Properties

Label 1440.1.cd
Level $1440$
Weight $1$
Character orbit 1440.cd
Rep. character $\chi_{1440}(929,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $1$
Sturm bound $288$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1440.cd (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1440, [\chi])\).

Total New Old
Modular forms 40 8 32
Cusp forms 8 8 0
Eisenstein series 32 0 32

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + O(q^{10}) \) \( 8 q - 4 q^{21} + 4 q^{25} - 12 q^{29} - 8 q^{45} + 4 q^{49} + 4 q^{69} + 4 q^{81} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1440, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1440.1.cd.a $8$ $0.719$ \(\Q(\zeta_{24})\) $D_{12}$ \(\Q(\sqrt{-5}) \) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{24}^{7}q^{3}-\zeta_{24}^{10}q^{5}+(-\zeta_{24}-\zeta_{24}^{3}+\cdots)q^{7}+\cdots\)