Properties

Label 144.6.i.b.97.1
Level $144$
Weight $6$
Character 144.97
Analytic conductor $23.095$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,6,Mod(49,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.49"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 144.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0952700531\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.47347183152.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 118x^{4} - 231x^{3} + 3700x^{2} - 3585x + 32331 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 97.1
Root \(0.500000 - 5.23712i\) of defining polynomial
Character \(\chi\) \(=\) 144.97
Dual form 144.6.i.b.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-15.5145 - 1.51695i) q^{3} +(33.0434 + 57.2329i) q^{5} +(57.0952 - 98.8918i) q^{7} +(238.398 + 47.0695i) q^{9} +(-192.812 + 333.961i) q^{11} +(-516.287 - 894.236i) q^{13} +(-425.832 - 938.063i) q^{15} +959.020 q^{17} +464.576 q^{19} +(-1035.82 + 1447.64i) q^{21} +(1151.70 + 1994.81i) q^{23} +(-621.235 + 1076.01i) q^{25} +(-3627.21 - 1091.90i) q^{27} +(-3549.13 + 6147.28i) q^{29} +(3881.53 + 6723.00i) q^{31} +(3497.98 - 4888.74i) q^{33} +7546.48 q^{35} +9317.57 q^{37} +(6653.41 + 14656.8i) q^{39} +(6661.64 + 11538.3i) q^{41} +(-1056.29 + 1829.55i) q^{43} +(5183.55 + 15199.5i) q^{45} +(1247.40 - 2160.56i) q^{47} +(1883.78 + 3262.80i) q^{49} +(-14878.7 - 1454.79i) q^{51} -10044.2 q^{53} -25484.7 q^{55} +(-7207.66 - 704.741i) q^{57} +(2720.33 + 4711.75i) q^{59} +(-17094.4 + 29608.4i) q^{61} +(18266.1 - 20888.1i) q^{63} +(34119.8 - 59097.2i) q^{65} +(26792.6 + 46406.2i) q^{67} +(-14842.0 - 32695.5i) q^{69} +970.010 q^{71} -72400.3 q^{73} +(11270.4 - 15751.3i) q^{75} +(22017.3 + 38135.1i) q^{77} +(16098.9 - 27884.0i) q^{79} +(54617.9 + 22442.5i) q^{81} +(-18046.6 + 31257.6i) q^{83} +(31689.3 + 54887.5i) q^{85} +(64388.1 - 89987.9i) q^{87} +42622.2 q^{89} -117910. q^{91} +(-50021.4 - 110192. i) q^{93} +(15351.2 + 26589.0i) q^{95} +(21926.9 - 37978.6i) q^{97} +(-61685.4 + 70539.9i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{3} - 54 q^{5} + 132 q^{7} - 177 q^{9} + 315 q^{11} - 744 q^{13} - 2286 q^{15} + 2898 q^{17} - 2262 q^{19} - 11076 q^{21} + 3168 q^{23} - 2883 q^{25} - 18144 q^{27} - 5148 q^{29} + 8610 q^{31}+ \cdots - 282168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −15.5145 1.51695i −0.995254 0.0973126i
\(4\) 0 0
\(5\) 33.0434 + 57.2329i 0.591099 + 1.02381i 0.994085 + 0.108607i \(0.0346389\pi\)
−0.402986 + 0.915206i \(0.632028\pi\)
\(6\) 0 0
\(7\) 57.0952 98.8918i 0.440407 0.762808i −0.557312 0.830303i \(-0.688167\pi\)
0.997720 + 0.0674952i \(0.0215007\pi\)
\(8\) 0 0
\(9\) 238.398 + 47.0695i 0.981061 + 0.193702i
\(10\) 0 0
\(11\) −192.812 + 333.961i −0.480455 + 0.832173i −0.999749 0.0224231i \(-0.992862\pi\)
0.519293 + 0.854596i \(0.326195\pi\)
\(12\) 0 0
\(13\) −516.287 894.236i −0.847292 1.46755i −0.883616 0.468212i \(-0.844898\pi\)
0.0363242 0.999340i \(-0.488435\pi\)
\(14\) 0 0
\(15\) −425.832 938.063i −0.488663 1.07648i
\(16\) 0 0
\(17\) 959.020 0.804832 0.402416 0.915457i \(-0.368171\pi\)
0.402416 + 0.915457i \(0.368171\pi\)
\(18\) 0 0
\(19\) 464.576 0.295239 0.147619 0.989044i \(-0.452839\pi\)
0.147619 + 0.989044i \(0.452839\pi\)
\(20\) 0 0
\(21\) −1035.82 + 1447.64i −0.512548 + 0.716330i
\(22\) 0 0
\(23\) 1151.70 + 1994.81i 0.453963 + 0.786288i 0.998628 0.0523662i \(-0.0166763\pi\)
−0.544664 + 0.838654i \(0.683343\pi\)
\(24\) 0 0
\(25\) −621.235 + 1076.01i −0.198795 + 0.344323i
\(26\) 0 0
\(27\) −3627.21 1091.90i −0.957555 0.288252i
\(28\) 0 0
\(29\) −3549.13 + 6147.28i −0.783659 + 1.35734i 0.146138 + 0.989264i \(0.453316\pi\)
−0.929797 + 0.368073i \(0.880018\pi\)
\(30\) 0 0
\(31\) 3881.53 + 6723.00i 0.725435 + 1.25649i 0.958795 + 0.284100i \(0.0916947\pi\)
−0.233360 + 0.972391i \(0.574972\pi\)
\(32\) 0 0
\(33\) 3497.98 4888.74i 0.559156 0.781469i
\(34\) 0 0
\(35\) 7546.48 1.04130
\(36\) 0 0
\(37\) 9317.57 1.11892 0.559459 0.828858i \(-0.311009\pi\)
0.559459 + 0.828858i \(0.311009\pi\)
\(38\) 0 0
\(39\) 6653.41 + 14656.8i 0.700459 + 1.54304i
\(40\) 0 0
\(41\) 6661.64 + 11538.3i 0.618901 + 1.07197i 0.989687 + 0.143250i \(0.0457552\pi\)
−0.370785 + 0.928719i \(0.620911\pi\)
\(42\) 0 0
\(43\) −1056.29 + 1829.55i −0.0871190 + 0.150895i −0.906292 0.422652i \(-0.861099\pi\)
0.819173 + 0.573546i \(0.194433\pi\)
\(44\) 0 0
\(45\) 5183.55 + 15199.5i 0.381589 + 1.11892i
\(46\) 0 0
\(47\) 1247.40 2160.56i 0.0823686 0.142667i −0.821898 0.569634i \(-0.807085\pi\)
0.904267 + 0.426968i \(0.140418\pi\)
\(48\) 0 0
\(49\) 1883.78 + 3262.80i 0.112083 + 0.194133i
\(50\) 0 0
\(51\) −14878.7 1454.79i −0.801012 0.0783203i
\(52\) 0 0
\(53\) −10044.2 −0.491163 −0.245582 0.969376i \(-0.578979\pi\)
−0.245582 + 0.969376i \(0.578979\pi\)
\(54\) 0 0
\(55\) −25484.7 −1.13599
\(56\) 0 0
\(57\) −7207.66 704.741i −0.293837 0.0287304i
\(58\) 0 0
\(59\) 2720.33 + 4711.75i 0.101740 + 0.176219i 0.912402 0.409296i \(-0.134226\pi\)
−0.810662 + 0.585515i \(0.800892\pi\)
\(60\) 0 0
\(61\) −17094.4 + 29608.4i −0.588206 + 1.01880i 0.406261 + 0.913757i \(0.366832\pi\)
−0.994467 + 0.105046i \(0.966501\pi\)
\(62\) 0 0
\(63\) 18266.1 20888.1i 0.579823 0.663053i
\(64\) 0 0
\(65\) 34119.8 59097.2i 1.00167 1.73494i
\(66\) 0 0
\(67\) 26792.6 + 46406.2i 0.729169 + 1.26296i 0.957235 + 0.289311i \(0.0934263\pi\)
−0.228066 + 0.973646i \(0.573240\pi\)
\(68\) 0 0
\(69\) −14842.0 32695.5i −0.375293 0.826732i
\(70\) 0 0
