Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1440,2,Mod(721,1440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1440.721");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1440.k (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.4984578911\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 120) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 721.1 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1440.721 |
Dual form | 1440.2.k.a.721.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(641\) | \(901\) | \(991\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | − 1.00000i | − 0.447214i | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −2.00000 | −0.755929 | −0.377964 | − | 0.925820i | \(-0.623376\pi\) | ||||
−0.377964 | + | 0.925820i | \(0.623376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − 4.00000i | − 1.20605i | −0.797724 | − | 0.603023i | \(-0.793963\pi\) | ||||
0.797724 | − | 0.603023i | \(-0.206037\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000 | 1.45521 | 0.727607 | − | 0.685994i | \(-0.240633\pi\) | ||||
0.727607 | + | 0.685994i | \(0.240633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000i | 0.917663i | 0.888523 | + | 0.458831i | \(0.151732\pi\) | ||||
−0.888523 | + | 0.458831i | \(0.848268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −4.00000 | −0.834058 | −0.417029 | − | 0.908893i | \(-0.636929\pi\) | ||||
−0.417029 | + | 0.908893i | \(0.636929\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −1.00000 | −0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − 6.00000i | − 1.11417i | −0.830455 | − | 0.557086i | \(-0.811919\pi\) | ||||
0.830455 | − | 0.557086i | \(-0.188081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −10.0000 | −1.79605 | −0.898027 | − | 0.439941i | \(-0.854999\pi\) | ||||
−0.898027 | + | 0.439941i | \(0.854999\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 2.00000i | 0.338062i | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 4.00000i | − 0.657596i | −0.944400 | − | 0.328798i | \(-0.893356\pi\) | ||||
0.944400 | − | 0.328798i | \(-0.106644\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −10.0000 | −1.56174 | −0.780869 | − | 0.624695i | \(-0.785223\pi\) | ||||
−0.780869 | + | 0.624695i | \(0.785223\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 4.00000i | − 0.609994i | −0.952353 | − | 0.304997i | \(-0.901344\pi\) | ||||
0.952353 | − | 0.304997i | \(-0.0986555\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −4.00000 | −0.583460 | −0.291730 | − | 0.956501i | \(-0.594231\pi\) | ||||
−0.291730 | + | 0.956501i | \(0.594231\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −3.00000 | −0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 10.0000i | − 1.37361i | −0.726844 | − | 0.686803i | \(-0.759014\pi\) | ||||
0.726844 | − | 0.686803i | \(-0.240986\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −4.00000 | −0.539360 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − 8.00000i | − 1.04151i | −0.853706 | − | 0.520756i | \(-0.825650\pi\) | ||||
0.853706 | − | 0.520756i | \(-0.174350\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 8.00000i | 1.02430i | 0.858898 | + | 0.512148i | \(0.171150\pi\) | ||||
−0.858898 | + | 0.512148i | \(0.828850\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 12.0000i | − 1.46603i | −0.680211 | − | 0.733017i | \(-0.738112\pi\) | ||||
0.680211 | − | 0.733017i | \(-0.261888\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −4.00000 | −0.474713 | −0.237356 | − | 0.971423i | \(-0.576281\pi\) | ||||
−0.237356 | + | 0.971423i | \(0.576281\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 10.0000 | 1.17041 | 0.585206 | − | 0.810885i | \(-0.301014\pi\) | ||||
0.585206 | + | 0.810885i | \(0.301014\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 8.00000i | 0.911685i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 14.0000 | 1.57512 | 0.787562 | − | 0.616236i | \(-0.211343\pi\) | ||||
0.787562 | + | 0.616236i | \(0.211343\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | − 6.00000i | − 0.650791i | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −14.0000 | −1.48400 | −0.741999 | − | 0.670402i | \(-0.766122\pi\) | ||||
−0.741999 | + | 0.670402i | \(0.766122\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 4.00000 | 0.410391 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −10.0000 | −1.01535 | −0.507673 | − | 0.861550i | \(-0.669494\pi\) | ||||
−0.507673 | + | 0.861550i | \(0.669494\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 14.0000i | 1.39305i | 0.717532 | + | 0.696526i | \(0.245272\pi\) | ||||
