# Properties

 Label 1440.1.bh.b Level $1440$ Weight $1$ Character orbit 1440.bh Analytic conductor $0.719$ Analytic rank $0$ Dimension $2$ Projective image $D_{4}$ CM discriminant -4 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1440,1,Mod(577,1440)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1440, base_ring=CyclotomicField(4))

chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1440.577");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1440 = 2^{5} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 1440.bh (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.718653618192$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 160) Projective image: $$D_{4}$$ Projective field: Galois closure of 4.2.2000.1 Artin image: $C_4^2:C_2^2$ Artin field: Galois closure of $$\mathbb{Q}[x]/(x^{16} + \cdots)$$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q - i q^{5} +O(q^{10})$$ q - z * q^5 $$q - i q^{5} + ( - i - 1) q^{13} + ( - i + 1) q^{17} - q^{25} + ( - i + 1) q^{37} + i q^{49} + ( - i - 1) q^{53} + (i - 1) q^{65} + (i + 1) q^{73} + ( - i - 1) q^{85} + ( - i + 1) q^{97} +O(q^{100})$$ q - z * q^5 + (-z - 1) * q^13 + (-z + 1) * q^17 - q^25 + (-z + 1) * q^37 + z * q^49 + (-z - 1) * q^53 + (z - 1) * q^65 + (z + 1) * q^73 + (-z - 1) * q^85 + (-z + 1) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q - 2 q^{13} + 2 q^{17} - 2 q^{25} + 2 q^{37} - 2 q^{53} - 2 q^{65} + 2 q^{73} - 2 q^{85} + 2 q^{97}+O(q^{100})$$ 2 * q - 2 * q^13 + 2 * q^17 - 2 * q^25 + 2 * q^37 - 2 * q^53 - 2 * q^65 + 2 * q^73 - 2 * q^85 + 2 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$641$$ $$901$$ $$991$$ $$\chi(n)$$ $$-i$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
577.1
 − 1.00000i 1.00000i
0 0 0 1.00000i 0 0 0 0 0
1153.1 0 0 0 1.00000i 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by $$\Q(\sqrt{-1})$$
5.c odd 4 1 inner
20.e even 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.1.bh.b 2
3.b odd 2 1 160.1.p.a 2
4.b odd 2 1 CM 1440.1.bh.b 2
5.c odd 4 1 inner 1440.1.bh.b 2
8.b even 2 1 2880.1.bh.b 2
8.d odd 2 1 2880.1.bh.b 2
12.b even 2 1 160.1.p.a 2
15.d odd 2 1 800.1.p.b 2
15.e even 4 1 160.1.p.a 2
15.e even 4 1 800.1.p.b 2
20.e even 4 1 inner 1440.1.bh.b 2
24.f even 2 1 320.1.p.a 2
24.h odd 2 1 320.1.p.a 2
40.i odd 4 1 2880.1.bh.b 2
40.k even 4 1 2880.1.bh.b 2
48.i odd 4 1 1280.1.m.a 2
48.i odd 4 1 1280.1.m.b 2
48.k even 4 1 1280.1.m.a 2
48.k even 4 1 1280.1.m.b 2
60.h even 2 1 800.1.p.b 2
60.l odd 4 1 160.1.p.a 2
60.l odd 4 1 800.1.p.b 2
120.i odd 2 1 1600.1.p.b 2
120.m even 2 1 1600.1.p.b 2
120.q odd 4 1 320.1.p.a 2
120.q odd 4 1 1600.1.p.b 2
120.w even 4 1 320.1.p.a 2
120.w even 4 1 1600.1.p.b 2
240.z odd 4 1 1280.1.m.b 2
240.bb even 4 1 1280.1.m.b 2
240.bd odd 4 1 1280.1.m.a 2
240.bf even 4 1 1280.1.m.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.1.p.a 2 3.b odd 2 1
160.1.p.a 2 12.b even 2 1
160.1.p.a 2 15.e even 4 1
160.1.p.a 2 60.l odd 4 1
320.1.p.a 2 24.f even 2 1
320.1.p.a 2 24.h odd 2 1
320.1.p.a 2 120.q odd 4 1
320.1.p.a 2 120.w even 4 1
800.1.p.b 2 15.d odd 2 1
800.1.p.b 2 15.e even 4 1
800.1.p.b 2 60.h even 2 1
800.1.p.b 2 60.l odd 4 1
1280.1.m.a 2 48.i odd 4 1
1280.1.m.a 2 48.k even 4 1
1280.1.m.a 2 240.bd odd 4 1
1280.1.m.a 2 240.bf even 4 1
1280.1.m.b 2 48.i odd 4 1
1280.1.m.b 2 48.k even 4 1
1280.1.m.b 2 240.z odd 4 1
1280.1.m.b 2 240.bb even 4 1
1440.1.bh.b 2 1.a even 1 1 trivial
1440.1.bh.b 2 4.b odd 2 1 CM
1440.1.bh.b 2 5.c odd 4 1 inner
1440.1.bh.b 2 20.e even 4 1 inner
1600.1.p.b 2 120.i odd 2 1
1600.1.p.b 2 120.m even 2 1
1600.1.p.b 2 120.q odd 4 1
1600.1.p.b 2 120.w even 4 1
2880.1.bh.b 2 8.b even 2 1
2880.1.bh.b 2 8.d odd 2 1
2880.1.bh.b 2 40.i odd 4 1
2880.1.bh.b 2 40.k even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{1}^{\mathrm{new}}(1440, [\chi])$$:

 $$T_{13}^{2} + 2T_{13} + 2$$ T13^2 + 2*T13 + 2 $$T_{17}^{2} - 2T_{17} + 2$$ T17^2 - 2*T17 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 1$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$T^{2} + 2T + 2$$
$17$ $$T^{2} - 2T + 2$$
$19$ $$T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2} - 2T + 2$$
$41$ $$T^{2}$$
$43$ $$T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2} + 2T + 2$$
$59$ $$T^{2}$$
$61$ $$T^{2}$$
$67$ $$T^{2}$$
$71$ $$T^{2}$$
$73$ $$T^{2} - 2T + 2$$
$79$ $$T^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$T^{2} - 2T + 2$$