\(71\) 970.010 0.0228365 0.0114183 0.999935i \(-0.496365\pi\)
0.0114183 + 0.999935i \(0.496365\pi\)
\(72\) 0 0
\(73\) −72400.3 −1.59013 −0.795066 0.606523i \(-0.792564\pi\)
−0.795066 + 0.606523i \(0.792564\pi\)
\(74\) 0 0
\(75\) 11270.4 15751.3i 0.231359 0.323344i
\(76\) 0 0
\(77\) 22017.3 + 38135.1i 0.423192 + 0.732990i
\(78\) 0 0
\(79\) 16098.9 27884.0i 0.290220 0.502676i −0.683642 0.729818i \(-0.739605\pi\)
0.973862 + 0.227142i \(0.0729382\pi\)
\(80\) 0 0
\(81\) 54617.9 + 22442.5i 0.924959 + 0.380066i
\(82\) 0 0
\(83\) −18046.6 + 31257.6i −0.287541 + 0.498036i −0.973222 0.229866i \(-0.926171\pi\)
0.685681 + 0.727902i \(0.259504\pi\)
\(84\) 0 0
\(85\) 31689.3 + 54887.5i 0.475735 + 0.823998i
\(86\) 0 0
\(87\) 64388.1 89987.9i 0.912026 1.27464i
\(88\) 0 0
\(89\) 42622.2 0.570375 0.285188 0.958472i \(-0.407944\pi\)
0.285188 + 0.958472i \(0.407944\pi\)
\(90\) 0 0
\(91\) −117910. −1.49261
\(92\) 0 0
\(93\) −50021.4 110192.i −0.599720 1.32112i
\(94\) 0 0
\(95\) 15351.2 + 26589.0i 0.174515 + 0.302269i
\(96\) 0 0
\(97\) 21926.9 37978.6i 0.236618 0.409835i −0.723123 0.690719i \(-0.757294\pi\)
0.959742 + 0.280884i \(0.0906275\pi\)
\(98\) 0 0
\(99\) −61685.4 + 70539.9i −0.632549 + 0.723347i
\(100\) 0 0
\(101\) −12056.7 + 20882.8i −0.117604 + 0.203697i −0.918818 0.394682i \(-0.870855\pi\)
0.801213 + 0.598379i \(0.204188\pi\)
\(102\) 0 0
\(103\) −68610.4 118837.i −0.637231 1.10372i −0.986038 0.166522i \(-0.946746\pi\)
0.348807 0.937195i \(-0.386587\pi\)
\(104\) 0 0
\(105\) −117080. 11447.7i −1.03635 0.101331i
\(106\) 0 0
\(107\) 167979. 1.41839 0.709195 0.705012i \(-0.249059\pi\)
0.709195 + 0.705012i \(0.249059\pi\)
\(108\) 0 0
\(109\) −21224.0 −0.171104 −0.0855521 0.996334i \(-0.527265\pi\)
−0.0855521 + 0.996334i \(0.527265\pi\)
\(110\) 0 0
\(111\) −144557. 14134.3i −1.11361 0.108885i
\(112\) 0 0
\(113\) 14420.8 + 24977.5i 0.106241 + 0.184015i 0.914245 0.405163i \(-0.132785\pi\)
−0.808003 + 0.589178i \(0.799452\pi\)
\(114\) 0 0
\(115\) −76112.4 + 131831.i −0.536674 + 0.929547i
\(116\) 0 0
\(117\) −80990.5 237485.i −0.546977 1.60388i
\(118\) 0 0
\(119\) 54755.4 94839.2i 0.354454 0.613932i
\(120\) 0 0
\(121\) 6172.35 + 10690.8i 0.0383255 + 0.0663816i
\(122\) 0 0
\(123\) −85848.7 189116.i −0.511648 1.12711i
\(124\) 0 0
\(125\) 124410. 0.712167
\(126\) 0 0
\(127\) 215062. 1.18319 0.591594 0.806236i \(-0.298499\pi\)
0.591594 + 0.806236i \(0.298499\pi\)
\(128\) 0 0
\(129\) 19163.2 26782.2i 0.101389 0.141701i
\(130\) 0 0
\(131\) −94654.7 163947.i −0.481908 0.834688i 0.517877 0.855455i \(-0.326723\pi\)
−0.999784 + 0.0207668i \(0.993389\pi\)
\(132\) 0 0
\(133\) 26525.1 45942.8i 0.130025 0.225210i
\(134\) 0 0
\(135\) −57363.1 243676.i −0.270893 1.15074i
\(136\) 0 0
\(137\) 1809.78 3134.63i 0.00823805 0.0142687i −0.861877 0.507117i \(-0.830711\pi\)
0.870115 + 0.492849i \(0.164044\pi\)
\(138\) 0 0
\(139\) 60440.1 + 104685.i 0.265331 + 0.459567i 0.967650 0.252295i \(-0.0811854\pi\)
−0.702319 + 0.711862i \(0.747852\pi\)
\(140\) 0 0
\(141\) −22630.2 + 31627.7i −0.0958609 + 0.133974i
\(142\) 0 0
\(143\) 398186. 1.62834
\(144\) 0 0
\(145\) −469102. −1.85288
\(146\) 0 0
\(147\) −24276.3 53478.2i −0.0926594 0.204119i
\(148\) 0 0
\(149\) −37408.2 64792.9i −0.138039 0.239090i 0.788715 0.614758i \(-0.210746\pi\)
−0.926754 + 0.375668i \(0.877413\pi\)
\(150\) 0 0
\(151\) −179976. + 311728.i −0.642352 + 1.11259i 0.342554 + 0.939498i \(0.388708\pi\)
−0.984906 + 0.173088i \(0.944625\pi\)
\(152\) 0 0
\(153\) 228628. + 45140.6i 0.789589 + 0.155897i
\(154\) 0 0
\(155\) −256518. + 444302.i −0.857607 + 1.48542i
\(156\) 0 0
\(157\) −23983.3 41540.3i −0.0776533 0.134499i 0.824584 0.565740i \(-0.191409\pi\)
−0.902237 + 0.431241i \(0.858076\pi\)
\(158\) 0 0
\(159\) 155831. + 15236.6i 0.488832 + 0.0477964i
\(160\) 0 0
\(161\) 263027. 0.799715
\(162\) 0 0
\(163\) −361063. −1.06442 −0.532212 0.846611i \(-0.678639\pi\)
−0.532212 + 0.846611i \(0.678639\pi\)
\(164\) 0 0
\(165\) 395382. + 38659.1i 1.13059 + 0.110546i
\(166\) 0 0
\(167\) 58233.2 + 100863.i 0.161577 + 0.279860i 0.935434 0.353500i \(-0.115009\pi\)
−0.773857 + 0.633360i \(0.781675\pi\)
\(168\) 0 0
\(169\) −347458. + 601816.i −0.935807 + 1.62086i
\(170\) 0 0
\(171\) 110754. + 21867.4i 0.289647 + 0.0571882i
\(172\) 0 0
\(173\) −51762.9 + 89656.0i −0.131493 + 0.227753i −0.924252 0.381782i \(-0.875311\pi\)
0.792759 + 0.609535i \(0.208644\pi\)
\(174\) 0 0
\(175\) 70939.0 + 122870.i 0.175102 + 0.303285i
\(176\) 0 0
\(177\) −35057.0 77226.9i −0.0841088 0.185283i
\(178\) 0 0
\(179\) 78941.2 0.184150 0.0920748 0.995752i \(-0.470650\pi\)
0.0920748 + 0.995752i \(0.470650\pi\)
\(180\) 0 0
\(181\) 586108. 1.32978 0.664892 0.746940i \(-0.268478\pi\)
0.664892 + 0.746940i \(0.268478\pi\)
\(182\) 0 0
\(183\) 310125. 433427.i 0.684557 0.956728i
\(184\) 0 0
\(185\) 307884. + 533271.i 0.661391 + 1.14556i
\(186\) 0 0
\(187\) −184911. + 320275.i −0.386686 + 0.669760i
\(188\) 0 0
\(189\) −315076. + 296359.i −0.641595 + 0.603482i
\(190\) 0 0
\(191\) 386026. 668617.i 0.765656 1.32615i −0.174243 0.984703i \(-0.555748\pi\)
0.939899 0.341452i \(-0.110919\pi\)
\(192\) 0 0
\(193\) 8719.67 + 15102.9i 0.0168503 + 0.0291855i 0.874328 0.485336i \(-0.161303\pi\)
−0.857477 + 0.514522i \(0.827969\pi\)
\(194\) 0 0
\(195\) −618998. + 865104.i −1.16574 + 1.62923i
\(196\) 0 0
\(197\) 340729. 0.625524 0.312762 0.949832i \(-0.398746\pi\)
0.312762 + 0.949832i \(0.398746\pi\)
\(198\) 0 0
\(199\) −14239.7 −0.0254899 −0.0127450 0.999919i \(-0.504057\pi\)
