# Properties

 Label 1440.2.d.e Level $1440$ Weight $2$ Character orbit 1440.d Analytic conductor $11.498$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1440 = 2^{5} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1440.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.4984578911$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: 6.0.839056.1 Defining polynomial: $$x^{6} + 6x^{4} + 8x^{2} + 1$$ x^6 + 6*x^4 + 8*x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{5}$$ Twist minimal: no (minimal twist has level 120) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{2} q^{5} - \beta_1 q^{7}+O(q^{10})$$ q + b2 * q^5 - b1 * q^7 $$q + \beta_{2} q^{5} - \beta_1 q^{7} + ( - \beta_{5} - \beta_1) q^{11} + ( - \beta_{3} - 1) q^{13} + ( - \beta_{5} - \beta_{4} + \beta_{2}) q^{17} + (\beta_{4} - \beta_{2} + \beta_1) q^{19} + ( - 2 \beta_{5} - \beta_{4} + \beta_{2} - \beta_1) q^{23} + (\beta_{5} + \beta_{3}) q^{25} + ( - 2 \beta_{5} - \beta_{4} + \beta_{2}) q^{29} + ( - \beta_{4} - \beta_{3} - \beta_{2} + 3) q^{31} + ( - \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} + \beta_1 - 1) q^{35} + (\beta_{3} - 3) q^{37} + (2 \beta_{4} + 2 \beta_{3} + 2 \beta_{2}) q^{41} + ( - 2 \beta_{4} - 2 \beta_{2}) q^{43} + ( - \beta_{4} + \beta_{2} - \beta_1) q^{47} + (2 \beta_{4} + 2 \beta_{2} - 1) q^{49} + ( - \beta_{4} - \beta_{2} - 4) q^{53} + ( - 2 \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} - \beta_1 + 1) q^{55} + (\beta_{5} + 3 \beta_1) q^{59} + ( - 2 \beta_{4} + 2 \beta_{2} + 2 \beta_1) q^{61} + ( - \beta_{5} - 3 \beta_{4} - \beta_{2} - 2 \beta_1 + 2) q^{65} + (2 \beta_{4} + 2 \beta_{2}) q^{67} + (2 \beta_{4} + 2 \beta_{3} + 2 \beta_{2} + 2) q^{71} + ( - 2 \beta_{5} - 4 \beta_{4} + 4 \beta_{2}) q^{73} - 4 q^{77} + (\beta_{4} + \beta_{3} + \beta_{2} - 3) q^{79} + ( - 2 \beta_{3} - 2) q^{83} + (2 \beta_{4} + \beta_{3} - 2 \beta_1 - 3) q^{85} + (2 \beta_{4} - 2 \beta_{3} + 2 \beta_{2} + 4) q^{89} + ( - 2 \beta_{5} - 4 \beta_{4} + 4 \beta_{2} + 2 \beta_1) q^{91} + (\beta_{4} - 2 \beta_{3} - \beta_{2} - \beta_1 + 6) q^{95} + ( - 2 \beta_{5} + 2 \beta_{4} - 2 \beta_{2}) q^{97}+O(q^{100})$$ q + b2 * q^5 - b1 * q^7 + (-b5 - b1) * q^11 + (-b3 - 1) * q^13 + (-b5 - b4 + b2) * q^17 + (b4 - b2 + b1) * q^19 + (-2*b5 - b4 + b2 - b1) * q^23 + (b5 + b3) * q^25 + (-2*b5 - b4 + b2) * q^29 + (-b4 - b3 - b2 + 3) * q^31 + (-b5 - b4 + b3 + b2 + b1 - 1) * q^35 + (b3 - 3) * q^37 + (2*b4 + 2*b3 + 2*b2) * q^41 + (-2*b4 - 2*b2) * q^43 + (-b4 + b2 - b1) * q^47 + (2*b4 + 2*b2 - 1) * q^49 + (-b4 - b2 - 4) * q^53 + (-2*b5 + b4 + b3 + b2 - b1 + 1) * q^55 + (b5 + 3*b1) * q^59 + (-2*b4 + 2*b2 + 2*b1) * q^61 + (-b5 - 3*b4 - b2 - 2*b1 + 2) * q^65 + (2*b4 + 2*b2) * q^67 + (2*b4 + 2*b3 + 2*b2 + 2) * q^71 + (-2*b5 - 4*b4 + 4*b2) * q^73 - 4 * q^77 + (b4 + b3 + b2 - 3) * q^79 + (-2*b3 - 2) * q^83 + (2*b4 + b3 - 2*b1 - 3) * q^85 + (2*b4 - 2*b3 + 2*b2 + 4) * q^89 + (-2*b5 - 4*b4 + 4*b2 + 2*b1) * q^91 + (b4 - 2*b3 - b2 - b1 + 6) * q^95 + (-2*b5 + 2*b4 - 2*b2) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q+O(q^{10})$$ 6 * q $$6 q - 8 q^{13} + 2 q^{25} + 16 q^{31} - 4 q^{35} - 16 q^{37} + 4 q^{41} - 6 q^{49} - 24 q^{53} + 8 q^{55} + 12 q^{65} + 16 q^{71} - 24 q^{77} - 16 q^{79} - 16 q^{83} - 16 q^{85} + 20 q^{89} + 32 q^{95}+O(q^{100})$$ 6 * q - 8 * q^13 + 2 * q^25 + 16 * q^31 - 4 * q^35 - 16 * q^37 + 4 * q^41 - 6 * q^49 - 24 * q^53 + 8 * q^55 + 12 * q^65 + 16 * q^71 - 24 * q^77 - 16 * q^79 - 16 * q^83 - 16 * q^85 + 20 * q^89 + 32 * q^95

