Properties

Label 1440.2.k.a
Level $1440$
Weight $2$
Character orbit 1440.k
Analytic conductor $11.498$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,2,Mod(721,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.721");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4984578911\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{5} - 2 q^{7} +O(q^{10}) \) Copy content Toggle raw display \( q - i q^{5} - 2 q^{7} - 4 i q^{11} + 6 q^{17} + 4 i q^{19} - 4 q^{23} - q^{25} - 6 i q^{29} - 10 q^{31} + 2 i q^{35} - 4 i q^{37} - 10 q^{41} - 4 i q^{43} - 4 q^{47} - 3 q^{49} - 10 i q^{53} - 4 q^{55} - 8 i q^{59} + 8 i q^{61} - 12 i q^{67} - 4 q^{71} + 10 q^{73} + 8 i q^{77} + 14 q^{79} - 6 i q^{85} - 14 q^{89} + 4 q^{95} - 10 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{7} + 12 q^{17} - 8 q^{23} - 2 q^{25} - 20 q^{31} - 20 q^{41} - 8 q^{47} - 6 q^{49} - 8 q^{55} - 8 q^{71} + 20 q^{73} + 28 q^{79} - 28 q^{89} + 8 q^{95} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
721.1
1.00000i
1.00000i
0 0 0 1.00000i 0 −2.00000 0 0 0
721.2 0 0 0 1.00000i 0 −2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.2.k.a 2
3.b odd 2 1 480.2.k.a 2
4.b odd 2 1 360.2.k.b 2
5.b even 2 1 7200.2.k.f 2
5.c odd 4 1 7200.2.d.e 2
5.c odd 4 1 7200.2.d.f 2
8.b even 2 1 inner 1440.2.k.a 2
8.d odd 2 1 360.2.k.b 2
12.b even 2 1 120.2.k.a 2
15.d odd 2 1 2400.2.k.b 2
15.e even 4 1 2400.2.d.a 2
15.e even 4 1 2400.2.d.d 2
20.d odd 2 1 1800.2.k.g 2
20.e even 4 1 1800.2.d.c 2
20.e even 4 1 1800.2.d.h 2
24.f even 2 1 120.2.k.a 2
24.h odd 2 1 480.2.k.a 2
40.e odd 2 1 1800.2.k.g 2
40.f even 2 1 7200.2.k.f 2
40.i odd 4 1 7200.2.d.e 2
40.i odd 4 1 7200.2.d.f 2
40.k even 4 1 1800.2.d.c 2
40.k even 4 1 1800.2.d.h 2
48.i odd 4 1 3840.2.a.m 1
48.i odd 4 1 3840.2.a.r 1
48.k even 4 1 3840.2.a.d 1
48.k even 4 1 3840.2.a.w 1
60.h even 2 1 600.2.k.a 2
60.l odd 4 1 600.2.d.a 2
60.l odd 4 1 600.2.d.d 2
120.i odd 2 1 2400.2.k.b 2
120.m even 2 1 600.2.k.a 2
120.q odd 4 1 600.2.d.a 2
120.q odd 4 1 600.2.d.d 2
120.w even 4 1 2400.2.d.a 2
120.w even 4 1 2400.2.d.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.k.a 2 12.b even 2 1
120.2.k.a 2 24.f even 2 1
360.2.k.b 2 4.b odd 2 1
360.2.k.b 2 8.d odd 2 1
480.2.k.a 2 3.b odd 2 1
480.2.k.a 2 24.h odd 2 1
600.2.d.a 2 60.l odd 4 1
600.2.d.a 2 120.q odd 4 1
600.2.d.d 2 60.l odd 4 1
600.2.d.d 2 120.q odd 4 1
600.2.k.a 2 60.h even 2 1
600.2.k.a 2 120.m even 2 1
1440.2.k.a 2 1.a even 1 1 trivial
1440.2.k.a 2 8.b even 2 1 inner
1800.2.d.c 2 20.e even 4 1
1800.2.d.c 2 40.k even 4 1
1800.2.d.h 2 20.e even 4 1
1800.2.d.h 2 40.k even 4 1
1800.2.k.g 2 20.d odd 2 1
1800.2.k.g 2 40.e odd 2 1
2400.2.d.a 2 15.e even 4 1
2400.2.d.a 2 120.w even 4 1
2400.2.d.d 2 15.e even 4 1
2400.2.d.d 2 120.w even 4 1
2400.2.k.b 2 15.d odd 2 1
2400.2.k.b 2 120.i odd 2 1
3840.2.a.d 1 48.k even 4 1
3840.2.a.m 1 48.i odd 4 1
3840.2.a.r 1 48.i odd 4 1
3840.2.a.w 1 48.k even 4 1
7200.2.d.e 2 5.c odd 4 1
7200.2.d.e 2 40.i odd 4 1
7200.2.d.f 2 5.c odd 4 1
7200.2.d.f 2 40.i odd 4 1
7200.2.k.f 2 5.b even 2 1
7200.2.k.f 2 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1440, [\chi])\):

\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{17} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( (T + 10)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T + 10)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T + 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 100 \) Copy content Toggle raw display
$59$ \( T^{2} + 64 \) Copy content Toggle raw display
$61$ \( T^{2} + 64 \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( (T + 4)^{2} \) Copy content Toggle raw display
$73$ \( (T - 10)^{2} \) Copy content Toggle raw display
$79$ \( (T - 14)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 14)^{2} \) Copy content Toggle raw display
$97$ \( (T + 10)^{2} \) Copy content Toggle raw display
show more
show less