−0.0127450 + 0.999919i \(0.504057\pi\)
\(200\) 0 0
\(201\) −345277. 760610.i −0.602806 1.32792i
\(202\) 0 0
\(203\) 405277. + 701960.i 0.690258 + 1.19556i
\(204\) 0 0
\(205\) −440246. + 762529.i −0.731663 + 1.26728i
\(206\) 0 0
\(207\) 180669. + 529768.i 0.293061 + 0.859329i
\(208\) 0 0
\(209\) −89576.0 + 155150.i −0.141849 + 0.245690i
\(210\) 0 0
\(211\) −24049.2 41654.4i −0.0371873 0.0644102i 0.846833 0.531859i \(-0.178506\pi\)
−0.884020 + 0.467449i \(0.845173\pi\)
\(212\) 0 0
\(213\) −15049.2 1471.46i −0.0227282 0.00222228i
\(214\) 0 0
\(215\) −139614. −0.205984
\(216\) 0 0
\(217\) 886466. 1.27795
\(218\) 0 0
\(219\) 1.12325e6 + 109828.i 1.58258 + 0.154740i
\(220\) 0 0
\(221\) −495130. 857590.i −0.681928 1.18113i
\(222\) 0 0
\(223\) 391988. 678944.i 0.527851 0.914264i −0.471622 0.881801i \(-0.656331\pi\)
0.999473 0.0324633i \(-0.0103352\pi\)
\(224\) 0 0
\(225\) −198748. + 227277.i −0.261726 + 0.299295i
\(226\) 0 0
\(227\) −277898. + 481334.i −0.357949 + 0.619986i −0.987618 0.156878i \(-0.949857\pi\)
0.629669 + 0.776863i \(0.283190\pi\)
\(228\) 0 0
\(229\) −57346.2 99326.6i −0.0722630 0.125163i 0.827630 0.561274i \(-0.189689\pi\)
−0.899893 + 0.436111i \(0.856355\pi\)
\(230\) 0 0
\(231\) −283738. 625045.i −0.349854 0.770693i
\(232\) 0 0
\(233\) −111177. −0.134161 −0.0670805 0.997748i \(-0.521368\pi\)
−0.0670805 + 0.997748i \(0.521368\pi\)
\(234\) 0 0
\(235\) 164874. 0.194752
\(236\) 0 0
\(237\) −292064. + 408185.i −0.337759 + 0.472048i
\(238\) 0 0
\(239\) −369523. 640033.i −0.418453 0.724782i 0.577331 0.816510i \(-0.304094\pi\)
−0.995784 + 0.0917279i \(0.970761\pi\)
\(240\) 0 0
\(241\) 645180. 1.11748e6i 0.715547 1.23936i −0.247201 0.968964i \(-0.579511\pi\)
0.962748 0.270400i \(-0.0871559\pi\)
\(242\) 0 0
\(243\) −813324. 431036.i −0.883584 0.468272i
\(244\) 0 0
\(245\) −124493. + 215628.i −0.132504 + 0.229504i
\(246\) 0 0
\(247\) −239855. 415441.i −0.250153 0.433278i
\(248\) 0 0
\(249\) 327400. 457569.i 0.334641 0.467690i
\(250\) 0 0
\(251\) −1.29383e6 −1.29626 −0.648129 0.761530i \(-0.724448\pi\)
−0.648129 + 0.761530i \(0.724448\pi\)
\(252\) 0 0
\(253\) −888250. −0.872437
\(254\) 0 0
\(255\) −408381. 899621.i −0.393292 0.866382i
\(256\) 0 0
\(257\) −312181. 540713.i −0.294831 0.510663i 0.680114 0.733106i \(-0.261930\pi\)
−0.974946 + 0.222443i \(0.928597\pi\)
\(258\) 0 0
\(259\) 531988. 921431.i 0.492780 0.853519i
\(260\) 0 0
\(261\) −1.13545e6 + 1.29844e6i −1.03174 + 1.17983i
\(262\) 0 0
\(263\) −582495. + 1.00891e6i −0.519281 + 0.899421i 0.480468 + 0.877012i \(0.340467\pi\)
−0.999749 + 0.0224089i \(0.992866\pi\)
\(264\) 0 0
\(265\) −331895. 574859.i −0.290326 0.502859i
\(266\) 0 0
\(267\) −661261. 64655.9i −0.567668 0.0555047i
\(268\) 0 0
\(269\) 1.58951e6 1.33932 0.669659 0.742669i \(-0.266440\pi\)
0.669659 + 0.742669i \(0.266440\pi\)
\(270\) 0 0
\(271\) 977878. 0.808837 0.404419 0.914574i \(-0.367474\pi\)
0.404419 + 0.914574i \(0.367474\pi\)
\(272\) 0 0
\(273\) 1.82931e6 + 178864.i 1.48553 + 0.145250i
\(274\) 0 0
\(275\) −239563. 414936.i −0.191024 0.330864i
\(276\) 0 0
\(277\) 645243. 1.11759e6i 0.505271 0.875154i −0.494711 0.869058i \(-0.664726\pi\)
0.999981 0.00609677i \(-0.00194067\pi\)
\(278\) 0 0
\(279\) 608899. + 1.78545e6i 0.468312 + 1.37321i
\(280\) 0 0
\(281\) −833662. + 1.44395e6i −0.629831 + 1.09090i 0.357754 + 0.933816i \(0.383543\pi\)
−0.987585 + 0.157084i \(0.949791\pi\)
\(282\) 0 0
\(283\) 564568. + 977861.i 0.419035 + 0.725790i 0.995843 0.0910901i \(-0.0290351\pi\)
−0.576808 + 0.816880i \(0.695702\pi\)
\(284\) 0 0
\(285\) −197831. 435802.i −0.144272 0.317817i
\(286\) 0 0
\(287\) 1.52139e6 1.09027
\(288\) 0 0
\(289\) −500138. −0.352245
\(290\) 0 0
\(291\) −397797. + 555955.i −0.275378 + 0.384864i
\(292\) 0 0
\(293\) −1.02815e6 1.78081e6i −0.699663 1.21185i −0.968583 0.248689i \(-0.920000\pi\)
0.268921 0.963162i \(-0.413333\pi\)
\(294\) 0 0
\(295\) −179778. + 311385.i −0.120277 + 0.208325i
\(296\) 0 0
\(297\) 1.06402e6 1.00082e6i 0.699937 0.658359i
\(298\) 0 0
\(299\) 1.18922e6 2.05979e6i 0.769279 1.33243i
\(300\) 0 0
\(301\) 120618. + 208917.i 0.0767357 + 0.132910i
\(302\) 0 0
\(303\) 218731. 305696.i 0.136869 0.191286i
\(304\) 0 0
\(305\) −2.25943e6 −1.39075
\(306\) 0 0
\(307\) −1.52149e6 −0.921346 −0.460673 0.887570i \(-0.652392\pi\)
−0.460673 + 0.887570i \(0.652392\pi\)
\(308\) 0 0
\(309\) 884184. + 1.94777e6i 0.526801 + 1.16049i
\(310\) 0 0
\(311\) −1.35420e6 2.34554e6i −0.793928 1.37512i −0.923517 0.383556i \(-0.874699\pi\)
0.129589 0.991568i \(-0.458634\pi\)
\(312\) 0 0
\(313\) 325583. 563926.i 0.187845 0.325358i −0.756686 0.653778i \(-0.773183\pi\)
0.944532 + 0.328420i \(0.106516\pi\)
\(314\) 0 0
\(315\) 1.79906e6 + 355209.i 1.02157 + 0.201701i
\(316\) 0 0
\(317\) 58055.3 100555.i 0.0324484 0.0562024i −0.849345 0.527838i \(-0.823003\pi\)
0.881794 + 0.471636i \(0.156336\pi\)
\(318\) 0 0
\(319\) −1.36863e6 2.37054e6i −0.753026 1.30428i
\(320\) 0 0
\(321\) −2.60611e6 254816.i −1.41166 0.138027i
\(322\) 0 0
\(323\) 445538. 0.237618
\(324\) 0 0
\(325\) 1.28294e6 0.673750
\(326\) 0 0
\(327\) 329279. + 32195.8i 0.170292 + 0.0166506i
\(328\) 0 0
\(329\) −142441. 246715.i −0.0725514 0.125663i
\(330\) 0 0
\(331\) 158828. 275099.i 0.0796816 0.138013i −0.823431 0.567416i \(-0.807943\pi\)
0.903113 + 0.429404i \(0.141276\pi\)
\(332\) 0 0
\(333\) 2.22129e6 + 438573.i 1.09773 + 0.216736i
\(334\) 0 0
\(335\) −1.77064e6 + 3.06684e6i −0.862021 + 1.49306i
\(336\) 0 0
