# Properties

 Label 1440.2.a.e Level $1440$ Weight $2$ Character orbit 1440.a Self dual yes Analytic conductor $11.498$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1440 = 2^{5} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1440.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$11.4984578911$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{5} + 2 q^{7}+O(q^{10})$$ q - q^5 + 2 * q^7 $$q - q^{5} + 2 q^{7} - 2 q^{11} + 2 q^{17} + 4 q^{19} + q^{25} - 2 q^{29} + 8 q^{31} - 2 q^{35} - 4 q^{37} + 8 q^{41} + 8 q^{43} + 8 q^{47} - 3 q^{49} - 10 q^{53} + 2 q^{55} + 6 q^{59} + 2 q^{61} + 12 q^{67} - 12 q^{71} - 2 q^{73} - 4 q^{77} + 8 q^{79} + 4 q^{83} - 2 q^{85} + 12 q^{89} - 4 q^{95} + 10 q^{97}+O(q^{100})$$ q - q^5 + 2 * q^7 - 2 * q^11 + 2 * q^17 + 4 * q^19 + q^25 - 2 * q^29 + 8 * q^31 - 2 * q^35 - 4 * q^37 + 8 * q^41 + 8 * q^43 + 8 * q^47 - 3 * q^49 - 10 * q^53 + 2 * q^55 + 6 * q^59 + 2 * q^61 + 12 * q^67 - 12 * q^71 - 2 * q^73 - 4 * q^77 + 8 * q^79 + 4 * q^83 - 2 * q^85 + 12 * q^89 - 4 * q^95 + 10 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 2.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$5$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.2.a.e yes 1
3.b odd 2 1 1440.2.a.m yes 1
4.b odd 2 1 1440.2.a.b 1
5.b even 2 1 7200.2.a.m 1
5.c odd 4 2 7200.2.f.h 2
8.b even 2 1 2880.2.a.be 1
8.d odd 2 1 2880.2.a.v 1
12.b even 2 1 1440.2.a.h yes 1
15.d odd 2 1 7200.2.a.n 1
15.e even 4 2 7200.2.f.u 2
20.d odd 2 1 7200.2.a.bo 1
20.e even 4 2 7200.2.f.v 2
24.f even 2 1 2880.2.a.g 1
24.h odd 2 1 2880.2.a.l 1
60.h even 2 1 7200.2.a.bn 1
60.l odd 4 2 7200.2.f.i 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1440.2.a.b 1 4.b odd 2 1
1440.2.a.e yes 1 1.a even 1 1 trivial
1440.2.a.h yes 1 12.b even 2 1
1440.2.a.m yes 1 3.b odd 2 1
2880.2.a.g 1 24.f even 2 1
2880.2.a.l 1 24.h odd 2 1
2880.2.a.v 1 8.d odd 2 1
2880.2.a.be 1 8.b even 2 1
7200.2.a.m 1 5.b even 2 1
7200.2.a.n 1 15.d odd 2 1
7200.2.a.bn 1 60.h even 2 1
7200.2.a.bo 1 20.d odd 2 1
7200.2.f.h 2 5.c odd 4 2
7200.2.f.i 2 60.l odd 4 2
7200.2.f.u 2 15.e even 4 2
7200.2.f.v 2 20.e even 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1440))$$:

 $$T_{7} - 2$$ T7 - 2 $$T_{11} + 2$$ T11 + 2 $$T_{17} - 2$$ T17 - 2 $$T_{19} - 4$$ T19 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 2$$
$11$ $$T + 2$$
$13$ $$T$$
$17$ $$T - 2$$
$19$ $$T - 4$$
$23$ $$T$$
$29$ $$T + 2$$
$31$ $$T - 8$$
$37$ $$T + 4$$
$41$ $$T - 8$$
$43$ $$T - 8$$
$47$ $$T - 8$$
$53$ $$T + 10$$
$59$ $$T - 6$$
$61$ $$T - 2$$
$67$ $$T - 12$$
$71$ $$T + 12$$
$73$ $$T + 2$$
$79$ $$T - 8$$
$83$ $$T - 4$$
$89$ $$T - 12$$
$97$ $$T - 10$$