−0.717532 | + | 0.696526i | \(0.754728\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 2.00000 | 0.197066 | 0.0985329 | − | 0.995134i | \(-0.468585\pi\) | ||||
0.0985329 | + | 0.995134i | \(0.468585\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 4.00000i | − 0.386695i | −0.981130 | − | 0.193347i | \(-0.938066\pi\) | ||||
0.981130 | − | 0.193347i | \(-0.0619344\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − 4.00000i | − 0.383131i | −0.981480 | − | 0.191565i | \(-0.938644\pi\) | ||||
0.981480 | − | 0.191565i | \(-0.0613564\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −6.00000 | −0.564433 | −0.282216 | − | 0.959351i | \(-0.591070\pi\) | ||||
−0.282216 | + | 0.959351i | \(0.591070\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 4.00000i | 0.373002i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −12.0000 | −1.10004 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −5.00000 | −0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 1.00000i | 0.0894427i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 6.00000 | 0.532414 | 0.266207 | − | 0.963916i | \(-0.414230\pi\) | ||||
0.266207 | + | 0.963916i | \(0.414230\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 8.00000i | − 0.693688i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 2.00000 | 0.170872 | 0.0854358 | − | 0.996344i | \(-0.472772\pi\) | ||||
0.0854358 | + | 0.996344i | \(0.472772\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − 4.00000i | − 0.339276i | −0.985506 | − | 0.169638i | \(-0.945740\pi\) | ||||
0.985506 | − | 0.169638i | \(-0.0542598\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −6.00000 | −0.498273 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | − 6.00000i | − 0.491539i | −0.969328 | − | 0.245770i | \(-0.920959\pi\) | ||||
0.969328 | − | 0.245770i | \(-0.0790407\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 2.00000 | 0.162758 | 0.0813788 | − | 0.996683i | \(-0.474068\pi\) | ||||
0.0813788 | + | 0.996683i | \(0.474068\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 10.0000i | 0.803219i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 20.0000i | − 1.59617i | −0.602542 | − | 0.798087i | \(-0.705846\pi\) | ||||
0.602542 | − | 0.798087i | \(-0.294154\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 8.00000 | 0.630488 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 20.0000i | 1.56652i | 0.621694 | + | 0.783260i | \(0.286445\pi\) | ||||
−0.621694 | + | 0.783260i | \(0.713555\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 24.0000 | 1.85718 | 0.928588 | − | 0.371113i | \(-0.121024\pi\) | ||||
0.928588 | + | 0.371113i | \(0.121024\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 13.0000 | 1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 10.0000i | − 0.760286i | −0.924928 | − | 0.380143i | \(-0.875875\pi\) | ||||
0.924928 | − | 0.380143i | \(-0.124125\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 2.00000 | 0.151186 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 20.0000i | 1.48659i | 0.668965 | + | 0.743294i | \(0.266738\pi\) | ||||
−0.668965 | + | 0.743294i | \(0.733262\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −4.00000 | −0.294086 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 24.0000i | − 1.75505i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −8.00000 | −0.578860 | −0.289430 | − | 0.957199i | \(-0.593466\pi\) | ||||
−0.289430 | + | 0.957199i | \(0.593466\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −14.0000 | −1.00774 | −0.503871 | − | 0.863779i | \(-0.668091\pi\) | ||||
−0.503871 | + | 0.863779i | \(0.668091\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 10.0000i | − 0.712470i | −0.934396 | − | 0.356235i | \(-0.884060\pi\) | ||||
0.934396 | − | 0.356235i | \(-0.115940\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 6.00000 | 0.425329 | 0.212664 | − | 0.977125i | \(-0.431786\pi\) | ||||
0.212664 | + | 0.977125i | \(0.431786\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 12.0000i | 0.842235i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 10.0000i | 0.698430i | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 16.0000 | 1.10674 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 12.0000i | 0.826114i | 0.910705 | + | 0.413057i | \(0.135539\pi\) | ||||
−0.910705 | + | 0.413057i | \(0.864461\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −4.00000 | −0.272798 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 20.0000 | 1.35769 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −10.0000 | −0.669650 | −0.334825 | − | 0.942280i | \(-0.608677\pi\) | ||||