\(337\) −215275. 372867.i −0.103257 0.178846i 0.809768 0.586750i \(-0.199593\pi\)
−0.913025 + 0.407904i \(0.866260\pi\)
\(338\) 0 0
\(339\) −185841. 409389.i −0.0878299 0.193480i
\(340\) 0 0
\(341\) −2.99363e6 −1.39416
\(342\) 0 0
\(343\) 2.34942e6 1.07826
\(344\) 0 0
\(345\) 1.38082e6 1.92982e6i 0.624584 0.872910i
\(346\) 0 0
\(347\) −2.07020e6 3.58569e6i −0.922971 1.59863i −0.794793 0.606881i \(-0.792420\pi\)
−0.128178 0.991751i \(-0.540913\pi\)
\(348\) 0 0
\(349\) 1.73048e6 2.99727e6i 0.760505 1.31723i −0.182085 0.983283i \(-0.558285\pi\)
0.942590 0.333951i \(-0.108382\pi\)
\(350\) 0 0
\(351\) 896271. + 3.80731e6i 0.388304 + 1.64949i
\(352\) 0 0
\(353\) −1.32229e6 + 2.29027e6i −0.564792 + 0.978249i 0.432277 + 0.901741i \(0.357710\pi\)
−0.997069 + 0.0765076i \(0.975623\pi\)
\(354\) 0 0
\(355\) 32052.5 + 55516.5i 0.0134987 + 0.0233804i
\(356\) 0 0
\(357\) −993368. + 1.38832e6i −0.412515 + 0.576526i
\(358\) 0 0
\(359\) −2.13123e6 −0.872761 −0.436380 0.899762i \(-0.643740\pi\)
−0.436380 + 0.899762i \(0.643740\pi\)
\(360\) 0 0
\(361\) −2.26027e6 −0.912834
\(362\) 0 0
\(363\) −79543.3 175226.i −0.0316838 0.0697961i
\(364\) 0 0
\(365\) −2.39235e6 4.14368e6i −0.939925 1.62800i
\(366\) 0 0
\(367\) −640035. + 1.10857e6i −0.248049 + 0.429634i −0.962985 0.269557i \(-0.913123\pi\)
0.714935 + 0.699191i \(0.246456\pi\)
\(368\) 0 0
\(369\) 1.04502e6 + 3.06426e6i 0.399538 + 1.17155i
\(370\) 0 0
\(371\) −573476. + 993289.i −0.216312 + 0.374663i
\(372\) 0 0
\(373\) 1.94733e6 + 3.37288e6i 0.724716 + 1.25524i 0.959091 + 0.283099i \(0.0913623\pi\)
−0.234375 + 0.972146i \(0.575304\pi\)
\(374\) 0 0
\(375\) −1.93016e6 188725.i −0.708787 0.0693028i
\(376\) 0 0
\(377\) 7.32949e6 2.65595
\(378\) 0 0
\(379\) 2.83335e6 1.01322 0.506609 0.862176i \(-0.330899\pi\)
0.506609 + 0.862176i \(0.330899\pi\)
\(380\) 0 0
\(381\) −3.33657e6 326239.i −1.17757 0.115139i
\(382\) 0 0
\(383\) 1.18249e6 + 2.04814e6i 0.411909 + 0.713448i 0.995099 0.0988883i \(-0.0315287\pi\)
−0.583189 + 0.812336i \(0.698195\pi\)
\(384\) 0 0
\(385\) −1.45505e6 + 2.52023e6i −0.500296 + 0.866539i
\(386\) 0 0
\(387\) −337934. + 386442.i −0.114698 + 0.131162i
\(388\) 0 0
\(389\) 871692. 1.50981e6i 0.292071 0.505882i −0.682228 0.731139i \(-0.738989\pi\)
0.974299 + 0.225257i \(0.0723222\pi\)
\(390\) 0 0
\(391\) 1.10451e6 + 1.91306e6i 0.365364 + 0.632830i
\(392\) 0 0
\(393\) 1.21982e6 + 2.68713e6i 0.398395 + 0.877623i
\(394\) 0 0
\(395\) 2.12785e6 0.686195
\(396\) 0 0
\(397\) 4.81109e6 1.53203 0.766015 0.642823i \(-0.222237\pi\)
0.766015 + 0.642823i \(0.222237\pi\)
\(398\) 0 0
\(399\) −481216. + 672541.i −0.151324 + 0.211488i
\(400\) 0 0
\(401\) 2.27703e6 + 3.94394e6i 0.707145 + 1.22481i 0.965912 + 0.258871i \(0.0833506\pi\)
−0.258767 + 0.965940i \(0.583316\pi\)
\(402\) 0 0
\(403\) 4.00797e6 6.94200e6i 1.22931 2.12923i
\(404\) 0 0
\(405\) 520314. + 3.86752e6i 0.157626 + 1.17164i
\(406\) 0 0
\(407\) −1.79654e6 + 3.11170e6i −0.537590 + 0.931133i
\(408\) 0 0
\(409\) −956414. 1.65656e6i −0.282708 0.489664i 0.689343 0.724435i \(-0.257899\pi\)
−0.972051 + 0.234771i \(0.924566\pi\)
\(410\) 0 0
\(411\) −32832.9 + 45886.8i −0.00958748 + 0.0133993i
\(412\) 0 0
\(413\) 621271. 0.179228
\(414\) 0 0
\(415\) −2.38528e6 −0.679860
\(416\) 0 0
\(417\) −778894. 1.71582e6i −0.219350 0.483206i
\(418\) 0 0
\(419\) 2.20697e6 + 3.82259e6i 0.614132 + 1.06371i 0.990536 + 0.137252i \(0.0438272\pi\)
−0.376404 + 0.926456i \(0.622839\pi\)
\(420\) 0 0
\(421\) 872253. 1.51079e6i 0.239848 0.415430i −0.720822 0.693120i \(-0.756236\pi\)
0.960671 + 0.277690i \(0.0895689\pi\)
\(422\) 0 0
\(423\) 399074. 456359.i 0.108443 0.124010i
\(424\) 0 0
\(425\) −595777. + 1.03192e6i −0.159997 + 0.277122i
\(426\) 0 0
\(427\) 1.95202e6 + 3.38099e6i 0.518100 + 0.897376i
\(428\) 0 0
\(429\) −6.17765e6 604030.i −1.62061 0.158458i
\(430\) 0 0
\(431\) 2.21740e6 0.574976 0.287488 0.957784i \(-0.407180\pi\)
0.287488 + 0.957784i \(0.407180\pi\)
\(432\) 0 0
\(433\) −3.63511e6 −0.931746 −0.465873 0.884851i \(-0.654260\pi\)
−0.465873 + 0.884851i \(0.654260\pi\)
\(434\) 0 0
\(435\) 7.27787e6 + 711606.i 1.84409 + 0.180309i
\(436\) 0 0
\(437\) 535054. + 926741.i 0.134028 + 0.232143i
\(438\) 0 0
\(439\) −1.54413e6 + 2.67452e6i −0.382405 + 0.662345i −0.991405 0.130825i \(-0.958237\pi\)
0.609001 + 0.793170i \(0.291571\pi\)
\(440\) 0 0
\(441\) 295510. + 866512.i 0.0723562 + 0.212167i
\(442\) 0 0
\(443\) −3.50048e6 + 6.06302e6i −0.847459 + 1.46784i 0.0360092 + 0.999351i \(0.488535\pi\)
−0.883468 + 0.468491i \(0.844798\pi\)
\(444\) 0 0
\(445\) 1.40838e6 + 2.43939e6i 0.337148 + 0.583958i
\(446\) 0 0
\(447\) 482080. + 1.06197e6i 0.114117 + 0.251388i
\(448\) 0 0
\(449\) −5.00196e6 −1.17091 −0.585456 0.810704i \(-0.699084\pi\)
−0.585456 + 0.810704i \(0.699084\pi\)
\(450\) 0 0
\(451\) −5.13778e6 −1.18942
\(452\) 0 0
\(453\) 3.26511e6 4.56328e6i 0.747572 1.04480i
\(454\) 0 0
\(455\) −3.89615e6 6.74833e6i −0.882282 1.52816i
\(456\) 0 0
\(457\) −1.78581e6 + 3.09311e6i −0.399985 + 0.692795i −0.993724 0.111863i \(-0.964318\pi\)
0.593738 + 0.804658i \(0.297651\pi\)
\(458\) 0 0
\(459\) −3.47857e6 1.04715e6i −0.770671 0.231994i
\(460\) 0 0
\(461\) −2.75061e6 + 4.76420e6i −0.602805 + 1.04409i 0.389589 + 0.920989i \(0.372617\pi\)
−0.992394 + 0.123100i \(0.960716\pi\)
\(462\) 0 0
\(463\) −1.42708e6 2.47177e6i −0.309382 0.535866i 0.668845 0.743402i \(-0.266789\pi\)
−0.978227 + 0.207536i \(0.933456\pi\)
\(464\) 0 0
\(465\) 4.65373e6 6.50399e6i 0.998087 1.39491i
\(466\) 0 0
