Properties

Label 144.9.q.a
Level $144$
Weight $9$
Character orbit 144.q
Analytic conductor $58.663$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,9,Mod(65,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.65"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 144.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,93] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.6625198488\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} + 427 x^{12} - 1362 x^{11} + 135762 x^{10} - 371244 x^{9} + 18261508 x^{8} + \cdots + 872385888256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{21} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} - \beta_{4} - 3 \beta_{2} + 8) q^{3} + ( - \beta_{11} + 2 \beta_{5} + \cdots + 42) q^{5} + (\beta_{12} + 2 \beta_{11} + \cdots - 134) q^{7} + ( - 3 \beta_{13} + 3 \beta_{12} + \cdots + 1539) q^{9}+ \cdots + (53970 \beta_{13} + 27438 \beta_{12} + \cdots + 28164285) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 93 q^{3} + 438 q^{5} - 922 q^{7} + 17973 q^{9} + 28677 q^{11} + 1684 q^{13} + 75276 q^{15} + 269630 q^{19} + 354054 q^{21} + 1000452 q^{23} + 65177 q^{25} + 524826 q^{27} + 3797682 q^{29} + 164132 q^{31}+ \cdots + 511060752 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} - x^{13} + 427 x^{12} - 1362 x^{11} + 135762 x^{10} - 371244 x^{9} + 18261508 x^{8} + \cdots + 872385888256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 41\!\cdots\!29 \nu^{13} + \cdots + 23\!\cdots\!20 ) / 15\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 14\!\cdots\!61 \nu^{13} + \cdots - 10\!\cdots\!32 ) / 15\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 19\!\cdots\!77 \nu^{13} + \cdots - 11\!\cdots\!12 ) / 15\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 13\!\cdots\!63 \nu^{13} + \cdots - 10\!\cdots\!00 ) / 13\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 28\!\cdots\!05 \nu^{13} + \cdots + 95\!\cdots\!88 ) / 31\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 12\!\cdots\!41 \nu^{13} + \cdots + 60\!\cdots\!44 ) / 65\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 67\!\cdots\!74 \nu^{13} + \cdots - 10\!\cdots\!12 ) / 16\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 84\!\cdots\!35 \nu^{13} + \cdots - 33\!\cdots\!44 ) / 18\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 73\!\cdots\!77 \nu^{13} + \cdots - 19\!\cdots\!36 ) / 13\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 75\!\cdots\!33 \nu^{13} + \cdots - 77\!\cdots\!84 ) / 13\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 38\!\cdots\!31 \nu^{13} + \cdots + 69\!\cdots\!16 ) / 62\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 14\!\cdots\!23 \nu^{13} + \cdots + 24\!\cdots\!28 ) / 21\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 14\!\cdots\!83 \nu^{13} + \cdots - 33\!\cdots\!80 ) / 13\!\cdots\!72 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{3} + 3\beta_{2} + \beta_1 ) / 24 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -4\beta_{12} + 4\beta_{6} - 8\beta_{5} + \beta_{3} + 2923\beta_{2} - 6\beta _1 - 2923 ) / 24 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 24 \beta_{13} + 8 \beta_{11} - 8 \beta_{10} + 24 \beta_{9} - 24 \beta_{8} - 24 \beta_{7} + \cdots + 14667 ) / 72 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 496 \beta_{13} + 2988 \beta_{12} + 40 \beta_{11} + 80 \beta_{10} + 104 \beta_{9} + 208 \beta_{8} + \cdots - 120 ) / 72 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 6200 \beta_{13} - 14628 \beta_{12} - 7120 \beta_{11} - 3560 \beta_{10} - 18064 \beta_{9} + \cdots - 8413915 ) / 72 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 44760 \beta_{13} + 2824 \beta_{11} - 2824 \beta_{10} + 19592 \beta_{9} - 19592 \beta_{8} + \cdots + 144224747 ) / 24 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 323792 \beta_{13} + 1820460 \beta_{12} + 390328 \beta_{11} + 780656 \beta_{10} + 921080 \beta_{9} + \cdots - 525480 ) / 24 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 6378488 \beta_{13} - 67671844 \beta_{12} - 2058320 \beta_{11} - 1029160 \beta_{10} - 15663952 \beta_{9} + \cdots - 37935512347 ) / 24 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 24441480 \beta_{13} + 343293032 \beta_{11} - 343293032 \beta_{10} + 804239976 \beta_{9} + \cdots + 1129904003811 ) / 72 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 16592549776 \beta_{13} + 56229724044 \beta_{12} + 1365007480 \beta_{11} + 2730014960 \beta_{10} + \cdots - 6238735848 ) / 72 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 122689125368 \beta_{13} - 631438680900 \beta_{12} - 192850574416 \beta_{11} - 96425287208 \beta_{10} + \cdots - 371220192029107 ) / 72 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 930383856888 \beta_{13} + 185537979752 \beta_{11} - 185537979752 \beta_{10} + 915630048232 \beta_{9} + \cdots + 29\!\cdots\!35 ) / 24 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 16744043516560 \beta_{13} + 67758080937612 \beta_{12} + 8942189679608 \beta_{11} + \cdots - 12023834435688 ) / 24 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