−0.334825 | + | 0.942280i | \(0.608677\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 4.00000i | 0.264327i | 0.991228 | + | 0.132164i | \(0.0421925\pi\) | ||||
−0.991228 | + | 0.132164i | \(0.957808\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 6.00000 | 0.393073 | 0.196537 | − | 0.980497i | \(-0.437031\pi\) | ||||
0.196537 | + | 0.980497i | \(0.437031\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 4.00000i | 0.260931i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 16.0000 | 1.03495 | 0.517477 | − | 0.855697i | \(-0.326871\pi\) | ||||
0.517477 | + | 0.855697i | \(0.326871\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −30.0000 | −1.93247 | −0.966235 | − | 0.257663i | \(-0.917048\pi\) | ||||
−0.966235 | + | 0.257663i | \(0.917048\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 3.00000i | 0.191663i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | − 12.0000i | − 0.757433i | −0.925513 | − | 0.378717i | \(-0.876365\pi\) | ||||
0.925513 | − | 0.378717i | \(-0.123635\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 16.0000i | 1.00591i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 2.00000 | 0.124757 | 0.0623783 | − | 0.998053i | \(-0.480131\pi\) | ||||
0.0623783 | + | 0.998053i | \(0.480131\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 8.00000i | 0.497096i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −10.0000 | −0.614295 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 10.0000i | 0.609711i | 0.952399 | + | 0.304855i | \(0.0986081\pi\) | ||||
−0.952399 | + | 0.304855i | \(0.901392\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 2.00000 | 0.121491 | 0.0607457 | − | 0.998153i | \(-0.480652\pi\) | ||||
0.0607457 | + | 0.998153i | \(0.480652\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 4.00000i | 0.241209i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 16.0000i | 0.961347i | 0.876900 | + | 0.480673i | \(0.159608\pi\) | ||||
−0.876900 | + | 0.480673i | \(0.840392\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 10.0000 | 0.596550 | 0.298275 | − | 0.954480i | \(-0.403589\pi\) | ||||
0.298275 | + | 0.954480i | \(0.403589\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 4.00000i | − 0.237775i | −0.992908 | − | 0.118888i | \(-0.962067\pi\) | ||||
0.992908 | − | 0.118888i | \(-0.0379328\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 20.0000 | 1.18056 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 2.00000i | − 0.116841i | −0.998292 | − | 0.0584206i | \(-0.981394\pi\) | ||||
0.998292 | − | 0.0584206i | \(-0.0186065\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −8.00000 | −0.465778 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 8.00000i | 0.461112i | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 8.00000 | 0.458079 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 28.0000i | 1.59804i | 0.601302 | + | 0.799022i | \(0.294649\pi\) | ||||
−0.601302 | + | 0.799022i | \(0.705351\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 8.00000 | 0.453638 | 0.226819 | − | 0.973937i | \(-0.427167\pi\) | ||||
0.226819 | + | 0.973937i | \(0.427167\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 6.00000 | 0.339140 | 0.169570 | − | 0.985518i | \(-0.445762\pi\) | ||||
0.169570 | + | 0.985518i | \(0.445762\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 18.0000i | 1.01098i | 0.862832 | + | 0.505490i | \(0.168688\pi\) | ||||
−0.862832 | + | 0.505490i | \(0.831312\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −24.0000 | −1.34374 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 24.0000i | 1.33540i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 8.00000 | 0.441054 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 4.00000i | 0.219860i | 0.993939 | + | 0.109930i | \(0.0350627\pi\) | ||||
−0.993939 | + | 0.109930i | \(0.964937\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −12.0000 | −0.655630 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 30.0000 | 1.63420 | 0.817102 | − | 0.576493i | \(-0.195579\pi\) | ||||
0.817102 | + | 0.576493i | \(0.195579\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 40.0000i | 2.16612i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 20.0000 | 1.07990 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 16.0000i | − 0.858925i | −0.903085 | − | 0.429463i | \(-0.858703\pi\) | ||||
0.903085 | − | 0.429463i | \(-0.141297\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | − 8.00000i | − 0.428230i | −0.976808 | − | 0.214115i | \(-0.931313\pi\) | ||||
0.976808 | − | 0.214115i | \(-0.0686868\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 18.0000 | 0.958043 | 0.479022 | − | 0.877803i | \(-0.340992\pi\) | ||||
