Properties

Label 144.9.q
Level $144$
Weight $9$
Character orbit 144.q
Rep. character $\chi_{144}(65,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $94$
Newform subspaces $4$
Sturm bound $216$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 144.q (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(216\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(144, [\chi])\).

Total New Old
Modular forms 396 98 298
Cusp forms 372 94 278
Eisenstein series 24 4 20

Trace form

\( 94 q + 2 q^{3} - 3 q^{5} + q^{7} - 1906 q^{9} + 3 q^{11} - q^{13} + 91907 q^{15} + 4 q^{19} - 164289 q^{21} + 3 q^{23} + 3359374 q^{25} - 1316446 q^{27} - 1897635 q^{29} + 214177 q^{31} - 137939 q^{33}+ \cdots + 83247043 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
144.9.q.a 144.q 9.d $14$ $58.663$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 9.9.d.a \(0\) \(93\) \(438\) \(-922\) $\mathrm{SU}(2)[C_{6}]$ \(q+(8-3\beta _{2}-\beta _{4}+\beta _{5})q^{3}+(42-21\beta _{2}+\cdots)q^{5}+\cdots\)
144.9.q.b 144.q 9.d $16$ $58.663$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 18.9.d.a \(0\) \(-126\) \(-882\) \(1846\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-7-2\beta _{1}+\beta _{2}+\beta _{5})q^{3}+(-73+\cdots)q^{5}+\cdots\)
144.9.q.c 144.q 9.d $16$ $58.663$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 36.9.g.a \(0\) \(-21\) \(441\) \(-923\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-7-11\beta _{1}+\beta _{2}+\beta _{3})q^{3}+(37+\cdots)q^{5}+\cdots\)
144.9.q.d 144.q 9.d $48$ $58.663$ None 72.9.m.a \(0\) \(56\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{9}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)