Properties

Label 144.8.a.g.1.1
Level $144$
Weight $8$
Character 144.1
Self dual yes
Analytic conductor $44.983$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,8,Mod(1,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.9834436697\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 8)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 144.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+82.0000 q^{5} +456.000 q^{7} +O(q^{10})\) \(q+82.0000 q^{5} +456.000 q^{7} -2524.00 q^{11} -10778.0 q^{13} +11150.0 q^{17} -4124.00 q^{19} +81704.0 q^{23} -71401.0 q^{25} -99798.0 q^{29} +40480.0 q^{31} +37392.0 q^{35} -419442. q^{37} -141402. q^{41} +690428. q^{43} -682032. q^{47} -615607. q^{49} -1.81312e6 q^{53} -206968. q^{55} -966028. q^{59} +1.88767e6 q^{61} -883796. q^{65} -2.96587e6 q^{67} -2.54823e6 q^{71} -1.68033e6 q^{73} -1.15094e6 q^{77} -4.03806e6 q^{79} -5.38576e6 q^{83} +914300. q^{85} +6.47305e6 q^{89} -4.91477e6 q^{91} -338168. q^{95} -6.06576e6 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 82.0000 0.293372 0.146686 0.989183i \(-0.453139\pi\)
0.146686 + 0.989183i \(0.453139\pi\)
\(6\) 0 0
\(7\) 456.000 0.502483 0.251242 0.967924i \(-0.419161\pi\)
0.251242 + 0.967924i \(0.419161\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2524.00 −0.571762 −0.285881 0.958265i \(-0.592286\pi\)
−0.285881 + 0.958265i \(0.592286\pi\)
\(12\) 0 0
\(13\) −10778.0 −1.36062 −0.680309 0.732925i \(-0.738155\pi\)
−0.680309 + 0.732925i \(0.738155\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 11150.0 0.550432 0.275216 0.961382i \(-0.411251\pi\)
0.275216 + 0.961382i \(0.411251\pi\)
\(18\) 0 0
\(19\) −4124.00 −0.137937 −0.0689685 0.997619i \(-0.521971\pi\)
−0.0689685 + 0.997619i \(0.521971\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 81704.0 1.40022 0.700109 0.714036i \(-0.253135\pi\)
0.700109 + 0.714036i \(0.253135\pi\)
\(24\) 0 0
\(25\) −71401.0 −0.913933
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −99798.0 −0.759852 −0.379926 0.925017i \(-0.624051\pi\)
−0.379926 + 0.925017i \(0.624051\pi\)
\(30\) 0 0
\(31\) 40480.0 0.244048 0.122024 0.992527i \(-0.461062\pi\)
0.122024 + 0.992527i \(0.461062\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 37392.0 0.147415
\(36\) 0 0
\(37\) −419442. −1.36134 −0.680669 0.732591i \(-0.738311\pi\)
−0.680669 + 0.732591i \(0.738311\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −141402. −0.320414 −0.160207 0.987083i \(-0.551216\pi\)
−0.160207 + 0.987083i \(0.551216\pi\)
\(42\) 0 0
\(43\) 690428. 1.32428 0.662138 0.749382i \(-0.269649\pi\)
0.662138 + 0.749382i \(0.269649\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −682032. −0.958213 −0.479107 0.877757i \(-0.659039\pi\)
−0.479107 + 0.877757i \(0.659039\pi\)
\(48\) 0 0
\(49\) −615607. −0.747510
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.81312e6 −1.67286 −0.836432 0.548071i \(-0.815362\pi\)
−0.836432 + 0.548071i \(0.815362\pi\)
\(54\) 0 0
\(55\) −206968. −0.167739
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −966028. −0.612361 −0.306181 0.951973i \(-0.599051\pi\)
−0.306181 + 0.951973i \(0.599051\pi\)
\(60\) 0 0
\(61\) 1.88767e6 1.06481 0.532404 0.846490i \(-0.321289\pi\)
0.532404 + 0.846490i \(0.321289\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −883796. −0.399168
\(66\) 0 0
\(67\) −2.96587e6 −1.20473 −0.602365 0.798220i \(-0.705775\pi\)
−0.602365 + 0.798220i \(0.705775\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.54823e6 −0.844957 −0.422479 0.906373i \(-0.638840\pi\)
−0.422479 + 0.906373i \(0.638840\pi\)
\(72\) 0 0
\(73\) −1.68033e6 −0.505549 −0.252775 0.967525i \(-0.581343\pi\)
−0.252775 + 0.967525i \(0.581343\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.15094e6 −0.287301
\(78\) 0 0
\(79\) −4.03806e6 −0.921464 −0.460732 0.887539i \(-0.652413\pi\)
−0.460732 + 0.887539i \(0.652413\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.38576e6 −1.03389 −0.516945 0.856019i \(-0.672931\pi\)
−0.516945 + 0.856019i \(0.672931\pi\)
\(84\) 0 0
\(85\) 914300. 0.161481
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.47305e6 0.973293 0.486647 0.873599i \(-0.338220\pi\)
