Properties

Label 1440.2.h
Level $1440$
Weight $2$
Character orbit 1440.h
Rep. character $\chi_{1440}(1151,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $4$
Sturm bound $576$
Trace bound $23$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(576\)
Trace bound: \(23\)
Distinguishing \(T_p\): \(11\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1440, [\chi])\).

Total New Old
Modular forms 320 16 304
Cusp forms 256 16 240
Eisenstein series 64 0 64

Trace form

\( 16 q + O(q^{10}) \) \( 16 q - 32 q^{13} - 16 q^{25} + 32 q^{37} + 16 q^{49} + 32 q^{61} - 32 q^{73} - 32 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1440, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1440.2.h.a 1440.h 12.b $4$ $11.498$ \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\zeta_{8}q^{5}+(2\zeta_{8}-\zeta_{8}^{2})q^{7}+(-4-\zeta_{8}^{3})q^{11}+\cdots\)
1440.2.h.b 1440.h 12.b $4$ $11.498$ \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\zeta_{8}q^{5}+(2\zeta_{8}-\zeta_{8}^{2})q^{7}-\zeta_{8}^{3}q^{11}+\cdots\)
1440.2.h.c 1440.h 12.b $4$ $11.498$ \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{8}q^{5}+(2\zeta_{8}-\zeta_{8}^{2})q^{7}+\zeta_{8}^{3}q^{11}+\cdots\)
1440.2.h.d 1440.h 12.b $4$ $11.498$ \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{8}q^{5}+(2\zeta_{8}-\zeta_{8}^{2})q^{7}+(4+\zeta_{8}^{3})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1440, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1440, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)