Defining parameters
| Level: | \( N \) | \(=\) | \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1440.w (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1440, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 640 | 48 | 592 |
| Cusp forms | 512 | 48 | 464 |
| Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1440, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1440, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1440, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)