0.486647 + 0.873599i \(0.338220\pi\)
\(90\) 0 0
\(91\) −4.91477e6 −0.683688
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −338168. −0.0404669
\(96\) 0 0
\(97\) −6.06576e6 −0.674814 −0.337407 0.941359i \(-0.609550\pi\)
−0.337407 + 0.941359i \(0.609550\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.70069e6 −0.936866 −0.468433 0.883499i \(-0.655181\pi\)
−0.468433 + 0.883499i \(0.655181\pi\)
\(102\) 0 0
\(103\) −4.10159e6 −0.369847 −0.184924 0.982753i \(-0.559204\pi\)
−0.184924 + 0.982753i \(0.559204\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 72900.0 0.00575287 0.00287643 0.999996i \(-0.499084\pi\)
0.00287643 + 0.999996i \(0.499084\pi\)
\(108\) 0 0
\(109\) 9.55841e6 0.706957 0.353478 0.935443i \(-0.384999\pi\)
0.353478 + 0.935443i \(0.384999\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.33890e6 −0.608865 −0.304433 0.952534i \(-0.598467\pi\)
−0.304433 + 0.952534i \(0.598467\pi\)
\(114\) 0 0
\(115\) 6.69973e6 0.410785
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.08440e6 0.276583
\(120\) 0 0
\(121\) −1.31166e7 −0.673089
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.22611e7 −0.561495
\(126\) 0 0
\(127\) 3.59794e7 1.55862 0.779311 0.626637i \(-0.215569\pi\)
0.779311 + 0.626637i \(0.215569\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −676052. −0.0262743 −0.0131371 0.999914i \(-0.504182\pi\)
−0.0131371 + 0.999914i \(0.504182\pi\)
\(132\) 0 0
\(133\) −1.88054e6 −0.0693111
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.95841e7 0.982962 0.491481 0.870888i \(-0.336456\pi\)
0.491481 + 0.870888i \(0.336456\pi\)
\(138\) 0 0
\(139\) 3.19084e7 1.00775 0.503876 0.863776i \(-0.331907\pi\)
0.503876 + 0.863776i \(0.331907\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.72037e7 0.777949
\(144\) 0 0
\(145\) −8.18344e6 −0.222919
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.16603e7 0.288773 0.144386 0.989521i \(-0.453879\pi\)
0.144386 + 0.989521i \(0.453879\pi\)
\(150\) 0 0
\(151\) 1.76295e7 0.416698 0.208349 0.978055i \(-0.433191\pi\)
0.208349 + 0.978055i \(0.433191\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.31936e6 0.0715968
\(156\) 0 0
\(157\) 6.34658e6 0.130885 0.0654427 0.997856i \(-0.479154\pi\)
0.0654427 + 0.997856i \(0.479154\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.72570e7 0.703587
\(162\) 0 0
\(163\) −8.04234e7 −1.45454 −0.727271 0.686351i \(-0.759211\pi\)
−0.727271 + 0.686351i \(0.759211\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.14767e8 1.90682 0.953411 0.301673i \(-0.0975451\pi\)
0.953411 + 0.301673i \(0.0975451\pi\)
\(168\) 0 0
\(169\) 5.34168e7 0.851283
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.33755e7 0.930594 0.465297 0.885155i \(-0.345947\pi\)
0.465297 + 0.885155i \(0.345947\pi\)
\(174\) 0 0
\(175\) −3.25589e7 −0.459236
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.13228e7 −0.147559 −0.0737796 0.997275i \(-0.523506\pi\)
−0.0737796 + 0.997275i \(0.523506\pi\)
\(180\) 0 0
\(181\) −5.22650e6 −0.0655143 −0.0327571 0.999463i \(-0.510429\pi\)
−0.0327571 + 0.999463i \(0.510429\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.43942e7 −0.399379
\(186\) 0 0
\(187\) −2.81426e7 −0.314716
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.50301e7 −0.882990 −0.441495 0.897264i \(-0.645552\pi\)
−0.441495 + 0.897264i \(0.645552\pi\)
\(192\) 0 0
\(193\) 1.15092e8 1.15237 0.576186 0.817319i \(-0.304540\pi\)
0.576186 + 0.817319i \(0.304540\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.38522e8 1.29088 0.645441 0.763810i \(-0.276674\pi\)
0.645441 + 0.763810i \(0.276674\pi\)
\(198\) 0 0
\(199\) 2.19614e7 0.197548 0.0987742 0.995110i \(-0.468508\pi\)
0.0987742 + 0.995110i \(0.468508\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.55079e7 −0.381813
\(204\) 0 0
\(205\) −1.15950e7 −0.0940007
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.04090e7 0.0788671
\(210\) 0 0
\(211\) 6.10208e7 0.447187 0.223594 0.974682i \(-0.428221\pi\)
0.223594 + 0.974682i \(0.428221\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.66151e7 0.388506