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} + 6x^{4} + 8x^{2} + 1$$ :

 $$\beta_{1}$$ $$=$$ $$2\nu$$ 2*v $$\beta_{2}$$ $$=$$ $$\nu^{5} + 5\nu^{3} + \nu^{2} + 4\nu + 2$$ v^5 + 5*v^3 + v^2 + 4*v + 2 $$\beta_{3}$$ $$=$$ $$2\nu^{4} + 8\nu^{2} + 3$$ 2*v^4 + 8*v^2 + 3 $$\beta_{4}$$ $$=$$ $$-\nu^{5} - 5\nu^{3} + \nu^{2} - 4\nu + 2$$ -v^5 - 5*v^3 + v^2 - 4*v + 2 $$\beta_{5}$$ $$=$$ $$2\nu^{5} + 12\nu^{3} + 14\nu$$ 2*v^5 + 12*v^3 + 14*v
 $$\nu$$ $$=$$ $$( \beta_1 ) / 2$$ (b1) / 2 $$\nu^{2}$$ $$=$$ $$( \beta_{4} + \beta_{2} - 4 ) / 2$$ (b4 + b2 - 4) / 2 $$\nu^{3}$$ $$=$$ $$( \beta_{5} + \beta_{4} - \beta_{2} - 3\beta_1 ) / 2$$ (b5 + b4 - b2 - 3*b1) / 2 $$\nu^{4}$$ $$=$$ $$( -4\beta_{4} + \beta_{3} - 4\beta_{2} + 13 ) / 2$$ (-4*b4 + b3 - 4*b2 + 13) / 2 $$\nu^{5}$$ $$=$$ $$( -5\beta_{5} - 6\beta_{4} + 6\beta_{2} + 11\beta_1 ) / 2$$ (-5*b5 - 6*b4 + 6*b2 + 11*b1) / 2