−5.49482 9.51731i
4.05115 + 7.01679i
5.69757 + 9.86849i
−2.00397 3.47098i
−0.447645 0.775344i
−8.68602 15.0446i
7.38374 + 12.7890i
−5.49482 + 9.51731i
4.05115 7.01679i
5.69757 9.86849i
−2.00397 + 3.47098i
−0.447645 + 0.775344i
−8.68602 + 15.0446i
7.38374 12.7890i
0 −80.5605 8.42672i 0 −46.9888 + 27.1290i 0 921.012 1595.24i 0 6418.98 + 1357.72i 0
65.2 0 −54.3339 60.0735i 0 676.216 390.413i 0 −2168.61 + 3756.14i 0 −656.650 + 6528.06i 0
65.3 0 −51.0315 + 62.9030i 0 −896.557 + 517.627i 0 21.9132 37.9547i 0 −1352.58 6420.07i 0
65.4 0 29.7082 + 75.3553i 0 331.396 191.331i 0 −467.516 + 809.762i 0 −4795.84 + 4477.35i 0
65.5 0 44.1317 67.9220i 0 −604.549 + 349.037i 0 1124.45 1947.61i 0 −2665.79 5995.02i 0
65.6 0 77.6435 23.0757i 0 189.131 109.195i 0 −1404.67 + 2432.96i 0 5496.03 3583.35i 0
65.7 0 80.9424 + 3.05302i 0 570.352 329.293i 0 1512.41 2619.58i 0 6542.36 + 494.238i 0
113.1 0 −80.5605 + 8.42672i 0 −46.9888 27.1290i 0 921.012 + 1595.24i 0 6418.98 1357.72i 0
113.2 0 −54.3339 + 60.0735i 0 676.216 + 390.413i 0 −2168.61 3756.14i 0 −656.650 6528.06i 0
113.3 0 −51.0315 62.9030i 0 −896.557 517.627i 0 21.9132 + 37.9547i 0 −1352.58 + 6420.07i 0
113.4 0 29.7082 75.3553i 0 331.396 + 191.331i 0 −467.516 809.762i 0 −4795.84 4477.35i 0
113.5 0 44.1317 + 67.9220i 0 −604.549 349.037i 0 1124.45 + 1947.61i 0 −2665.79 + 5995.02i 0
113.6 0 77.6435 + 23.0757i 0 189.131 + 109.195i 0 −1404.67 2432.96i 0 5496.03 + 3583.35i 0
113.7 0 80.9424 3.05302i 0 570.352 + 329.293i 0 1512.41 + 2619.58i 0 6542.36 494.238i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 65.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.9.q.a 14
3.b odd 2 1 432.9.q.a 14
4.b odd 2 1 9.9.d.a 14
9.c even 3 1 432.9.q.a 14
9.d odd 6 1 inner 144.9.q.a 14
12.b even 2 1 27.9.d.a 14
36.f odd 6 1 27.9.d.a 14
36.f odd 6 1 81.9.b.a 14
36.h even 6 1 9.9.d.a 14
36.h even 6 1 81.9.b.a 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.9.d.a 14 4.b odd 2 1
9.9.d.a 14 36.h even 6 1
27.9.d.a 14 12.b even 2 1
27.9.d.a 14 36.f odd 6 1
81.9.b.a 14 36.f odd 6 1
81.9.b.a 14 36.h even 6 1
144.9.q.a 14 1.a even 1 1 trivial
144.9.q.a 14 9.d odd 6 1 inner
432.9.q.a 14 3.b odd 2 1
432.9.q.a 14 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{14} - 438 T_{5}^{13} - 1303854 T_{5}^{12} + 599097276 T_{5}^{11} + 1339373715651 T_{5}^{10} + \cdots + 28\!\cdots\!00 \) acting on \(S_{9}^{\mathrm{new}}(144, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{14} \) Copy content Toggle raw display
$3$ \( T^{14} + \cdots + 52\!\cdots\!21 \) Copy content Toggle raw display
$5$ \( T^{14} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{14} + \cdots + 39\!\cdots\!36 \) Copy content Toggle raw display
$11$ \( T^{14} + \cdots + 15\!\cdots\!43 \) Copy content Toggle raw display
$13$ \( T^{14} + \cdots + 41\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{14} + \cdots + 19\!\cdots\!68 \) Copy content Toggle raw display
$19$ \( (T^{7} + \cdots - 18\!\cdots\!88)^{2} \) Copy content Toggle raw display
$23$ \( T^{14} + \cdots + 83\!\cdots\!52 \) Copy content Toggle raw display
$29$ \( T^{14} + \cdots + 26\!\cdots\!88 \) Copy content Toggle raw display
$31$ \( T^{14} + \cdots + 25\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( (T^{7} + \cdots + 33\!\cdots\!00)^{2} \) Copy content Toggle raw display
$41$ \( T^{14} + \cdots + 20\!\cdots\!23 \) Copy content Toggle raw display
$43$ \( T^{14} + \cdots + 11\!\cdots\!69 \) Copy content Toggle raw display
$47$ \( T^{14} + \cdots + 35\!\cdots\!72 \) Copy content Toggle raw display
$53$ \( T^{14} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{14} + \cdots + 10\!\cdots\!67 \) Copy content Toggle raw display
$61$ \( T^{14} + \cdots + 26\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{14} + \cdots + 48\!\cdots\!49 \) Copy content Toggle raw display
$71$ \( T^{14} + \cdots + 37\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{7} + \cdots + 40\!\cdots\!00)^{2} \) Copy content Toggle raw display
$79$ \( T^{14} + \cdots + 49\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{14} + \cdots + 55\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{14} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{14} + \cdots + 18\!\cdots\!25 \) Copy content Toggle raw display
show more
show less