\(216\) 0 0
\(217\) 1.84589e7 0.122630
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.20175e8 −0.748928
\(222\) 0 0
\(223\) 4.22448e7 0.255098 0.127549 0.991832i \(-0.459289\pi\)
0.127549 + 0.991832i \(0.459289\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.39102e8 −1.35673 −0.678364 0.734726i \(-0.737311\pi\)
−0.678364 + 0.734726i \(0.737311\pi\)
\(228\) 0 0
\(229\) −4.67889e7 −0.257465 −0.128733 0.991679i \(-0.541091\pi\)
−0.128733 + 0.991679i \(0.541091\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.45225e8 −1.78795 −0.893977 0.448113i \(-0.852096\pi\)
−0.893977 + 0.448113i \(0.852096\pi\)
\(234\) 0 0
\(235\) −5.59266e7 −0.281113
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.34413e8 1.11068 0.555340 0.831624i \(-0.312588\pi\)
0.555340 + 0.831624i \(0.312588\pi\)
\(240\) 0 0
\(241\) −1.09557e8 −0.504175 −0.252087 0.967705i \(-0.581117\pi\)
−0.252087 + 0.967705i \(0.581117\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.04798e7 −0.219299
\(246\) 0 0
\(247\) 4.44485e7 0.187680
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.94031e8 −1.57280 −0.786398 0.617720i \(-0.788057\pi\)
−0.786398 + 0.617720i \(0.788057\pi\)
\(252\) 0 0
\(253\) −2.06221e8 −0.800591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.19064e8 −1.17250 −0.586248 0.810131i \(-0.699396\pi\)
−0.586248 + 0.810131i \(0.699396\pi\)
\(258\) 0 0
\(259\) −1.91266e8 −0.684050
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.19359e8 0.743549 0.371774 0.928323i \(-0.378750\pi\)
0.371774 + 0.928323i \(0.378750\pi\)
\(264\) 0 0
\(265\) −1.48676e8 −0.490772
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.48033e8 0.463687 0.231844 0.972753i \(-0.425524\pi\)
0.231844 + 0.972753i \(0.425524\pi\)
\(270\) 0 0
\(271\) 3.69934e8 1.12910 0.564549 0.825399i \(-0.309050\pi\)
0.564549 + 0.825399i \(0.309050\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.80216e8 0.522552
\(276\) 0 0
\(277\) −3.95860e8 −1.11908 −0.559541 0.828803i \(-0.689023\pi\)
−0.559541 + 0.828803i \(0.689023\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.97760e8 1.60714 0.803572 0.595208i \(-0.202930\pi\)
0.803572 + 0.595208i \(0.202930\pi\)
\(282\) 0 0
\(283\) −8.05797e7 −0.211336 −0.105668 0.994401i \(-0.533698\pi\)
−0.105668 + 0.994401i \(0.533698\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.44793e7 −0.161003
\(288\) 0 0
\(289\) −2.86016e8 −0.697025
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.54530e8 −1.75243 −0.876213 0.481924i \(-0.839938\pi\)
−0.876213 + 0.481924i \(0.839938\pi\)
\(294\) 0 0
\(295\) −7.92143e7 −0.179650
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.80606e8 −1.90516
\(300\) 0 0
\(301\) 3.14835e8 0.665427
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.54789e8 0.312385
\(306\) 0 0
\(307\) −8.20472e8 −1.61838 −0.809188 0.587549i \(-0.800093\pi\)
−0.809188 + 0.587549i \(0.800093\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.53503e8 1.23193 0.615965 0.787773i \(-0.288766\pi\)
0.615965 + 0.787773i \(0.288766\pi\)
\(312\) 0 0
\(313\) 6.63587e8 1.22319 0.611594 0.791172i \(-0.290529\pi\)
0.611594 + 0.791172i \(0.290529\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.54718e8 0.625426 0.312713 0.949848i \(-0.398762\pi\)
0.312713 + 0.949848i \(0.398762\pi\)
\(318\) 0 0
\(319\) 2.51890e8 0.434454
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.59826e7 −0.0759250
\(324\) 0 0
\(325\) 7.69560e8 1.24351
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.11007e8 −0.481486
\(330\) 0 0
\(331\) 3.05543e8 0.463100 0.231550 0.972823i \(-0.425620\pi\)
0.231550 + 0.972823i \(0.425620\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.43201e8 −0.353434
\(336\) 0 0
\(337\) 3.54965e7 0.0505220 0.0252610 0.999681i \(-0.491958\pi\)
0.0252610 + 0.999681i \(0.491958\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.02172e8 −0.139537
\(342\) 0 0
\(343\) −6.56252e8 −0.878095
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.90594e8 −0.244882 −0.122441 0.992476i \(-0.539072\pi\)
−0.122441 + 0.992476i \(0.539072\pi\)
\(348\) 0 0
\(349\) 8.60864e8 1.08404 0.542020 0.840366i \(-0.317660\pi\)