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$641$$ $$901$$ $$991$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1009.1
 − 2.02852i 2.02852i 1.32132i − 1.32132i − 0.373087i 0.373087i
0 0 0 −2.11491 0.726062i 0 4.05705i 0 0 0
1009.2 0 0 0 −2.11491 + 0.726062i 0 4.05705i 0 0 0
1009.3 0 0 0 0.254102 2.22158i 0 2.64265i 0 0 0
1009.4 0 0 0 0.254102 + 2.22158i 0 2.64265i 0 0 0
1009.5 0 0 0 1.86081 1.23992i 0 0.746175i 0 0 0
1009.6 0 0 0 1.86081 + 1.23992i 0 0.746175i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1009.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.2.d.e 6
3.b odd 2 1 480.2.d.a 6
4.b odd 2 1 360.2.d.f 6
5.b even 2 1 1440.2.d.f 6
5.c odd 4 2 7200.2.k.u 12
8.b even 2 1 1440.2.d.f 6
8.d odd 2 1 360.2.d.e 6
12.b even 2 1 120.2.d.a 6
15.d odd 2 1 480.2.d.b 6
15.e even 4 2 2400.2.k.f 12
20.d odd 2 1 360.2.d.e 6
20.e even 4 2 1800.2.k.u 12
24.f even 2 1 120.2.d.b yes 6
24.h odd 2 1 480.2.d.b 6
40.e odd 2 1 360.2.d.f 6
40.f even 2 1 inner 1440.2.d.e 6
40.i odd 4 2 7200.2.k.u 12
40.k even 4 2 1800.2.k.u 12
48.i odd 4 2 3840.2.f.m 12
48.k even 4 2 3840.2.f.l 12
60.h even 2 1 120.2.d.b yes 6
60.l odd 4 2 600.2.k.f 12
120.i odd 2 1 480.2.d.a 6
120.m even 2 1 120.2.d.a 6
120.q odd 4 2 600.2.k.f 12
120.w even 4 2 2400.2.k.f 12
240.t even 4 2 3840.2.f.l 12
240.bm odd 4 2 3840.2.f.m 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.d.a 6 12.b even 2 1
120.2.d.a 6 120.m even 2 1
120.2.d.b yes 6 24.f even 2 1
120.2.d.b yes 6 60.h even 2 1
360.2.d.e 6 8.d odd 2 1
360.2.d.e 6 20.d odd 2 1
360.2.d.f 6 4.b odd 2 1
360.2.d.f 6 40.e odd 2 1
480.2.d.a 6 3.b odd 2 1
480.2.d.a 6 120.i odd 2 1
480.2.d.b 6 15.d odd 2 1
480.2.d.b 6 24.h odd 2 1
600.2.k.f 12 60.l odd 4 2
600.2.k.f 12 120.q odd 4 2
1440.2.d.e 6 1.a even 1 1 trivial
1440.2.d.e 6 40.f even 2 1 inner
1440.2.d.f 6 5.b even 2 1
1440.2.d.f 6 8.b even 2 1
1800.2.k.u 12 20.e even 4 2
1800.2.k.u 12 40.k even 4 2
2400.2.k.f 12 15.e even 4 2
2400.2.k.f 12 120.w even 4 2
3840.2.f.l 12 48.k even 4 2
3840.2.f.l 12 240.t even 4 2
3840.2.f.m 12 48.i odd 4 2
3840.2.f.m 12 240.bm odd 4 2
7200.2.k.u 12 5.c odd 4 2
7200.2.k.u 12 40.i odd 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1440, [\chi])$$:

 $$T_{7}^{6} + 24T_{7}^{4} + 128T_{7}^{2} + 64$$ T7^6 + 24*T7^4 + 128*T7^2 + 64 $$T_{11}^{6} + 32T_{11}^{4} + 96T_{11}^{2} + 64$$ T11^6 + 32*T11^4 + 96*T11^2 + 64 $$T_{13}^{3} + 4T_{13}^{2} - 16T_{13} - 56$$ T13^3 + 4*T13^2 - 16*T13 - 56

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{6}$$
$3$ $$T^{6}$$
$5$ $$T^{6} - T^{4} + 8 T^{3} - 5 T^{2} + \cdots + 125$$
$7$ $$T^{6} + 24 T^{4} + 128 T^{2} + \cdots + 64$$
$11$ $$T^{6} + 32 T^{4} + 96 T^{2} + 64$$
$13$ $$(T^{3} + 4 T^{2} - 16 T - 56)^{2}$$
$17$ $$T^{6} + 36 T^{4} + 368 T^{2} + \cdots + 1024$$
$19$ $$T^{6} + 60 T^{4} + 512 T^{2} + \cdots + 1024$$
$23$ $$T^{6} + 92 T^{4} + 2304 T^{2} + \cdots + 16384$$
$29$ $$T^{6} + 108 T^{4} + 3120 T^{2} + \cdots + 12544$$
$31$ $$(T^{3} - 8 T^{2} - 4 T + 64)^{2}$$
$37$ $$(T^{3} + 8 T^{2} - 8)^{2}$$
$41$ $$(T^{3} - 2 T^{2} - 100 T - 56)^{2}$$
$43$ $$(T^{3} - 64 T - 64)^{2}$$
$47$ $$T^{6} + 60 T^{4} + 512 T^{2} + \cdots + 1024$$
$53$ $$(T^{3} + 12 T^{2} + 32 T - 8)^{2}$$
$59$ $$T^{6} + 176 T^{4} + 9888 T^{2} + \cdots + 179776$$
$61$ $$T^{6} + 176 T^{4} + 7168 T^{2} + \cdots + 65536$$
$67$ $$(T^{3} - 64 T + 64)^{2}$$
$71$ $$(T^{3} - 8 T^{2} - 80 T + 128)^{2}$$
$73$ $$T^{6} + 384 T^{4} + 34560 T^{2} + \cdots + 16384$$
$79$ $$(T^{3} + 8 T^{2} - 4 T - 64)^{2}$$
$83$ $$(T^{3} + 8 T^{2} - 64 T - 448)^{2}$$
$89$ $$(T^{3} - 10 T^{2} - 164 T + 1384)^{2}$$
$97$ $$T^{6} + 336 T^{4} + 28416 T^{2} + \cdots + 262144$$