0.479022 | + | 0.877803i | \(0.340992\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 4.00000i | 0.212298i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 12.0000 | 0.633336 | 0.316668 | − | 0.948536i | \(-0.397436\pi\) | ||||
0.316668 | + | 0.948536i | \(0.397436\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 3.00000 | 0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | − 10.0000i | − 0.523424i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 18.0000 | 0.939592 | 0.469796 | − | 0.882775i | \(-0.344327\pi\) | ||||
0.469796 | + | 0.882775i | \(0.344327\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 20.0000i | 1.03835i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 20.0000i | − 1.03556i | −0.855514 | − | 0.517780i | \(-0.826758\pi\) | ||||
0.855514 | − | 0.517780i | \(-0.173242\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 36.0000i | − 1.84920i | −0.380945 | − | 0.924598i | \(-0.624401\pi\) | ||||
0.380945 | − | 0.924598i | \(-0.375599\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 24.0000 | 1.22634 | 0.613171 | − | 0.789950i | \(-0.289894\pi\) | ||||
0.613171 | + | 0.789950i | \(0.289894\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 8.00000 | 0.407718 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 10.0000i | 0.507020i | 0.967333 | + | 0.253510i | \(0.0815851\pi\) | ||||
−0.967333 | + | 0.253510i | \(0.918415\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −24.0000 | −1.21373 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | − 14.0000i | − 0.704416i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 20.0000i | − 1.00377i | −0.864934 | − | 0.501886i | \(-0.832640\pi\) | ||||
0.864934 | − | 0.501886i | \(-0.167360\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −30.0000 | −1.49813 | −0.749064 | − | 0.662497i | \(-0.769497\pi\) | ||||
−0.749064 | + | 0.662497i | \(0.769497\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −16.0000 | −0.793091 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −6.00000 | −0.296681 | −0.148340 | − | 0.988936i | \(-0.547393\pi\) | ||||
−0.148340 | + | 0.988936i | \(0.547393\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 16.0000i | 0.787309i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 4.00000i | 0.195413i | 0.995215 | + | 0.0977064i | \(0.0311506\pi\) | ||||
−0.995215 | + | 0.0977064i | \(0.968849\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | − 20.0000i | − 0.974740i | −0.873195 | − | 0.487370i | \(-0.837956\pi\) | ||||
0.873195 | − | 0.487370i | \(-0.162044\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −6.00000 | −0.291043 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 16.0000i | − 0.774294i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −36.0000 | −1.73406 | −0.867029 | − | 0.498257i | \(-0.833974\pi\) | ||||
−0.867029 | + | 0.498257i | \(0.833974\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 14.0000 | 0.672797 | 0.336399 | − | 0.941720i | \(-0.390791\pi\) | ||||
0.336399 | + | 0.941720i | \(0.390791\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 16.0000i | − 0.765384i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −2.00000 | −0.0954548 | −0.0477274 | − | 0.998860i | \(-0.515198\pi\) | ||||
−0.0477274 | + | 0.998860i | \(0.515198\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 16.0000i | − 0.760183i | −0.924949 | − | 0.380091i | \(-0.875893\pi\) | ||||
0.924949 | − | 0.380091i | \(-0.124107\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 14.0000i | 0.663664i | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 18.0000 | 0.849473 | 0.424736 | − | 0.905317i | \(-0.360367\pi\) | ||||
0.424736 | + | 0.905317i | \(0.360367\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 40.0000i | 1.88353i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 18.0000 | 0.842004 | 0.421002 | − | 0.907060i | \(-0.361678\pi\) | ||||
0.421002 | + | 0.907060i | \(0.361678\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 34.0000i | − 1.58354i | −0.610821 | − | 0.791769i | \(-0.709160\pi\) | ||||
0.610821 | − | 0.791769i | \(-0.290840\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 22.0000 | 1.02243 | 0.511213 | − | 0.859454i | \(-0.329196\pi\) | ||||
0.511213 | + | 0.859454i | \(0.329196\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 8.00000i | 0.370196i | 0.982720 | + | 0.185098i | \(0.0592602\pi\) | ||||
−0.982720 | + | 0.185098i | \(0.940740\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 24.0000i | 1.10822i | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −16.0000 | −0.735681 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | − 4.00000i | − 0.183533i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 4.00000 | 0.182765 | 0.0913823 | − | 0.995816i | \(-0.470871\pi\) | ||||