0.542020 + 0.840366i \(0.317660\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.04544e9 1.26500 0.632498 0.774562i \(-0.282030\pi\)
0.632498 + 0.774562i \(0.282030\pi\)
\(354\) 0 0
\(355\) −2.08955e8 −0.247887
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.63303e8 0.870696 0.435348 0.900262i \(-0.356625\pi\)
0.435348 + 0.900262i \(0.356625\pi\)
\(360\) 0 0
\(361\) −8.76864e8 −0.980973
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.37787e8 −0.148314
\(366\) 0 0
\(367\) 1.38692e9 1.46460 0.732302 0.680980i \(-0.238446\pi\)
0.732302 + 0.680980i \(0.238446\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.26782e8 −0.840586
\(372\) 0 0
\(373\) 4.77105e8 0.476029 0.238015 0.971262i \(-0.423503\pi\)
0.238015 + 0.971262i \(0.423503\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.07562e9 1.03387
\(378\) 0 0
\(379\) 3.92468e8 0.370311 0.185156 0.982709i \(-0.440721\pi\)
0.185156 + 0.982709i \(0.440721\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.10409e9 1.91368 0.956839 0.290617i \(-0.0938605\pi\)
0.956839 + 0.290617i \(0.0938605\pi\)
\(384\) 0 0
\(385\) −9.43774e7 −0.0842860
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.26019e9 1.08546 0.542730 0.839907i \(-0.317391\pi\)
0.542730 + 0.839907i \(0.317391\pi\)
\(390\) 0 0
\(391\) 9.11000e8 0.770725
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.31121e8 −0.270332
\(396\) 0 0
\(397\) −9.81298e8 −0.787107 −0.393554 0.919302i \(-0.628754\pi\)
−0.393554 + 0.919302i \(0.628754\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.09981e8 −0.704737 −0.352369 0.935861i \(-0.614624\pi\)
−0.352369 + 0.935861i \(0.614624\pi\)
\(402\) 0 0
\(403\) −4.36293e8 −0.332056
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.05867e9 0.778361
\(408\) 0 0
\(409\) −3.55609e7 −0.0257004 −0.0128502 0.999917i \(-0.504090\pi\)
−0.0128502 + 0.999917i \(0.504090\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.40509e8 −0.307701
\(414\) 0 0
\(415\) −4.41633e8 −0.303314
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.65360e9 1.76233 0.881163 0.472813i \(-0.156761\pi\)
0.881163 + 0.472813i \(0.156761\pi\)
\(420\) 0 0
\(421\) −1.12113e9 −0.732264 −0.366132 0.930563i \(-0.619318\pi\)
−0.366132 + 0.930563i \(0.619318\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.96121e8 −0.503058
\(426\) 0 0
\(427\) 8.60778e8 0.535049
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.06344e9 −0.639799 −0.319900 0.947451i \(-0.603649\pi\)
−0.319900 + 0.947451i \(0.603649\pi\)
\(432\) 0 0
\(433\) −7.05962e8 −0.417901 −0.208951 0.977926i \(-0.567005\pi\)
−0.208951 + 0.977926i \(0.567005\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.36947e8 −0.193142
\(438\) 0 0
\(439\) −1.48506e9 −0.837760 −0.418880 0.908042i \(-0.637577\pi\)
−0.418880 + 0.908042i \(0.637577\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.22153e8 −0.394654 −0.197327 0.980338i \(-0.563226\pi\)
−0.197327 + 0.980338i \(0.563226\pi\)
\(444\) 0 0
\(445\) 5.30790e8 0.285537
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.22968e9 0.641109 0.320554 0.947230i \(-0.396131\pi\)
0.320554 + 0.947230i \(0.396131\pi\)
\(450\) 0 0
\(451\) 3.56899e8 0.183201
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.03011e8 −0.200575
\(456\) 0 0
\(457\) −8.85551e7 −0.0434017 −0.0217009 0.999765i \(-0.506908\pi\)
−0.0217009 + 0.999765i \(0.506908\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.10937e8 −0.100277 −0.0501384 0.998742i \(-0.515966\pi\)
−0.0501384 + 0.998742i \(0.515966\pi\)
\(462\) 0 0
\(463\) 3.29775e9 1.54413 0.772066 0.635543i \(-0.219224\pi\)
0.772066 + 0.635543i \(0.219224\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.82873e7 0.0401134 0.0200567 0.999799i \(-0.493615\pi\)
0.0200567 + 0.999799i \(0.493615\pi\)
\(468\) 0 0
\(469\) −1.35244e9 −0.605357
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.74264e9 −0.757171
\(474\) 0 0
\(475\) 2.94458e8 0.126065
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.51507e9 −1.87711 −0.938557 0.345125i \(-0.887836\pi\)
−0.938557 + 0.345125i \(0.887836\pi\)
\(480\) 0 0
