299 + 0.603584i \(0.793739\pi\)
\(798\) 0 0
\(799\) 73644.5 3.26077
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5996.10 −0.263509
\(804\) 0 0
\(805\) −3873.50 −0.169594
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18021.0 0.783172 0.391586 0.920142i \(-0.371927\pi\)
0.391586 + 0.920142i \(0.371927\pi\)
\(810\) 0 0
\(811\) −31290.5 −1.35482 −0.677409 0.735606i \(-0.736897\pi\)
−0.677409 + 0.735606i \(0.736897\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12201.7 0.524428
\(816\) 0 0
\(817\) 7228.57 0.309542
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17983.2 −0.764458 −0.382229 0.924068i \(-0.624843\pi\)
−0.382229 + 0.924068i \(0.624843\pi\)
\(822\) 0 0
\(823\) −2663.27 −0.112802 −0.0564008 0.998408i \(-0.517962\pi\)
−0.0564008 + 0.998408i \(0.517962\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21334.0 −0.897043 −0.448522 0.893772i \(-0.648049\pi\)
−0.448522 + 0.893772i \(0.648049\pi\)
\(828\) 0 0
\(829\) −34240.2 −1.43451 −0.717256 0.696810i \(-0.754602\pi\)
−0.717256 + 0.696810i \(0.754602\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1443.86 −0.0600561
\(834\) 0 0
\(835\) 18275.9 0.757442
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −23674.2 −0.974165 −0.487082 0.873356i \(-0.661939\pi\)
−0.487082 + 0.873356i \(0.661939\pi\)
\(840\) 0 0
\(841\) 18739.9 0.768375
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10972.5 −0.446705
\(846\) 0 0
\(847\) 50145.0 2.03424
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13975.2 −0.562944
\(852\) 0 0
\(853\) −6935.77 −0.278401 −0.139201 0.990264i \(-0.544453\pi\)
−0.139201 + 0.990264i \(0.544453\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8482.56 −0.338108 −0.169054 0.985607i \(-0.554071\pi\)
−0.169054 + 0.985607i \(0.554071\pi\)
\(858\) 0 0
\(859\) −37384.8 −1.48493 −0.742464 0.669886i \(-0.766343\pi\)
−0.742464 + 0.669886i \(0.766343\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16182.0 0.638286 0.319143 0.947707i \(-0.396605\pi\)
0.319143 + 0.947707i \(0.396605\pi\)
\(864\) 0 0
\(865\) 15073.7 0.592512
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48726.3 1.90210
\(870\) 0 0
\(871\) −1061.77 −0.0413052
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2350.78 0.0908239
\(876\) 0 0
\(877\) −15908.8 −0.612545 −0.306273 0.951944i \(-0.599082\pi\)
−0.306273 + 0.951944i \(0.599082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 32957.3 1.26034 0.630170 0.776457i \(-0.282985\pi\)
0.630170 + 0.776457i \(0.282985\pi\)
\(882\) 0 0
\(883\) 2932.72 0.111771 0.0558856 0.998437i \(-0.482202\pi\)
0.0558856 + 0.998437i \(0.482202\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10991.8 −0.416086 −0.208043 0.978120i \(-0.566709\pi\)
−0.208043 + 0.978120i \(0.566709\pi\)
\(888\) 0 0
\(889\) 7305.87 0.275626
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −52954.2 −1.98437
\(894\) 0 0
\(895\) 8415.19 0.314289
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 40282.5 1.49443
\(900\) 0 0
\(901\) 89791.5 3.32008
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12535.6 −0.460440
\(906\) 0 0
\(907\) 15117.6 0.553440 0.276720 0.960951i \(-0.410752\pi\)
0.276720 + 0.960951i \(0.410752\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25259.2 −0.918633 −0.459317 0.888273i \(-0.651906\pi\)
−0.459317 + 0.888273i \(0.651906\pi\)
\(912\) 0 0
\(913\) −37290.1 −1.35172
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 52226.1 1.88076
\(918\) 0 0
\(919\) −43485.1 −1.56087 −0.780436 0.625235i \(-0.785003\pi\)
−0.780436 + 0.625235i \(0.785003\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −672.903 −0.0239966
\(924\) 0 0
\(925\) 8481.41 0.301478
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22312.2 −0.787988 −0.393994 0.919113i \(-0.628907\pi\)
−0.393994 + 0.919113i \(0.628907\pi\)
\(930\) 0 0
\(931\) 1038.21 0.0365477
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −42757.9 −1.49554
\(936\) 0 0
\(937\) −50965.7 −1.77692 −0.888461 0.458951i \(-0.848225\pi\)
−0.888461 + 0.458951i \(0.848225\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 29611.4 1.02583 0.512914 0.858440i \(-0.328566\pi\)
0.512914 + 0.858440i \(0.328566\pi\)
\(942\) 0 0
\(943\) −20192.7 −0.697310
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16026.1 0.549925 0.274962 0.961455i \(-0.411335\pi\)
0.274962 + 0.961455i \(0.411335\pi\)
\(948\) 0 0
\(949\) −149.962 −0.00512959
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −41491.2 −1.41032 −0.705159 0.709050i \(-0.749124\pi\)
−0.705159 + 0.709050i \(0.749124\pi\)
\(954\) 0 0
\(955\) −16255.9 −0.550814
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3255.71 −0.109627
\(960\) 0 0
\(961\) 7832.88 0.262928
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12344.4 0.411794
\(966\) 0 0
\(967\) 16698.6 0.555317 0.277658 0.960680i \(-0.410442\pi\)
0.277658 + 0.960680i \(0.410442\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −44370.0 −1.46643 −0.733213 0.679999i \(-0.761980\pi\)
−0.733213 + 0.679999i \(0.761980\pi\)
\(972\) 0 0
\(973\) −8477.97 −0.279333
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12443.8 0.407484 0.203742 0.979025i \(-0.434690\pi\)
0.203742 + 0.979025i \(0.434690\pi\)
\(978\) 0 0
\(979\) 25910.4 0.845863
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −45382.4 −1.47251 −0.736253 0.676707i \(-0.763406\pi\)
−0.736253 + 0.676707i \(0.763406\pi\)
\(984\) 0 0
\(985\) −776.062 −0.0251040
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3061.73 −0.0984401
\(990\) 0 0
\(991\) 2468.08 0.0791132 0.0395566 0.999217i \(-0.487405\pi\)
0.0395566 + 0.999217i \(0.487405\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10589.9 −0.337410
\(996\) 0 0
\(997\) −8805.68 −0.279718 −0.139859 0.990171i \(-0.544665\pi\)
−0.139859 + 0.990171i \(0.544665\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.bg.1.2 2
3.2 odd 2 480.4.a.q.1.2 yes 2
4.3 odd 2 1440.4.a.z.1.1 2
12.11 even 2 480.4.a.m.1.1 2
15.14 odd 2 2400.4.a.x.1.1 2
24.5 odd 2 960.4.a.bm.1.2 2
24.11 even 2 960.4.a.bo.1.1 2
60.59 even 2 2400.4.a.bc.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.m.1.1 2 12.11 even 2
480.4.a.q.1.2 yes 2 3.2 odd 2
960.4.a.bm.1.2 2 24.5 odd 2
960.4.a.bo.1.1 2 24.11 even 2
1440.4.a.z.1.1 2 4.3 odd 2
1440.4.a.bg.1.2 2 1.1 even 1 trivial
2400.4.a.x.1.1 2 15.14 odd 2
2400.4.a.bc.1.2 2 60.59 even 2