0.0913823 | + | 0.995816i | \(0.470871\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 10.0000i | 0.454077i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 30.0000 | 1.35943 | 0.679715 | − | 0.733476i | \(-0.262104\pi\) | ||||
0.679715 | + | 0.733476i | \(0.262104\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 40.0000i | 1.80517i | 0.430507 | + | 0.902587i | \(0.358335\pi\) | ||||
−0.430507 | + | 0.902587i | \(0.641665\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 36.0000i | − 1.62136i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 8.00000 | 0.358849 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 20.0000i | − 0.895323i | −0.894203 | − | 0.447661i | \(-0.852257\pi\) | ||||
0.894203 | − | 0.447661i | \(-0.147743\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −12.0000 | −0.535054 | −0.267527 | − | 0.963550i | \(-0.586206\pi\) | ||||
−0.267527 | + | 0.963550i | \(0.586206\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 14.0000 | 0.622992 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 18.0000i | 0.797836i | 0.916987 | + | 0.398918i | \(0.130614\pi\) | ||||
−0.916987 | + | 0.398918i | \(0.869386\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −20.0000 | −0.884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 2.00000i | − 0.0881305i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 16.0000i | 0.703679i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 6.00000 | 0.262865 | 0.131432 | − | 0.991325i | \(-0.458042\pi\) | ||||
0.131432 | + | 0.991325i | \(0.458042\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 20.0000i | − 0.874539i | −0.899331 | − | 0.437269i | \(-0.855946\pi\) | ||||
0.899331 | − | 0.437269i | \(-0.144054\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −60.0000 | −2.61364 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.00000 | −0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −4.00000 | −0.172935 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 12.0000i | 0.516877i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 44.0000i | 1.89171i | 0.324593 | + | 0.945854i | \(0.394773\pi\) | ||||
−0.324593 | + | 0.945854i | \(0.605227\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −4.00000 | −0.171341 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 4.00000i | − 0.171028i | −0.996337 | − | 0.0855138i | \(-0.972747\pi\) | ||||
0.996337 | − | 0.0855138i | \(-0.0272532\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 24.0000 | 1.02243 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −28.0000 | −1.19068 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 42.0000i | − 1.77960i | −0.456354 | − | 0.889799i | \(-0.650845\pi\) | ||||
0.456354 | − | 0.889799i | \(-0.349155\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 6.00000i | 0.252422i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −2.00000 | −0.0838444 | −0.0419222 | − | 0.999121i | \(-0.513348\pi\) | ||||
−0.0419222 | + | 0.999121i | \(0.513348\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − 20.0000i | − 0.836974i | −0.908223 | − | 0.418487i | \(-0.862561\pi\) | ||||
0.908223 | − | 0.418487i | \(-0.137439\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 4.00000 | 0.166812 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −2.00000 | −0.0832611 | −0.0416305 | − | 0.999133i | \(-0.513255\pi\) | ||||
−0.0416305 | + | 0.999133i | \(0.513255\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −40.0000 | −1.65663 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 12.0000i | − 0.495293i | −0.968850 | − | 0.247647i | \(-0.920343\pi\) | ||||
0.968850 | − | 0.247647i | \(-0.0796572\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | − 40.0000i | − 1.64817i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −22.0000 | −0.903432 | −0.451716 | − | 0.892162i | \(-0.649188\pi\) | ||||
−0.451716 | + | 0.892162i | \(0.649188\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 12.0000i | 0.491952i | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 12.0000 | 0.490307 | 0.245153 | − | 0.969484i | \(-0.421162\pi\) | ||||
0.245153 | + | 0.969484i | \(0.421162\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −14.0000 | −0.571072 | −0.285536 | − | 0.958368i | \(-0.592172\pi\) | ||||
−0.285536 | + | 0.958368i | \(0.592172\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 5.00000i | 0.203279i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −2.00000 | −0.0811775 | −0.0405887 | − | 0.999176i | \(-0.512923\pi\) | ||||