\(467\) 7.16552e6 1.52039 0.760196 0.649694i \(-0.225103\pi\)
0.760196 + 0.649694i \(0.225103\pi\)
\(468\) 0 0
\(469\) 6.11892e6 1.28452
\(470\) 0 0
\(471\) 309074. + 680857.i 0.0641962 + 0.141418i
\(472\) 0 0
\(473\) −407332. 705520.i −0.0837136 0.144996i
\(474\) 0 0
\(475\) −288611. + 499889.i −0.0586920 + 0.101658i
\(476\) 0 0
\(477\) −2.39452e6 472775.i −0.481861 0.0951391i
\(478\) 0 0
\(479\) 1.64185e6 2.84377e6i 0.326961 0.566312i −0.654947 0.755675i \(-0.727309\pi\)
0.981907 + 0.189363i \(0.0606423\pi\)
\(480\) 0 0
\(481\) −4.81054e6 8.33210e6i −0.948050 1.64207i
\(482\) 0 0
\(483\) −4.08072e6 398999.i −0.795920 0.0778224i
\(484\) 0 0
\(485\) 2.89816e6 0.559459
\(486\) 0 0
\(487\) −2.18097e6 −0.416704 −0.208352 0.978054i \(-0.566810\pi\)
−0.208352 + 0.978054i \(0.566810\pi\)
\(488\) 0 0
\(489\) 5.60171e6 + 547716.i 1.05937 + 0.103582i
\(490\) 0 0
\(491\) −4.96974e6 8.60785e6i −0.930315 1.61135i −0.782782 0.622297i \(-0.786200\pi\)
−0.147534 0.989057i \(-0.547134\pi\)
\(492\) 0 0
\(493\) −3.40369e6 + 5.89536e6i −0.630714 + 1.09243i
\(494\) 0 0
\(495\) −6.07550e6 1.19955e6i −1.11447 0.220042i
\(496\) 0 0
\(497\) 55382.9 95926.0i 0.0100574 0.0174199i
\(498\) 0 0
\(499\) −2.26386e6 3.92112e6i −0.407004 0.704951i 0.587549 0.809189i \(-0.300093\pi\)
−0.994552 + 0.104238i \(0.966760\pi\)
\(500\) 0 0
\(501\) −750453. 1.65317e6i −0.133576 0.294255i
\(502\) 0 0
\(503\) 4.40282e6 0.775909 0.387955 0.921679i \(-0.373182\pi\)
0.387955 + 0.921679i \(0.373182\pi\)
\(504\) 0 0
\(505\) −1.59357e6 −0.278063
\(506\) 0 0
\(507\) 6.30356e6 8.80977e6i 1.08910 1.52211i
\(508\) 0 0
\(509\) −2.91063e6 5.04135e6i −0.497957 0.862487i 0.502040 0.864844i \(-0.332583\pi\)
−0.999997 + 0.00235703i \(0.999250\pi\)
\(510\) 0 0
\(511\) −4.13371e6 + 7.15979e6i −0.700306 + 1.21296i
\(512\) 0 0
\(513\) −1.68512e6 507269.i −0.282707 0.0851030i
\(514\) 0 0
\(515\) 4.53424e6 7.85354e6i 0.753333 1.30481i
\(516\) 0 0
\(517\) 481028. + 833166.i 0.0791488 + 0.137090i
\(518\) 0 0
\(519\) 939078. 1.31244e6i 0.153032 0.213876i
\(520\) 0 0
\(521\) 1.09649e7 1.76975 0.884875 0.465829i \(-0.154244\pi\)
0.884875 + 0.465829i \(0.154244\pi\)
\(522\) 0 0
\(523\) 3.83705e6 0.613399 0.306700 0.951806i \(-0.400775\pi\)
0.306700 + 0.951806i \(0.400775\pi\)
\(524\) 0 0
\(525\) −914194. 2.01387e6i −0.144757 0.318885i
\(526\) 0 0
\(527\) 3.72246e6 + 6.44750e6i 0.583854 + 1.01126i
\(528\) 0 0
\(529\) 565332. 979183.i 0.0878343 0.152133i
\(530\) 0 0
\(531\) 426741. + 1.25131e6i 0.0656792 + 0.192588i
\(532\) 0 0
\(533\) 6.87864e6 1.19141e7i 1.04878 1.81654i
\(534\) 0 0
\(535\) 5.55060e6 + 9.61392e6i 0.838408 + 1.45217i
\(536\) 0 0
\(537\) −1.22473e6 119750.i −0.183276 0.0179201i
\(538\) 0 0
\(539\) −1.45286e6 −0.215403
\(540\) 0 0
\(541\) −4.88767e6 −0.717974 −0.358987 0.933343i \(-0.616878\pi\)
−0.358987 + 0.933343i \(0.616878\pi\)
\(542\) 0 0
\(543\) −9.09315e6 889098.i −1.32347 0.129405i
\(544\) 0 0
\(545\) −701313. 1.21471e6i −0.101139 0.175179i
\(546\) 0 0
\(547\) −3.46672e6 + 6.00454e6i −0.495394 + 0.858047i −0.999986 0.00531061i \(-0.998310\pi\)
0.504592 + 0.863358i \(0.331643\pi\)
\(548\) 0 0
\(549\) −5.46892e6 + 6.25395e6i −0.774410 + 0.885571i
\(550\) 0 0
\(551\) −1.64884e6 + 2.85588e6i −0.231366 + 0.400739i
\(552\) 0 0
\(553\) −1.83834e6 3.18409e6i −0.255630 0.442764i
\(554\) 0 0
\(555\) −3.96772e6 8.74047e6i −0.546774 1.20449i
\(556\) 0 0
\(557\) −9.83771e6 −1.34356 −0.671778 0.740752i \(-0.734469\pi\)
−0.671778 + 0.740752i \(0.734469\pi\)
\(558\) 0 0
\(559\) 2.18140e6 0.295261
\(560\) 0 0
\(561\) 3.35464e6 4.68840e6i 0.450027 0.628951i
\(562\) 0 0
\(563\) 1.36609e6 + 2.36613e6i 0.181638 + 0.314607i 0.942439 0.334379i \(-0.108527\pi\)
−0.760800 + 0.648986i \(0.775193\pi\)
\(564\) 0 0
\(565\) −953024. + 1.65069e6i −0.125598 + 0.217542i
\(566\) 0 0
\(567\) 5.33780e6 4.11990e6i 0.697276 0.538182i
\(568\) 0 0
\(569\) −4.71998e6 + 8.17525e6i −0.611167 + 1.05857i 0.379877 + 0.925037i \(0.375966\pi\)
−0.991044 + 0.133535i \(0.957367\pi\)
\(570\) 0 0
\(571\) −6.33948e6 1.09803e7i −0.813698 1.40937i −0.910259 0.414039i \(-0.864118\pi\)
0.0965611 0.995327i \(-0.469216\pi\)
\(572\) 0 0
\(573\) −7.00326e6 + 9.78766e6i −0.891073 + 1.24535i
\(574\) 0 0
\(575\) −2.86191e6 −0.360983
\(576\) 0 0
\(577\) −1.51657e7 −1.89637 −0.948187 0.317712i \(-0.897086\pi\)
−0.948187 + 0.317712i \(0.897086\pi\)
\(578\) 0 0
\(579\) −112371. 247541.i −0.0139302 0.0306867i
\(580\) 0 0
\(581\) 2.06075e6 + 3.56932e6i 0.253270 + 0.438677i
\(582\) 0 0
\(583\) 1.93665e6 3.35437e6i 0.235982 0.408733i
\(584\) 0 0
\(585\) 1.09158e7 1.24826e7i 1.31875 1.50805i
\(586\) 0 0
\(587\) 911702. 1.57911e6i 0.109209 0.189155i −0.806241 0.591587i \(-0.798502\pi\)
0.915450 + 0.402432i \(0.131835\pi\)
\(588\) 0 0
\(589\) 1.80327e6 + 3.12335e6i 0.214176 + 0.370965i
\(590\) 0 0
\(591\) −5.28623e6 516870.i −0.622555 0.0608713i
\(592\) 0 0
\(593\) 1.27957e7 1.49427 0.747133 0.664674i \(-0.231430\pi\)
0.747133 + 0.664674i \(0.231430\pi\)
\(594\) 0 0
\(595\) 7.23723e6 0.838069
\(596\) 0 0
\(597\) 220922. + 21601.0i 0.0253689 + 0.00248049i
\(598\) 0 0
\(599\) 4.38212e6 + 7.59006e6i 0.499020 + 0.864327i 0.999999 0.00113166i \(-0.000360218\pi\)
−0.500980 + 0.865459i \(0.667027\pi\)
\(600\) 0 0
\(601\) −834793. + 1.44590e6i −0.0942741 + 0.163288i −0.909305 0.416129i \(-0.863386\pi\)
0.815031 + 0.579417i \(0.196720\pi\)
\(602\) 0 0
\(603\) 4.20298e6 + 1.23242e7i 0.470722 + 1.38028i
\(604\) 0 0