\(481\) 4.52075e9 1.85226
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.97392e8 −0.197972
\(486\) 0 0
\(487\) −3.31338e9 −1.29993 −0.649964 0.759965i \(-0.725216\pi\)
−0.649964 + 0.759965i \(0.725216\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.01694e9 −1.53147 −0.765737 0.643154i \(-0.777626\pi\)
−0.765737 + 0.643154i \(0.777626\pi\)
\(492\) 0 0
\(493\) −1.11275e9 −0.418247
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.16199e9 −0.424577
\(498\) 0 0
\(499\) −2.70976e9 −0.976290 −0.488145 0.872763i \(-0.662326\pi\)
−0.488145 + 0.872763i \(0.662326\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.04579e8 0.106712 0.0533558 0.998576i \(-0.483008\pi\)
0.0533558 + 0.998576i \(0.483008\pi\)
\(504\) 0 0
\(505\) −7.95456e8 −0.274850
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.88202e8 0.0632575 0.0316287 0.999500i \(-0.489931\pi\)
0.0316287 + 0.999500i \(0.489931\pi\)
\(510\) 0 0
\(511\) −7.66229e8 −0.254030
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.36331e8 −0.108503
\(516\) 0 0
\(517\) 1.72145e9 0.547870
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.14963e9 −1.28552 −0.642758 0.766069i \(-0.722210\pi\)
−0.642758 + 0.766069i \(0.722210\pi\)
\(522\) 0 0
\(523\) −2.51360e9 −0.768318 −0.384159 0.923267i \(-0.625509\pi\)
−0.384159 + 0.923267i \(0.625509\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.51352e8 0.134332
\(528\) 0 0
\(529\) 3.27072e9 0.960613
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.52403e9 0.435962
\(534\) 0 0
\(535\) 5.97780e6 0.00168773
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.55379e9 0.427398
\(540\) 0 0
\(541\) −1.32416e9 −0.359543 −0.179772 0.983708i \(-0.557536\pi\)
−0.179772 + 0.983708i \(0.557536\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.83789e8 0.207401
\(546\) 0 0
\(547\) −5.58047e8 −0.145786 −0.0728929 0.997340i \(-0.523223\pi\)
−0.0728929 + 0.997340i \(0.523223\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.11567e8 0.104812
\(552\) 0 0
\(553\) −1.84136e9 −0.463020
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.30331e9 0.809946 0.404973 0.914329i \(-0.367281\pi\)
0.404973 + 0.914329i \(0.367281\pi\)
\(558\) 0 0
\(559\) −7.44143e9 −1.80184
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.22011e8 −0.0288152 −0.0144076 0.999896i \(-0.504586\pi\)
−0.0144076 + 0.999896i \(0.504586\pi\)
\(564\) 0 0
\(565\) −7.65790e8 −0.178624
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.00925e8 −0.113993 −0.0569967 0.998374i \(-0.518152\pi\)
−0.0569967 + 0.998374i \(0.518152\pi\)
\(570\) 0 0
\(571\) 6.98702e9 1.57060 0.785300 0.619116i \(-0.212509\pi\)
0.785300 + 0.619116i \(0.212509\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.83375e9 −1.27971
\(576\) 0 0
\(577\) −8.16573e9 −1.76962 −0.884809 0.465954i \(-0.845711\pi\)
−0.884809 + 0.465954i \(0.845711\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.45591e9 −0.519512
\(582\) 0 0
\(583\) 4.57631e9 0.956479
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.53182e9 1.74104 0.870519 0.492135i \(-0.163783\pi\)
0.870519 + 0.492135i \(0.163783\pi\)
\(588\) 0 0
\(589\) −1.66940e8 −0.0336632
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.71175e9 0.337092 0.168546 0.985694i \(-0.446093\pi\)
0.168546 + 0.985694i \(0.446093\pi\)
\(594\) 0 0
\(595\) 4.16921e8 0.0811417
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.77362e9 −0.907516 −0.453758 0.891125i \(-0.649917\pi\)
−0.453758 + 0.891125i \(0.649917\pi\)
\(600\) 0 0
\(601\) 7.89998e8 0.148445 0.0742224 0.997242i \(-0.476353\pi\)
0.0742224 + 0.997242i \(0.476353\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.07556e9 −0.197465
\(606\) 0 0
\(607\) 1.82652e9 0.331485 0.165743 0.986169i \(-0.446998\pi\)
0.165743 + 0.986169i \(0.446998\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.35094e9 1.30376
\(612\) 0 0
\(613\) −6.90339e9 −1.21046 −0.605231 0.796050i \(-0.706919\pi\)
−0.605231 + 0.796050i \(0.706919\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.69235e9 0.975649 0.487825 0.872942i \(-0.337791\pi\)
0.487825 + 0.872942i \(0.337791\pi\)