−0.0405887 | + | 0.999176i | \(0.512923\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 20.0000i | 0.807792i | 0.914805 | + | 0.403896i | \(0.132344\pi\) | ||||
−0.914805 | + | 0.403896i | \(0.867656\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 6.00000 | 0.241551 | 0.120775 | − | 0.992680i | \(-0.461462\pi\) | ||||
0.120775 | + | 0.992680i | \(0.461462\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 20.0000i | 0.803868i | 0.915669 | + | 0.401934i | \(0.131662\pi\) | ||||
−0.915669 | + | 0.401934i | \(0.868338\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 28.0000 | 1.12180 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 24.0000i | − 0.956943i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 18.0000 | 0.716569 | 0.358284 | − | 0.933613i | \(-0.383362\pi\) | ||||
0.358284 | + | 0.933613i | \(0.383362\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | − 6.00000i | − 0.238103i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −14.0000 | −0.552967 | −0.276483 | − | 0.961019i | \(-0.589169\pi\) | ||||
−0.276483 | + | 0.961019i | \(0.589169\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 12.0000i | − 0.473234i | −0.971603 | − | 0.236617i | \(-0.923961\pi\) | ||||
0.971603 | − | 0.236617i | \(-0.0760386\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 12.0000 | 0.471769 | 0.235884 | − | 0.971781i | \(-0.424201\pi\) | ||||
0.235884 | + | 0.971781i | \(0.424201\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −32.0000 | −1.25611 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 30.0000i | 1.17399i | 0.809590 | + | 0.586995i | \(0.199689\pi\) | ||||
−0.809590 | + | 0.586995i | \(0.800311\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | − 32.0000i | − 1.24466i | −0.782757 | − | 0.622328i | \(-0.786187\pi\) | ||||
0.782757 | − | 0.622328i | \(-0.213813\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | −8.00000 | −0.310227 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 24.0000i | 0.929284i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 32.0000 | 1.23535 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −2.00000 | −0.0770943 | −0.0385472 | − | 0.999257i | \(-0.512273\pi\) | ||||
−0.0385472 | + | 0.999257i | \(0.512273\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 38.0000i | − 1.46046i | −0.683202 | − | 0.730229i | \(-0.739413\pi\) | ||||
0.683202 | − | 0.730229i | \(-0.260587\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 20.0000 | 0.767530 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 48.0000i | − 1.83667i | −0.395805 | − | 0.918334i | \(-0.629534\pi\) | ||||
0.395805 | − | 0.918334i | \(-0.370466\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | − 2.00000i | − 0.0764161i | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 12.0000i | 0.456502i | 0.973602 | + | 0.228251i | \(0.0733006\pi\) | ||||
−0.973602 | + | 0.228251i | \(0.926699\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −4.00000 | −0.151729 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −60.0000 | −2.27266 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 22.0000i | − 0.830929i | −0.909610 | − | 0.415464i | \(-0.863619\pi\) | ||||
0.909610 | − | 0.415464i | \(-0.136381\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 16.0000 | 0.603451 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 28.0000i | − 1.05305i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − 44.0000i | − 1.65245i | −0.563337 | − | 0.826227i | \(-0.690483\pi\) | ||||
0.563337 | − | 0.826227i | \(-0.309517\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 40.0000 | 1.49801 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −36.0000 | −1.34257 | −0.671287 | − | 0.741198i | \(-0.734258\pi\) | ||||
−0.671287 | + | 0.741198i | \(0.734258\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −4.00000 | −0.148968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 6.00000i | 0.222834i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 14.0000 | 0.519231 | 0.259616 | − | 0.965712i | \(-0.416404\pi\) | ||||
0.259616 | + | 0.965712i | \(0.416404\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | − 24.0000i | − 0.887672i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 24.0000i | 0.886460i | 0.896408 | + | 0.443230i | \(0.146168\pi\) | ||||
−0.896408 | + | 0.443230i | \(0.853832\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −48.0000 | −1.76810 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 12.0000i | 0.441427i | 0.975339 | + | 0.220714i | \(0.0708386\pi\) | ||||
−0.975339 | + | 0.220714i | \(0.929161\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −48.0000 | −1.76095 | −0.880475 | − | 0.474093i | \(-0.842776\pi\) | ||||
