Defining parameters
| Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 9 \) |
| Character orbit: | \([\chi]\) | \(=\) | 144.q (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(216\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(144, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 396 | 98 | 298 |
| Cusp forms | 372 | 94 | 278 |
| Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(144, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 144.9.q.a | $14$ | $58.663$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(93\) | \(438\) | \(-922\) | \(q+(8-3\beta _{2}-\beta _{4}+\beta _{5})q^{3}+(42-21\beta _{2}+\cdots)q^{5}+\cdots\) |
| 144.9.q.b | $16$ | $58.663$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-126\) | \(-882\) | \(1846\) | \(q+(-7-2\beta _{1}+\beta _{2}+\beta _{5})q^{3}+(-73+\cdots)q^{5}+\cdots\) |
| 144.9.q.c | $16$ | $58.663$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-21\) | \(441\) | \(-923\) | \(q+(-7-11\beta _{1}+\beta _{2}+\beta _{3})q^{3}+(37+\cdots)q^{5}+\cdots\) |
| 144.9.q.d | $48$ | $58.663$ | None | \(0\) | \(56\) | \(0\) | \(0\) | ||
Decomposition of \(S_{9}^{\mathrm{old}}(144, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)