\(618\) 0 0
\(619\) 4.28594e9 0.726321 0.363161 0.931727i \(-0.381698\pi\)
0.363161 + 0.931727i \(0.381698\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.95171e9 0.489064
\(624\) 0 0
\(625\) 4.57279e9 0.749206
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.67678e9 −0.749324
\(630\) 0 0
\(631\) 5.61602e8 0.0889869 0.0444935 0.999010i \(-0.485833\pi\)
0.0444935 + 0.999010i \(0.485833\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.95031e9 0.457256
\(636\) 0 0
\(637\) 6.63501e9 1.01708
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.17445e9 −0.775998 −0.387999 0.921660i \(-0.626834\pi\)
−0.387999 + 0.921660i \(0.626834\pi\)
\(642\) 0 0
\(643\) 1.04374e10 1.54830 0.774148 0.633004i \(-0.218178\pi\)
0.774148 + 0.633004i \(0.218178\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.71623e8 −0.141037 −0.0705185 0.997510i \(-0.522465\pi\)
−0.0705185 + 0.997510i \(0.522465\pi\)
\(648\) 0 0
\(649\) 2.43825e9 0.350125
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.25223e9 1.01924 0.509619 0.860400i \(-0.329786\pi\)
0.509619 + 0.860400i \(0.329786\pi\)
\(654\) 0 0
\(655\) −5.54363e7 −0.00770814
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.81924e9 0.519851 0.259925 0.965629i \(-0.416302\pi\)
0.259925 + 0.965629i \(0.416302\pi\)
\(660\) 0 0
\(661\) 1.07881e10 1.45292 0.726459 0.687210i \(-0.241165\pi\)
0.726459 + 0.687210i \(0.241165\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.54205e8 −0.0203339
\(666\) 0 0
\(667\) −8.15390e9 −1.06396
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.76448e9 −0.608817
\(672\) 0 0
\(673\) −6.34833e9 −0.802798 −0.401399 0.915903i \(-0.631476\pi\)
−0.401399 + 0.915903i \(0.631476\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.82566e9 −1.09317 −0.546584 0.837404i \(-0.684072\pi\)
−0.546584 + 0.837404i \(0.684072\pi\)
\(678\) 0 0
\(679\) −2.76599e9 −0.339083
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.92331e9 0.591268 0.295634 0.955301i \(-0.404469\pi\)
0.295634 + 0.955301i \(0.404469\pi\)
\(684\) 0 0
\(685\) 2.42590e9 0.288374
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.95418e10 2.27613
\(690\) 0 0
\(691\) 5.68449e9 0.655418 0.327709 0.944779i \(-0.393723\pi\)
0.327709 + 0.944779i \(0.393723\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.61649e9 0.295646
\(696\) 0 0
\(697\) −1.57663e9 −0.176366
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.70567e9 0.187017 0.0935085 0.995618i \(-0.470192\pi\)
0.0935085 + 0.995618i \(0.470192\pi\)
\(702\) 0 0
\(703\) 1.72978e9 0.187779
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.42351e9 −0.470760
\(708\) 0 0
\(709\) 4.52189e9 0.476495 0.238248 0.971204i \(-0.423427\pi\)
0.238248 + 0.971204i \(0.423427\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.30738e9 0.341720
\(714\) 0 0
\(715\) 2.23070e9 0.228229
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.09206e9 −0.310239 −0.155120 0.987896i \(-0.549576\pi\)
−0.155120 + 0.987896i \(0.549576\pi\)
\(720\) 0 0
\(721\) −1.87033e9 −0.185842
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.12568e9 0.694453
\(726\) 0 0
\(727\) −1.44622e10 −1.39593 −0.697965 0.716132i \(-0.745911\pi\)
−0.697965 + 0.716132i \(0.745911\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.69827e9 0.728924
\(732\) 0 0
\(733\) 3.15415e9 0.295814 0.147907 0.989001i \(-0.452746\pi\)
0.147907 + 0.989001i \(0.452746\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.48585e9 0.688819
\(738\) 0 0
\(739\) −1.54236e10 −1.40582 −0.702912 0.711277i \(-0.748117\pi\)
−0.702912 + 0.711277i \(0.748117\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.59520e10 −1.42677 −0.713385 0.700772i \(-0.752839\pi\)
−0.713385 + 0.700772i \(0.752839\pi\)
\(744\) 0 0
\(745\) 9.56141e8 0.0847179
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.32424e7 0.00289072
\(750\) 0 0
\(751\) −6.13964e9 −0.528936 −0.264468 0.964395i \(-0.585196\pi\)
−0.264468 + 0.964395i \(0.585196\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.44562e9 0.122248
\(756\) 0 0
\(757\) −1.42818e10 −1.19660 −0.598299 0.801273i \(-0.704157\pi\)
