# Properties

 Label 1440.2.d.b Level $1440$ Weight $2$ Character orbit 1440.d Analytic conductor $11.498$ Analytic rank $0$ Dimension $4$ CM discriminant -24 Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1440 = 2^{5} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1440.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.4984578911$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} + 2 x^{2} + 4$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{4}$$ Twist minimal: no (minimal twist has level 360) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{5} -\beta_{3} q^{7} +O(q^{10})$$ $$q + \beta_{1} q^{5} -\beta_{3} q^{7} + ( \beta_{1} + \beta_{2} ) q^{11} + ( -1 - \beta_{3} ) q^{25} + ( -3 \beta_{1} - 3 \beta_{2} ) q^{29} -10 q^{31} + ( -\beta_{1} + 5 \beta_{2} ) q^{35} -17 q^{49} + ( 5 \beta_{1} - 5 \beta_{2} ) q^{53} + ( -6 - \beta_{3} ) q^{55} + ( -3 \beta_{1} - 3 \beta_{2} ) q^{59} -2 \beta_{3} q^{73} + ( -6 \beta_{1} + 6 \beta_{2} ) q^{77} + 10 q^{79} + ( 2 \beta_{1} - 2 \beta_{2} ) q^{83} -4 \beta_{3} q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q - 4q^{25} - 40q^{31} - 68q^{49} - 24q^{55} + 40q^{79} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 2 x^{2} + 4$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$\nu^{3} + 2 \nu^{2} + 2$$$$)/2$$ $$\beta_{2}$$ $$=$$ $$($$$$-\nu^{3} + 2 \nu^{2} + 2$$$$)/2$$ $$\beta_{3}$$ $$=$$ $$\nu^{3} + 4 \nu$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{3} + \beta_{2} - \beta_{1}$$$$)/4$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{2} + \beta_{1} - 2$$$$)/2$$ $$\nu^{3}$$ $$=$$ $$-\beta_{2} + \beta_{1}$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$641$$ $$901$$ $$991$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1009.1
 0.707107 − 1.22474i 0.707107 + 1.22474i −0.707107 + 1.22474i −0.707107 − 1.22474i
0 0 0 −1.41421 1.73205i 0 4.89898i 0 0 0
1009.2 0 0 0 −1.41421 + 1.73205i 0 4.89898i 0 0 0
1009.3 0 0 0 1.41421 1.73205i 0 4.89898i 0 0 0
1009.4 0 0 0 1.41421 + 1.73205i 0 4.89898i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by $$\Q(\sqrt{-6})$$
3.b odd 2 1 inner
5.b even 2 1 inner
8.b even 2 1 inner
15.d odd 2 1 inner
40.f even 2 1 inner
120.i odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.2.d.b 4
3.b odd 2 1 inner 1440.2.d.b 4
4.b odd 2 1 360.2.d.d 4
5.b even 2 1 inner 1440.2.d.b 4
5.c odd 4 2 7200.2.k.k 4
8.b even 2 1 inner 1440.2.d.b 4
8.d odd 2 1 360.2.d.d 4
12.b even 2 1 360.2.d.d 4
15.d odd 2 1 inner 1440.2.d.b 4
15.e even 4 2 7200.2.k.k 4
20.d odd 2 1 360.2.d.d 4
20.e even 4 2 1800.2.k.k 4
24.f even 2 1 360.2.d.d 4
24.h odd 2 1 CM 1440.2.d.b 4
40.e odd 2 1 360.2.d.d 4
40.f even 2 1 inner 1440.2.d.b 4
40.i odd 4 2 7200.2.k.k 4
40.k even 4 2 1800.2.k.k 4
60.h even 2 1 360.2.d.d 4
60.l odd 4 2 1800.2.k.k 4
120.i odd 2 1 inner 1440.2.d.b 4
120.m even 2 1 360.2.d.d 4
120.q odd 4 2 1800.2.k.k 4
120.w even 4 2 7200.2.k.k 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.d.d 4 4.b odd 2 1
360.2.d.d 4 8.d odd 2 1
360.2.d.d 4 12.b even 2 1
360.2.d.d 4 20.d odd 2 1
360.2.d.d 4 24.f even 2 1
360.2.d.d 4 40.e odd 2 1
360.2.d.d 4 60.h even 2 1
360.2.d.d 4 120.m even 2 1
1440.2.d.b 4 1.a even 1 1 trivial
1440.2.d.b 4 3.b odd 2 1 inner
1440.2.d.b 4 5.b even 2 1 inner
1440.2.d.b 4 8.b even 2 1 inner
1440.2.d.b 4 15.d odd 2 1 inner
1440.2.d.b 4 24.h odd 2 1 CM
1440.2.d.b 4 40.f even 2 1 inner
1440.2.d.b 4 120.i odd 2 1 inner
1800.2.k.k 4 20.e even 4 2
1800.2.k.k 4 40.k even 4 2
1800.2.k.k 4 60.l odd 4 2
1800.2.k.k 4 120.q odd 4 2
7200.2.k.k 4 5.c odd 4 2
7200.2.k.k 4 15.e even 4 2
7200.2.k.k 4 40.i odd 4 2
7200.2.k.k 4 120.w even 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1440, [\chi])$$:

 $$T_{7}^{2} + 24$$ $$T_{11}^{2} + 12$$ $$T_{13}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$25 + 2 T^{2} + T^{4}$$
$7$ $$( 24 + T^{2} )^{2}$$
$11$ $$( 12 + T^{2} )^{2}$$
$13$ $$T^{4}$$
$17$ $$T^{4}$$
$19$ $$T^{4}$$
$23$ $$T^{4}$$
$29$ $$( 108 + T^{2} )^{2}$$
$31$ $$( 10 + T )^{4}$$
$37$ $$T^{4}$$
$41$ $$T^{4}$$
$43$ $$T^{4}$$
$47$ $$T^{4}$$
$53$ $$( -200 + T^{2} )^{2}$$
$59$ $$( 108 + T^{2} )^{2}$$
$61$ $$T^{4}$$
$67$ $$T^{4}$$
$71$ $$T^{4}$$
$73$ $$( 96 + T^{2} )^{2}$$
$79$ $$( -10 + T )^{4}$$
$83$ $$( -32 + T^{2} )^{2}$$
$89$ $$T^{4}$$
$97$ $$( 384 + T^{2} )^{2}$$