Properties

Label 144.8
Level 144
Weight 8
Dimension 1775
Nonzero newspaces 8
Sturm bound 9216
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(9216\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(144))\).

Total New Old
Modular forms 4144 1816 2328
Cusp forms 3920 1775 2145
Eisenstein series 224 41 183

Trace form

\( 1775 q - 6 q^{2} - 6 q^{3} - 188 q^{4} + 133 q^{5} - 8 q^{6} - 1351 q^{7} - 1008 q^{8} + 2234 q^{9} + 12956 q^{10} - 10179 q^{11} - 8 q^{12} + 3779 q^{13} + 21240 q^{14} + 16533 q^{15} + 65540 q^{16} + 35216 q^{17}+ \cdots - 68033799 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(144))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
144.8.a \(\chi_{144}(1, \cdot)\) 144.8.a.a 1 1
144.8.a.b 1
144.8.a.c 1
144.8.a.d 1
144.8.a.e 1
144.8.a.f 1
144.8.a.g 1
144.8.a.h 1
144.8.a.i 1
144.8.a.j 1
144.8.a.k 1
144.8.a.l 2
144.8.a.m 2
144.8.a.n 2
144.8.c \(\chi_{144}(143, \cdot)\) 144.8.c.a 2 1
144.8.c.b 4
144.8.c.c 8
144.8.d \(\chi_{144}(73, \cdot)\) None 0 1
144.8.f \(\chi_{144}(71, \cdot)\) None 0 1
144.8.i \(\chi_{144}(49, \cdot)\) 144.8.i.a 6 2
144.8.i.b 8
144.8.i.c 12
144.8.i.d 14
144.8.i.e 20
144.8.i.f 22
144.8.k \(\chi_{144}(37, \cdot)\) n/a 138 2
144.8.l \(\chi_{144}(35, \cdot)\) n/a 112 2
144.8.p \(\chi_{144}(23, \cdot)\) None 0 2
144.8.r \(\chi_{144}(25, \cdot)\) None 0 2
144.8.s \(\chi_{144}(47, \cdot)\) 144.8.s.a 28 2
144.8.s.b 28
144.8.s.c 28
144.8.u \(\chi_{144}(11, \cdot)\) n/a 664 4
144.8.x \(\chi_{144}(13, \cdot)\) n/a 664 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(144))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(144)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)