−0.880475 | + | 0.474093i | \(0.842776\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −6.00000 | −0.219823 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 8.00000i | 0.292314i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −26.0000 | −0.948753 | −0.474377 | − | 0.880322i | \(-0.657327\pi\) | ||||
−0.474377 | + | 0.880322i | \(0.657327\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | − 2.00000i | − 0.0727875i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 8.00000i | 0.290765i | 0.989376 | + | 0.145382i | \(0.0464413\pi\) | ||||
−0.989376 | + | 0.145382i | \(0.953559\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −10.0000 | −0.362500 | −0.181250 | − | 0.983437i | \(-0.558014\pi\) | ||||
−0.181250 | + | 0.983437i | \(0.558014\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 8.00000i | 0.289619i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −6.00000 | −0.216366 | −0.108183 | − | 0.994131i | \(-0.534503\pi\) | ||||
−0.108183 | + | 0.994131i | \(0.534503\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 6.00000i | 0.215805i | 0.994161 | + | 0.107903i | \(0.0344134\pi\) | ||||
−0.994161 | + | 0.107903i | \(0.965587\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 10.0000 | 0.359211 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 40.0000i | − 1.43315i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 16.0000i | 0.572525i | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −20.0000 | −0.713831 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 28.0000i | 0.998092i | 0.866575 | + | 0.499046i | \(0.166316\pi\) | ||||
−0.866575 | + | 0.499046i | \(0.833684\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 12.0000 | 0.426671 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 30.0000i | 1.06265i | 0.847167 | + | 0.531327i | \(0.178307\pi\) | ||||
−0.847167 | + | 0.531327i | \(0.821693\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −24.0000 | −0.849059 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 40.0000i | − 1.41157i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | − 8.00000i | − 0.281963i | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −10.0000 | −0.351581 | −0.175791 | − | 0.984428i | \(-0.556248\pi\) | ||||
−0.175791 | + | 0.984428i | \(0.556248\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 4.00000i | − 0.140459i | −0.997531 | − | 0.0702295i | \(-0.977627\pi\) | ||||
0.997531 | − | 0.0702295i | \(-0.0223732\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 20.0000 | 0.700569 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000 | 0.559769 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | − 10.0000i | − 0.349002i | −0.984657 | − | 0.174501i | \(-0.944169\pi\) | ||||
0.984657 | − | 0.174501i | \(-0.0558313\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −42.0000 | −1.46403 | −0.732014 | − | 0.681290i | \(-0.761419\pi\) | ||||
−0.732014 | + | 0.681290i | \(0.761419\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 4.00000i | 0.139094i | 0.997579 | + | 0.0695468i | \(0.0221553\pi\) | ||||
−0.997579 | + | 0.0695468i | \(0.977845\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 44.0000i | 1.52818i | 0.645108 | + | 0.764092i | \(0.276812\pi\) | ||||
−0.645108 | + | 0.764092i | \(0.723188\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −18.0000 | −0.623663 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | − 24.0000i | − 0.830554i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 4.00000 | 0.138095 | 0.0690477 | − | 0.997613i | \(-0.478004\pi\) | ||||
0.0690477 | + | 0.997613i | \(0.478004\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −7.00000 | −0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | − 13.0000i | − 0.447214i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 10.0000 | 0.343604 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 16.0000i | 0.548473i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 44.0000i | 1.50653i | 0.657716 | + | 0.753266i | \(0.271523\pi\) | ||||
−0.657716 | + | 0.753266i | \(0.728477\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −6.00000 | −0.204956 | −0.102478 | − | 0.994735i | \(-0.532677\pi\) | ||||
−0.102478 | + | 0.994735i | \(0.532677\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − 44.0000i | − 1.50126i | −0.660722 | − | 0.750630i | \(-0.729750\pi\) | ||||
0.660722 | − | 0.750630i | \(-0.270250\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 24.0000 | 0.816970 | 0.408485 | − | 0.912765i | \(-0.366057\pi\) | ||||
