Defining parameters
Level: | \( N \) | \(=\) | \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1440.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1440))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 320 | 20 | 300 |
Cusp forms | 257 | 20 | 237 |
Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | $+$ | \(1\) |
\(+\) | \(+\) | \(-\) | $-$ | \(3\) |
\(+\) | \(-\) | \(+\) | $-$ | \(3\) |
\(+\) | \(-\) | \(-\) | $+$ | \(2\) |
\(-\) | \(+\) | \(+\) | $-$ | \(3\) |
\(-\) | \(+\) | \(-\) | $+$ | \(1\) |
\(-\) | \(-\) | \(+\) | $+$ | \(3\) |
\(-\) | \(-\) | \(-\) | $-$ | \(4\) |
Plus space | \(+\) | \(7\) | ||
Minus space | \(-\) | \(13\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1440))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1440))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1440)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(480))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(720))\)\(^{\oplus 2}\)