\(605\) −407911. + 706523.i −0.0453082 + 0.0784762i
\(606\) 0 0
\(607\) −5.08535e6 8.80809e6i −0.560208 0.970308i −0.997478 0.0709782i \(-0.977388\pi\)
0.437270 0.899330i \(-0.355945\pi\)
\(608\) 0 0
\(609\) −5.22282e6 1.15053e7i −0.570639 1.25706i
\(610\) 0 0
\(611\) −2.57607e6 −0.279161
\(612\) 0 0
\(613\) 1.37829e7 1.48146 0.740730 0.671803i \(-0.234480\pi\)
0.740730 + 0.671803i \(0.234480\pi\)
\(614\) 0 0
\(615\) 7.98691e6 1.11624e7i 0.851513 1.19006i
\(616\) 0 0
\(617\) 6.05409e6 + 1.04860e7i 0.640230 + 1.10891i 0.985381 + 0.170363i \(0.0544942\pi\)
−0.345152 + 0.938547i \(0.612173\pi\)
\(618\) 0 0
\(619\) −8.48665e6 + 1.46993e7i −0.890245 + 1.54195i −0.0506641 + 0.998716i \(0.516134\pi\)
−0.839581 + 0.543234i \(0.817200\pi\)
\(620\) 0 0
\(621\) −1.99935e6 8.49313e6i −0.208046 0.883769i
\(622\) 0 0
\(623\) 2.43352e6 4.21498e6i 0.251197 0.435087i
\(624\) 0 0
\(625\) 6.05231e6 + 1.04829e7i 0.619756 + 1.07345i
\(626\) 0 0
\(627\) 1.62508e6 2.27119e6i 0.165084 0.230720i
\(628\) 0 0
\(629\) 8.93574e6 0.900541
\(630\) 0 0
\(631\) −7.90092e6 −0.789958 −0.394979 0.918690i \(-0.629248\pi\)
−0.394979 + 0.918690i \(0.629248\pi\)
\(632\) 0 0
\(633\) 309923. + 682728.i 0.0307428 + 0.0677233i
\(634\) 0 0
\(635\) 7.10637e6 + 1.23086e7i 0.699381 + 1.21136i
\(636\) 0 0
\(637\) 1.94514e6 3.36908e6i 0.189934 0.328975i
\(638\) 0 0
\(639\) 231248. + 45657.9i 0.0224040 + 0.00442347i
\(640\) 0 0
\(641\) −5.33807e6 + 9.24581e6i −0.513144 + 0.888792i 0.486740 + 0.873547i \(0.338186\pi\)
−0.999884 + 0.0152446i \(0.995147\pi\)
\(642\) 0 0
\(643\) 4.68885e6 + 8.12132e6i 0.447238 + 0.774639i 0.998205 0.0598882i \(-0.0190744\pi\)
−0.550967 + 0.834527i \(0.685741\pi\)
\(644\) 0 0
\(645\) 2.16604e6 + 211788.i 0.205006 + 0.0200448i
\(646\) 0 0
\(647\) 9.44013e6 0.886579 0.443289 0.896379i \(-0.353811\pi\)
0.443289 + 0.896379i \(0.353811\pi\)
\(648\) 0 0
\(649\) −2.09805e6 −0.195526
\(650\) 0 0
\(651\) −1.37531e7 1.34473e6i −1.27188 0.124360i
\(652\) 0 0
\(653\) −7.44455e6 1.28943e7i −0.683212 1.18336i −0.973995 0.226569i \(-0.927249\pi\)
0.290783 0.956789i \(-0.406084\pi\)
\(654\) 0 0
\(655\) 6.25543e6 1.08347e7i 0.569710 0.986766i
\(656\) 0 0
\(657\) −1.72601e7 3.40784e6i −1.56002 0.308011i
\(658\) 0 0
\(659\) −3.82391e6 + 6.62320e6i −0.343000 + 0.594093i −0.984988 0.172621i \(-0.944776\pi\)
0.641989 + 0.766714i \(0.278110\pi\)
\(660\) 0 0
\(661\) 2.50269e6 + 4.33479e6i 0.222794 + 0.385891i 0.955655 0.294487i \(-0.0951489\pi\)
−0.732861 + 0.680378i \(0.761816\pi\)
\(662\) 0 0
\(663\) 6.38075e6 + 1.40561e7i 0.563752 + 1.24189i
\(664\) 0 0
\(665\) 3.50592e6 0.307431
\(666\) 0 0
\(667\) −1.63502e7 −1.42301
\(668\) 0 0
\(669\) −7.11142e6 + 9.93882e6i −0.614315 + 0.858558i
\(670\) 0 0
\(671\) −6.59202e6 1.14177e7i −0.565214 0.978979i
\(672\) 0 0
\(673\) −1.07220e6 + 1.85710e6i −0.0912511 + 0.158051i −0.908038 0.418888i \(-0.862420\pi\)
0.816787 + 0.576940i \(0.195753\pi\)
\(674\) 0 0
\(675\) 3.42824e6 3.22459e6i 0.289609 0.272405i
\(676\) 0 0
\(677\) 4.75463e6 8.23526e6i 0.398699 0.690567i −0.594867 0.803824i \(-0.702795\pi\)
0.993566 + 0.113257i \(0.0361285\pi\)
\(678\) 0 0
\(679\) −2.50385e6 4.33679e6i −0.208417 0.360989i
\(680\) 0 0
\(681\) 5.04161e6 7.04608e6i 0.416583 0.582210i
\(682\) 0 0
\(683\) 5.47266e6 0.448897 0.224449 0.974486i \(-0.427942\pi\)
0.224449 + 0.974486i \(0.427942\pi\)
\(684\) 0 0
\(685\) 239205. 0.0194780
\(686\) 0 0
\(687\) 739023. + 1.62799e6i 0.0597401 + 0.131601i
\(688\) 0 0
\(689\) 5.18570e6 + 8.98189e6i 0.416159 + 0.720808i
\(690\) 0 0
\(691\) 3.44084e6 5.95970e6i 0.274138 0.474821i −0.695779 0.718255i \(-0.744941\pi\)
0.969917 + 0.243435i \(0.0782742\pi\)
\(692\) 0 0
\(693\) 3.45388e6 + 1.01277e7i 0.273196 + 0.801080i
\(694\) 0 0
\(695\) −3.99430e6 + 6.91832e6i −0.313674 + 0.543299i
\(696\) 0 0
\(697\) 6.38864e6 + 1.10655e7i 0.498112 + 0.862755i
\(698\) 0 0
\(699\) 1.72486e6 + 168651.i 0.133524 + 0.0130556i
\(700\) 0 0
\(701\) 5.19615e6 0.399380 0.199690 0.979859i \(-0.436006\pi\)
0.199690 + 0.979859i \(0.436006\pi\)
\(702\) 0 0
\(703\) 4.32872e6 0.330348
\(704\) 0 0
\(705\) −2.55793e6 250106.i −0.193827 0.0189518i
\(706\) 0 0
\(707\) 1.37676e6 + 2.38461e6i 0.103588 + 0.179419i
\(708\) 0 0
\(709\) −287410. + 497809.i −0.0214727 + 0.0371918i −0.876562 0.481289i \(-0.840169\pi\)
0.855089 + 0.518481i \(0.173502\pi\)
\(710\) 0 0
\(711\) 5.15042e6 5.88973e6i 0.382093 0.436939i
\(712\) 0 0
\(713\) −8.94074e6 + 1.54858e7i −0.658642 + 1.14080i
\(714\) 0 0
\(715\) 1.31574e7 + 2.27893e7i 0.962511 + 1.66712i
\(716\) 0 0
\(717\) 4.76206e6 + 1.04903e7i 0.345937 + 0.762063i
\(718\) 0 0
\(719\) 400906. 0.0289215 0.0144607 0.999895i \(-0.495397\pi\)
0.0144607 + 0.999895i \(0.495397\pi\)
\(720\) 0 0
\(721\) −1.56693e7 −1.12256
\(722\) 0 0
\(723\) −1.17048e7 + 1.63585e7i −0.832757 + 1.16385i
\(724\) 0 0
\(725\) −4.40969e6 7.63781e6i −0.311575 0.539664i
\(726\) 0 0
\(727\) 5.27154e6 9.13058e6i 0.369915 0.640711i −0.619637 0.784889i \(-0.712720\pi\)
0.989552 + 0.144177i \(0.0460535\pi\)
\(728\) 0 0
\(729\) 1.19644e7 + 7.92108e6i 0.833822 + 0.552034i
\(730\) 0 0
\(731\) −1.01301e6 + 1.75458e6i −0.0701162 + 0.121445i
\(732\) 0 0
\(733\) −6.96868e6 1.20701e7i −0.479061 0.829758i 0.520651 0.853770i \(-0.325689\pi\)
−0.999712 + 0.0240119i \(0.992356\pi\)
\(734\) 0 0
\(735\) 2.25854e6 3.15651e6i 0.154209 0.215520i
\(736\) 0 0
\(737\) −2.06638e7 −1.40133
\(738\) 0 0
\(739\) 9.88034e6 0.665519 0.332760 0.943012i \(-0.392020\pi\)
0.332760 + 0.943012i \(0.392020\pi\)