−0.598299 + 0.801273i \(0.704157\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.47536e10 −1.21353 −0.606767 0.794880i \(-0.707534\pi\)
−0.606767 + 0.794880i \(0.707534\pi\)
\(762\) 0 0
\(763\) 4.35863e9 0.355234
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.04118e10 0.833190
\(768\) 0 0
\(769\) 1.97592e10 1.56685 0.783424 0.621487i \(-0.213471\pi\)
0.783424 + 0.621487i \(0.213471\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.01370e10 −0.789374 −0.394687 0.918816i \(-0.629147\pi\)
−0.394687 + 0.918816i \(0.629147\pi\)
\(774\) 0 0
\(775\) −2.89031e9 −0.223043
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.83142e8 0.0441970
\(780\) 0 0
\(781\) 6.43174e9 0.483114
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.20420e8 0.0383981
\(786\) 0 0
\(787\) 1.27882e10 0.935188 0.467594 0.883943i \(-0.345121\pi\)
0.467594 + 0.883943i \(0.345121\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.25854e9 −0.305945
\(792\) 0 0
\(793\) −2.03453e10 −1.44880
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.38617e9 0.516791 0.258396 0.966039i \(-0.416806\pi\)
0.258396 + 0.966039i \(0.416806\pi\)
\(798\) 0 0
\(799\) −7.60466e9 −0.527431
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.24114e9 0.289054
\(804\) 0 0
\(805\) 3.05508e9 0.206413
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.53742e10 −1.02087 −0.510437 0.859915i \(-0.670516\pi\)
−0.510437 + 0.859915i \(0.670516\pi\)
\(810\) 0 0
\(811\) −9.77882e9 −0.643744 −0.321872 0.946783i \(-0.604312\pi\)
−0.321872 + 0.946783i \(0.604312\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.59472e9 −0.426722
\(816\) 0 0
\(817\) −2.84733e9 −0.182667
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.83470e10 −1.15708 −0.578540 0.815654i \(-0.696377\pi\)
−0.578540 + 0.815654i \(0.696377\pi\)
\(822\) 0 0
\(823\) 3.16960e10 1.98201 0.991004 0.133829i \(-0.0427272\pi\)
0.991004 + 0.133829i \(0.0427272\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −6.12845e9 −0.376774 −0.188387 0.982095i \(-0.560326\pi\)
−0.188387 + 0.982095i \(0.560326\pi\)
\(828\) 0 0
\(829\) −1.24652e10 −0.759904 −0.379952 0.925006i \(-0.624060\pi\)
−0.379952 + 0.925006i \(0.624060\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.86402e9 −0.411454
\(834\) 0 0
\(835\) 9.41091e9 0.559409
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.82237e10 −1.06530 −0.532648 0.846337i \(-0.678803\pi\)
−0.532648 + 0.846337i \(0.678803\pi\)
\(840\) 0 0
\(841\) −7.29024e9 −0.422625
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.38017e9 0.249743
\(846\) 0 0
\(847\) −5.98117e9 −0.338216
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.42701e10 −1.90617
\(852\) 0 0
\(853\) −2.48619e10 −1.37155 −0.685777 0.727812i \(-0.740537\pi\)
−0.685777 + 0.727812i \(0.740537\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.96761e10 −1.61055 −0.805275 0.592902i \(-0.797982\pi\)
−0.805275 + 0.592902i \(0.797982\pi\)
\(858\) 0 0
\(859\) −1.14772e10 −0.617819 −0.308910 0.951091i \(-0.599964\pi\)
−0.308910 + 0.951091i \(0.599964\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.13485e10 1.13066 0.565328 0.824866i \(-0.308750\pi\)
0.565328 + 0.824866i \(0.308750\pi\)
\(864\) 0 0
\(865\) 5.19679e9 0.273010
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.01921e10 0.526858
\(870\) 0 0
\(871\) 3.19661e10 1.63918
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.59108e9 −0.282142
\(876\) 0 0
\(877\) −7.92753e9 −0.396862 −0.198431 0.980115i \(-0.563585\pi\)
−0.198431 + 0.980115i \(0.563585\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.32045e9 −0.360680 −0.180340 0.983604i \(-0.557720\pi\)
−0.180340 + 0.983604i \(0.557720\pi\)
\(882\) 0 0
\(883\) 3.54988e9 0.173521 0.0867604 0.996229i \(-0.472349\pi\)
0.0867604 + 0.996229i \(0.472349\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.80634e9 0.279364 0.139682 0.990196i \(-0.455392\pi\)
0.139682 + 0.990196i \(0.455392\pi\)
\(888\) 0 0
\(889\) 1.64066e10 0.783182
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.81270e9 0.132173
\(894\) 0 0
\(895\) −9.28466e8 −0.0432898
