Properties

Label 1440.2.w
Level $1440$
Weight $2$
Character orbit 1440.w
Rep. character $\chi_{1440}(737,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $48$
Newform subspaces $7$
Sturm bound $576$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.w (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 7 \)
Sturm bound: \(576\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1440, [\chi])\).

Total New Old
Modular forms 640 48 592
Cusp forms 512 48 464
Eisenstein series 128 0 128

Trace form

\( 48 q - 16 q^{37} + 32 q^{73} - 16 q^{85} + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1440, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1440.2.w.a 1440.w 15.e $4$ $11.498$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-1}) \) 1440.2.w.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+(-5-5\zeta_{8}^{2}+\cdots)q^{13}+\cdots\)
1440.2.w.b 1440.w 15.e $4$ $11.498$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-1}) \) 1440.2.w.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(\zeta_{8}+2\zeta_{8}^{3})q^{5}+(-1-\zeta_{8}^{2})q^{13}+\cdots\)
1440.2.w.c 1440.w 15.e $4$ $11.498$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-1}) \) 1440.2.w.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-2\zeta_{8}+\zeta_{8}^{3})q^{5}+(1+\zeta_{8}^{2})q^{13}+\cdots\)
1440.2.w.d 1440.w 15.e $4$ $11.498$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-1}) \) 1440.2.w.d \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(\zeta_{8}+2\zeta_{8}^{3})q^{5}+(5-5\zeta_{8}^{2})q^{13}+\cdots\)
1440.2.w.e 1440.w 15.e $8$ $11.498$ \(\Q(\zeta_{24})\) None 1440.2.w.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2\beta_{3}-\beta_1)q^{5}+\beta_{5} q^{7}-\beta_{7} q^{11}+\cdots\)
1440.2.w.f 1440.w 15.e $12$ $11.498$ 12.0.\(\cdots\).1 None 1440.2.w.f \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{5}+(-1+\beta _{2}+\beta _{5})q^{7}+(\beta _{6}+\cdots)q^{11}+\cdots\)
1440.2.w.g 1440.w 15.e $12$ $11.498$ 12.0.\(\cdots\).1 None 1440.2.w.f \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{6}q^{5}+(1-\beta _{2}-\beta _{5})q^{7}+(\beta _{6}+\beta _{8}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1440, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1440, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)