\(740\) 0 0
\(741\) 3.09102e6 + 6.80919e6i 0.206803 + 0.455565i
\(742\) 0 0
\(743\) −4.66695e6 8.08339e6i −0.310142 0.537182i 0.668251 0.743936i \(-0.267043\pi\)
−0.978393 + 0.206754i \(0.933710\pi\)
\(744\) 0 0
\(745\) 2.47219e6 4.28195e6i 0.163189 0.282652i
\(746\) 0 0
\(747\) −5.77354e6 + 6.60230e6i −0.378565 + 0.432906i
\(748\) 0 0
\(749\) 9.59080e6 1.66117e7i 0.624669 1.08196i
\(750\) 0 0
\(751\) 1.43761e7 + 2.49001e7i 0.930124 + 1.61102i 0.783106 + 0.621888i \(0.213634\pi\)
0.147018 + 0.989134i \(0.453032\pi\)
\(752\) 0 0
\(753\) 2.00730e7 + 1.96267e6i 1.29011 + 0.126142i
\(754\) 0 0
\(755\) −2.37881e7 −1.51877
\(756\) 0 0
\(757\) −4.94587e6 −0.313691 −0.156846 0.987623i \(-0.550133\pi\)
−0.156846 + 0.987623i \(0.550133\pi\)
\(758\) 0 0
\(759\) 1.37807e7 + 1.34743e6i 0.868296 + 0.0848991i
\(760\) 0 0
\(761\) −4.56829e6 7.91251e6i −0.285951 0.495282i 0.686888 0.726763i \(-0.258976\pi\)
−0.972839 + 0.231481i \(0.925643\pi\)
\(762\) 0 0
\(763\) −1.21179e6 + 2.09888e6i −0.0753555 + 0.130520i
\(764\) 0 0
\(765\) 4.97113e6 + 1.45766e7i 0.307115 + 0.900542i
\(766\) 0 0
\(767\) 2.80894e6 4.86523e6i 0.172407 0.298617i
\(768\) 0 0
\(769\) −8.26221e6 1.43106e7i −0.503826 0.872652i −0.999990 0.00442349i \(-0.998592\pi\)
0.496164 0.868229i \(-0.334741\pi\)
\(770\) 0 0
\(771\) 4.02309e6 + 8.86244e6i 0.243738 + 0.536930i
\(772\) 0 0
\(773\) 1.01763e7 0.612550 0.306275 0.951943i \(-0.400917\pi\)
0.306275 + 0.951943i \(0.400917\pi\)
\(774\) 0 0
\(775\) −9.64536e6 −0.576852
\(776\) 0 0
\(777\) −9.65129e6 + 1.34885e7i −0.573499 + 0.801515i
\(778\) 0 0
\(779\) 3.09484e6 + 5.36042e6i 0.182724 + 0.316486i
\(780\) 0 0
\(781\) −187030. + 323945.i −0.0109719 + 0.0190040i
\(782\) 0 0
\(783\) 1.95856e7 1.84222e7i 1.14165 1.07383i
\(784\) 0 0
\(785\) 1.58498e6 2.74527e6i 0.0918015 0.159005i
\(786\) 0 0
\(787\) −9.38173e6 1.62496e7i −0.539941 0.935205i −0.998907 0.0467507i \(-0.985113\pi\)
0.458966 0.888454i \(-0.348220\pi\)
\(788\) 0 0
\(789\) 1.05676e7 1.47691e7i 0.604342 0.844620i
\(790\) 0 0
\(791\) 3.29343e6 0.187158
\(792\) 0 0
\(793\) 3.53025e7 1.99353
\(794\) 0 0
\(795\) 4.27714e6 + 9.42210e6i 0.240014 + 0.528725i
\(796\) 0 0
\(797\) 1.23982e6 + 2.14744e6i 0.0691376 + 0.119750i 0.898522 0.438929i \(-0.144642\pi\)
−0.829384 + 0.558678i \(0.811309\pi\)
\(798\) 0 0
\(799\) 1.19628e6 2.07202e6i 0.0662929 0.114823i
\(800\) 0 0
\(801\) 1.01610e7 + 2.00620e6i 0.559573 + 0.110483i
\(802\) 0 0
\(803\) 1.39597e7 2.41788e7i 0.763987 1.32326i
\(804\) 0 0
\(805\) 8.69130e6 + 1.50538e7i 0.472711 + 0.818759i
\(806\) 0 0
\(807\) −2.46605e7 2.41122e6i −1.33296 0.130332i
\(808\) 0 0
\(809\) −2.50880e7 −1.34770 −0.673852 0.738867i \(-0.735361\pi\)
−0.673852 + 0.738867i \(0.735361\pi\)
\(810\) 0 0
\(811\) 4.28465e6 0.228751 0.114376 0.993438i \(-0.463513\pi\)
0.114376 + 0.993438i \(0.463513\pi\)
\(812\) 0 0
\(813\) −1.51713e7 1.48339e6i −0.804999 0.0787101i
\(814\) 0 0
\(815\) −1.19308e7 2.06647e7i −0.629179 1.08977i
\(816\) 0 0
\(817\) −490728. + 849967.i −0.0257209 + 0.0445499i
\(818\) 0 0
\(819\) −2.81095e7 5.54996e6i −1.46434 0.289121i
\(820\) 0 0
\(821\) −1.01563e7 + 1.75913e7i −0.525871 + 0.910836i 0.473675 + 0.880700i \(0.342927\pi\)
−0.999546 + 0.0301356i \(0.990406\pi\)
\(822\) 0 0
\(823\) −6.58313e6 1.14023e7i −0.338792 0.586804i 0.645414 0.763833i \(-0.276685\pi\)
−0.984206 + 0.177029i \(0.943351\pi\)
\(824\) 0 0
\(825\) 3.08726e6 + 6.80092e6i 0.157920 + 0.347883i
\(826\) 0 0
\(827\) −2.82859e7 −1.43816 −0.719079 0.694928i \(-0.755436\pi\)
−0.719079 + 0.694928i \(0.755436\pi\)
\(828\) 0 0
\(829\) 1.36608e7 0.690381 0.345190 0.938533i \(-0.387814\pi\)
0.345190 + 0.938533i \(0.387814\pi\)
\(830\) 0 0
\(831\) −1.17059e7 + 1.63601e7i −0.588036 + 0.821832i
\(832\) 0 0
\(833\) 1.80658e6 + 3.12909e6i 0.0902080 + 0.156245i
\(834\) 0 0
\(835\) −3.84845e6 + 6.66571e6i −0.191016 + 0.330849i
\(836\) 0 0
\(837\) −6.73831e6 2.86240e7i −0.332458 1.41227i
\(838\) 0 0
\(839\) −75641.6 + 131015.i −0.00370984 + 0.00642564i −0.867874 0.496784i \(-0.834514\pi\)
0.864165 + 0.503209i \(0.167848\pi\)
\(840\) 0 0
\(841\) −1.49371e7 2.58718e7i −0.728244 1.26135i
\(842\) 0 0
\(843\) 1.51242e7 2.11374e7i 0.733000 1.02443i
\(844\) 0 0
\(845\) −4.59249e7 −2.21262
\(846\) 0 0
\(847\) 1.40965e6 0.0675152
\(848\) 0 0
\(849\) −7.27561e6 1.60274e7i −0.346418 0.763123i
\(850\) 0 0
\(851\) 1.07311e7 + 1.85868e7i 0.507948 + 0.879792i
\(852\) 0 0
\(853\) 1.38831e7 2.40462e7i 0.653301 1.13155i −0.329015 0.944325i \(-0.606717\pi\)
0.982317 0.187226i \(-0.0599498\pi\)
\(854\) 0 0
\(855\) 2.40816e6 + 7.06134e6i 0.112660 + 0.330348i
\(856\) 0 0
\(857\) 1.76136e7 3.05077e7i 0.819212 1.41892i −0.0870512 0.996204i \(-0.527744\pi\)
0.906263 0.422713i \(-0.138922\pi\)
\(858\) 0 0
\(859\) −2.02341e7 3.50464e7i −0.935622 1.62054i −0.773522 0.633770i \(-0.781507\pi\)
−0.162100 0.986774i \(-0.551827\pi\)
\(860\) 0 0
\(861\) −2.36036e7 2.30788e6i −1.08510 0.106097i
\(862\) 0 0
\(863\) 1.96865e7 0.899789 0.449895 0.893082i \(-0.351462\pi\)
0.449895 + 0.893082i \(0.351462\pi\)
\(864\) 0 0
\(865\) −6.84170e6 −0.310902
\(866\) 0 0
\(867\) 7.75937e6 + 758686.i 0.350573 + 0.0342779i
\(868\) 0 0
\(869\) 6.20812e6 + 1.07528e7i 0.278876 + 0.483027i
\(870\) 0 0
\(871\) 2.76654e7 4.79178e7i 1.23564 2.14019i
\(872\) 0 0
\(873\) 7.01496e6 8.02191e6i 0.311523 0.356240i
\(874\) 0 0
\(875\) 7.10324e6 1.23032e7i 0.313644 0.543247i
\(876\) 0 0