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.03982e9 −0.185440
\(900\) 0 0
\(901\) −2.02163e10 −0.920798
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.28573e8 −0.0192201
\(906\) 0 0
\(907\) −1.78240e10 −0.793196 −0.396598 0.917992i \(-0.629809\pi\)
−0.396598 + 0.917992i \(0.629809\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.87703e10 0.822538 0.411269 0.911514i \(-0.365086\pi\)
0.411269 + 0.911514i \(0.365086\pi\)
\(912\) 0 0
\(913\) 1.35937e10 0.591138
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.08280e8 −0.0132024
\(918\) 0 0
\(919\) −3.75844e10 −1.59736 −0.798681 0.601754i \(-0.794469\pi\)
−0.798681 + 0.601754i \(0.794469\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.74648e10 1.14966
\(924\) 0 0
\(925\) 2.99486e10 1.24417
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.92372e10 0.787205 0.393602 0.919281i \(-0.371229\pi\)
0.393602 + 0.919281i \(0.371229\pi\)
\(930\) 0 0
\(931\) 2.53876e9 0.103109
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.30769e9 −0.0923289
\(936\) 0 0
\(937\) 1.04732e9 0.0415900 0.0207950 0.999784i \(-0.493380\pi\)
0.0207950 + 0.999784i \(0.493380\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.97861e9 0.312150 0.156075 0.987745i \(-0.450116\pi\)
0.156075 + 0.987745i \(0.450116\pi\)
\(942\) 0 0
\(943\) −1.15531e10 −0.448650
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.26943e9 −0.163360 −0.0816799 0.996659i \(-0.526029\pi\)
−0.0816799 + 0.996659i \(0.526029\pi\)
\(948\) 0 0
\(949\) 1.81106e10 0.687860
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.06048e10 0.396897 0.198449 0.980111i \(-0.436410\pi\)
0.198449 + 0.980111i \(0.436410\pi\)
\(954\) 0 0
\(955\) −6.97247e9 −0.259045
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.34904e10 0.493922
\(960\) 0 0
\(961\) −2.58740e10 −0.940441
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.43750e9 0.338074
\(966\) 0 0
\(967\) 1.65090e10 0.587123 0.293562 0.955940i \(-0.405159\pi\)
0.293562 + 0.955940i \(0.405159\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.46094e10 −0.862649 −0.431324 0.902197i \(-0.641954\pi\)
−0.431324 + 0.902197i \(0.641954\pi\)
\(972\) 0 0
\(973\) 1.45503e10 0.506379
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.53886e10 0.870979 0.435489 0.900194i \(-0.356575\pi\)
0.435489 + 0.900194i \(0.356575\pi\)
\(978\) 0 0
\(979\) −1.63380e10 −0.556492
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.87585e10 0.629884 0.314942 0.949111i \(-0.398015\pi\)
0.314942 + 0.949111i \(0.398015\pi\)
\(984\) 0 0
\(985\) 1.13588e10 0.378709
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.64107e10 1.85428
\(990\) 0 0
\(991\) 3.59792e9 0.117434 0.0587170 0.998275i \(-0.481299\pi\)
0.0587170 + 0.998275i \(0.481299\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.80083e9 0.0579552
\(996\) 0 0
\(997\) −1.34287e10 −0.429143 −0.214571 0.976708i \(-0.568835\pi\)
−0.214571 + 0.976708i \(0.568835\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.8.a.g.1.1 1
3.2 odd 2 16.8.a.c.1.1 1
4.3 odd 2 72.8.a.d.1.1 1
8.3 odd 2 576.8.a.j.1.1 1
8.5 even 2 576.8.a.k.1.1 1
12.11 even 2 8.8.a.a.1.1 1
15.2 even 4 400.8.c.b.49.1 2
15.8 even 4 400.8.c.b.49.2 2
15.14 odd 2 400.8.a.b.1.1 1
24.5 odd 2 64.8.a.a.1.1 1
24.11 even 2 64.8.a.g.1.1 1
48.5 odd 4 256.8.b.c.129.1 2
48.11 even 4 256.8.b.e.129.2 2
48.29 odd 4 256.8.b.c.129.2 2
48.35 even 4 256.8.b.e.129.1 2
60.23 odd 4 200.8.c.a.49.1 2
60.47 odd 4 200.8.c.a.49.2 2
60.59 even 2 200.8.a.i.1.1 1
84.83 odd 2 392.8.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.8.a.a.1.1 1 12.11 even 2
16.8.a.c.1.1 1 3.2 odd 2
64.8.a.a.1.1 1 24.5 odd 2
64.8.a.g.1.1 1 24.11 even 2
72.8.a.d.1.1 1 4.3 odd 2
144.8.a.g.1.1 1 1.1 even 1 trivial
200.8.a.i.1.1 1 60.59 even 2
200.8.c.a.49.1 2 60.23 odd 4
200.8.c.a.49.2 2 60.47 odd 4
256.8.b.c.129.1 2 48.5 odd 4
256.8.b.c.129.2 2 48.29 odd 4
256.8.b.e.129.1 2 48.35 even 4
256.8.b.e.129.2 2 48.11 even 4
392.8.a.d.1.1 1 84.83 odd 2
400.8.a.b.1.1 1 15.14 odd 2
400.8.c.b.49.1 2 15.2 even 4
400.8.c.b.49.2 2 15.8 even 4
576.8.a.j.1.1 1 8.3 odd 2
576.8.a.k.1.1 1 8.5 even 2