0.408485 | + | 0.912765i | \(0.366057\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −10.0000 | −0.340010 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 56.0000i | − 1.89967i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | − 2.00000i | − 0.0676123i | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 44.0000i | − 1.48577i | −0.669417 | − | 0.742887i | \(-0.733456\pi\) | ||||
0.669417 | − | 0.742887i | \(-0.266544\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 6.00000 | 0.202145 | 0.101073 | − | 0.994879i | \(-0.467773\pi\) | ||||
0.101073 | + | 0.994879i | \(0.467773\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 28.0000i | − 0.942275i | −0.882060 | − | 0.471138i | \(-0.843844\pi\) | ||||
0.882060 | − | 0.471138i | \(-0.156156\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 16.0000 | 0.537227 | 0.268614 | − | 0.963248i | \(-0.413434\pi\) | ||||
0.268614 | + | 0.963248i | \(0.413434\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −12.0000 | −0.402467 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 16.0000i | − 0.535420i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 60.0000i | 2.00111i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | − 60.0000i | − 1.99889i | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 20.0000 | 0.664822 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 52.0000i | − 1.72663i | −0.504664 | − | 0.863316i | \(-0.668384\pi\) | ||||
0.504664 | − | 0.863316i | \(-0.331616\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −48.0000 | −1.59031 | −0.795155 | − | 0.606406i | \(-0.792611\pi\) | ||||
−0.795155 | + | 0.606406i | \(0.792611\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 26.0000 | 0.857661 | 0.428830 | − | 0.903385i | \(-0.358926\pi\) | ||||
0.428830 | + | 0.903385i | \(0.358926\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 4.00000i | 0.131519i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −46.0000 | −1.50921 | −0.754606 | − | 0.656179i | \(-0.772172\pi\) | ||||
−0.754606 | + | 0.656179i | \(0.772172\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | − 12.0000i | − 0.393284i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −24.0000 | −0.784884 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 22.0000 | 0.718709 | 0.359354 | − | 0.933201i | \(-0.382997\pi\) | ||||
0.359354 | + | 0.933201i | \(0.382997\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 26.0000i | − 0.847576i | −0.905761 | − | 0.423788i | \(-0.860700\pi\) | ||||
0.905761 | − | 0.423788i | \(-0.139300\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 40.0000 | 1.30258 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 36.0000i | 1.16984i | 0.811090 | + | 0.584921i | \(0.198875\pi\) | ||||
−0.811090 | + | 0.584921i | \(0.801125\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 26.0000 | 0.842223 | 0.421111 | − | 0.907009i | \(-0.361640\pi\) | ||||
0.421111 | + | 0.907009i | \(0.361640\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 8.00000i | 0.258874i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −4.00000 | −0.129167 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 69.0000 | 2.22581 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 14.0000i | 0.450676i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −46.0000 | −1.47926 | −0.739630 | − | 0.673014i | \(-0.765000\pi\) | ||||
−0.739630 | + | 0.673014i | \(0.765000\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | − 12.0000i | − 0.385098i | −0.981287 | − | 0.192549i | \(-0.938325\pi\) | ||||
0.981287 | − | 0.192549i | \(-0.0616755\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 8.00000i | 0.256468i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 22.0000 | 0.703842 | 0.351921 | − | 0.936030i | \(-0.385529\pi\) | ||||
0.351921 | + | 0.936030i | \(0.385529\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 56.0000i | 1.78977i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −32.0000 | −1.02064 | −0.510321 | − | 0.859984i | \(-0.670473\pi\) | ||||
−0.510321 | + | 0.859984i | \(0.670473\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −10.0000 | −0.318626 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 16.0000i | 0.508770i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −2.00000 | −0.0635321 | −0.0317660 | − | 0.999495i | \(-0.510113\pi\) | ||||
−0.0317660 | + | 0.999495i | \(0.510113\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | − 6.00000i | − 0.190213i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 28.0000i | 0.886769i | 0.896332 | + | 0.443384i | \(0.146222\pi\) | ||||
−0.896332 | + | 0.443384i | \(0.853778\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))