\(877\) −1.31221e7 2.27282e7i −0.576109 0.997850i −0.995920 0.0902384i \(-0.971237\pi\)
0.419811 0.907611i \(-0.362096\pi\)
\(878\) 0 0
\(879\) 1.32498e7 + 2.91880e7i 0.578414 + 1.27419i
\(880\) 0 0
\(881\) −1.29423e7 −0.561786 −0.280893 0.959739i \(-0.590631\pi\)
−0.280893 + 0.959739i \(0.590631\pi\)
\(882\) 0 0
\(883\) −3.39097e6 −0.146360 −0.0731800 0.997319i \(-0.523315\pi\)
−0.0731800 + 0.997319i \(0.523315\pi\)
\(884\) 0 0
\(885\) 3.26152e6 4.55825e6i 0.139979 0.195632i
\(886\) 0 0
\(887\) 3.83796e6 + 6.64753e6i 0.163791 + 0.283695i 0.936225 0.351400i \(-0.114294\pi\)
−0.772434 + 0.635095i \(0.780961\pi\)
\(888\) 0 0
\(889\) 1.22790e7 2.12678e7i 0.521085 0.902545i
\(890\) 0 0
\(891\) −1.80259e7 + 1.39130e7i −0.760682 + 0.587122i
\(892\) 0 0
\(893\) 579513. 1.00375e6i 0.0243184 0.0421207i
\(894\) 0 0
\(895\) 2.60849e6 + 4.51803e6i 0.108851 + 0.188535i
\(896\) 0 0
\(897\) −2.15747e7 + 3.01525e7i −0.895290 + 1.25125i
\(898\) 0 0
\(899\) −5.51042e7 −2.27398
\(900\) 0 0
\(901\) −9.63260e6 −0.395304
\(902\) 0 0
\(903\) −1.55441e6 3.42421e6i −0.0634377 0.139747i
\(904\) 0 0
\(905\) 1.93670e7 + 3.35446e7i 0.786033 + 1.36145i
\(906\) 0 0
\(907\) 5.44435e6 9.42990e6i 0.219750 0.380618i −0.734982 0.678087i \(-0.762809\pi\)
0.954731 + 0.297469i \(0.0961426\pi\)
\(908\) 0 0
\(909\) −3.85722e6 + 4.41090e6i −0.154834 + 0.177059i
\(910\) 0 0
\(911\) −90239.2 + 156299.i −0.00360246 + 0.00623964i −0.867821 0.496877i \(-0.834480\pi\)
0.864219 + 0.503117i \(0.167813\pi\)
\(912\) 0 0
\(913\) −6.95920e6 1.20537e7i −0.276301 0.478568i
\(914\) 0 0
\(915\) 3.50539e7 + 3.42745e6i 1.38415 + 0.135338i
\(916\) 0 0
\(917\) −2.16173e7 −0.848942
\(918\) 0 0
\(919\) 2.24831e7 0.878148 0.439074 0.898451i \(-0.355307\pi\)
0.439074 + 0.898451i \(0.355307\pi\)
\(920\) 0 0
\(921\) 2.36051e7 + 2.30803e6i 0.916973 + 0.0896586i
\(922\) 0 0
\(923\) −500804. 867418.i −0.0193492 0.0335138i
\(924\) 0 0
\(925\) −5.78840e6 + 1.00258e7i −0.222436 + 0.385270i
\(926\) 0 0
\(927\) −1.07630e7 3.15598e7i −0.411371 1.20625i
\(928\) 0 0
\(929\) 2.06620e7 3.57877e7i 0.785477 1.36049i −0.143237 0.989688i \(-0.545751\pi\)
0.928714 0.370797i \(-0.120916\pi\)
\(930\) 0 0
\(931\) 875159. + 1.51582e6i 0.0330912 + 0.0573157i
\(932\) 0 0
\(933\) 1.74516e7 + 3.84441e7i 0.656343 + 1.44586i
\(934\) 0 0
\(935\) −2.44403e7 −0.914278
\(936\) 0 0
\(937\) 2.56470e7 0.954305 0.477153 0.878820i \(-0.341669\pi\)
0.477153 + 0.878820i \(0.341669\pi\)
\(938\) 0 0
\(939\) −5.90670e6 + 8.25512e6i −0.218615 + 0.305534i
\(940\) 0 0
\(941\) −8.99880e6 1.55864e7i −0.331292 0.573814i 0.651474 0.758671i \(-0.274151\pi\)
−0.982765 + 0.184857i \(0.940818\pi\)
\(942\) 0 0
\(943\) −1.53445e7 + 2.65774e7i −0.561917 + 0.973269i
\(944\) 0 0
\(945\) −2.73727e7 8.23997e6i −0.997098 0.300155i
\(946\) 0 0
\(947\) −2.25398e7 + 3.90400e7i −0.816723 + 1.41461i 0.0913614 + 0.995818i \(0.470878\pi\)
−0.908084 + 0.418788i \(0.862455\pi\)
\(948\) 0 0
\(949\) 3.73793e7 + 6.47429e7i 1.34731 + 2.33360i
\(950\) 0 0
\(951\) −1.05323e6 + 1.47199e6i −0.0377636 + 0.0527780i
\(952\) 0 0
\(953\) 2.21374e7 0.789577 0.394788 0.918772i \(-0.370818\pi\)
0.394788 + 0.918772i \(0.370818\pi\)
\(954\) 0 0
\(955\) 5.10225e7 1.81031
\(956\) 0 0
\(957\) 1.76376e7 + 3.88539e7i 0.622530 + 1.37137i
\(958\) 0 0
\(959\) −206660. 357945.i −0.00725619 0.0125681i
\(960\) 0 0
\(961\) −1.58180e7 + 2.73975e7i −0.552512 + 0.956979i
\(962\) 0 0
\(963\) 4.00458e7 + 7.90668e6i 1.39153 + 0.274744i
\(964\) 0 0
\(965\) −576255. + 998103.i −0.0199203 + 0.0345030i
\(966\) 0 0
\(967\) −9.81614e6 1.70020e7i −0.337578 0.584703i 0.646398 0.763000i \(-0.276274\pi\)
−0.983977 + 0.178297i \(0.942941\pi\)
\(968\) 0 0
\(969\) −6.91229e6 675861.i −0.236490 0.0231232i
\(970\) 0 0
\(971\) 3.46539e7 1.17952 0.589758 0.807580i \(-0.299223\pi\)
0.589758 + 0.807580i \(0.299223\pi\)
\(972\) 0 0
\(973\) 1.38034e7 0.467415
\(974\) 0 0
\(975\) −1.99042e7 1.94616e6i −0.670552 0.0655644i
\(976\) 0 0
\(977\) −1.34006e7 2.32106e7i −0.449148 0.777947i 0.549183 0.835702i \(-0.314939\pi\)
−0.998331 + 0.0577553i \(0.981606\pi\)
\(978\) 0 0
\(979\) −8.21808e6 + 1.42341e7i −0.274040 + 0.474651i
\(980\) 0 0
\(981\) −5.05975e6 999002.i −0.167864 0.0331431i
\(982\) 0 0
\(983\) −1.19040e7 + 2.06183e7i −0.392924 + 0.680565i −0.992834 0.119503i \(-0.961870\pi\)
0.599910 + 0.800068i \(0.295203\pi\)
\(984\) 0 0
\(985\) 1.12589e7 + 1.95009e7i 0.369746 + 0.640419i
\(986\) 0 0
\(987\) 1.83564e6 + 4.04374e6i 0.0599785 + 0.132126i
\(988\) 0 0
\(989\) −4.86614e6 −0.158195
\(990\) 0 0
\(991\) 2.37156e7 0.767096 0.383548 0.923521i \(-0.374702\pi\)
0.383548 + 0.923521i \(0.374702\pi\)
\(992\) 0 0
\(993\) −2.88145e6 + 4.02708e6i −0.0927338 + 0.129603i
\(994\) 0 0
\(995\) −470529. 814980.i −0.0150671 0.0260969i
\(996\) 0 0
\(997\) 2.04170e7 3.53633e7i 0.650511 1.12672i −0.332488 0.943107i \(-0.607888\pi\)
0.982999 0.183610i \(-0.0587785\pi\)
\(998\) 0 0
\(999\) −3.37968e7 1.01738e7i −1.07143 0.322530i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.6.i.b.97.1 6
3.2 odd 2 432.6.i.b.289.1 6
4.3 odd 2 18.6.c.b.7.3 6
9.4 even 3 inner 144.6.i.b.49.1 6
9.5 odd 6 432.6.i.b.145.1 6
12.11 even 2 54.6.c.b.19.1 6
36.7 odd 6 162.6.a.j.1.1 3
36.11 even 6 162.6.a.i.1.3 3
36.23 even 6 54.6.c.b.37.1 6
36.31 odd 6 18.6.c.b.13.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.6.c.b.7.3 6 4.3 odd 2
18.6.c.b.13.3 yes 6 36.31 odd 6
54.6.c.b.19.1 6 12.11 even 2
54.6.c.b.37.1 6 36.23 even 6
144.6.i.b.49.1 6 9.4 even 3 inner
144.6.i.b.97.1 6 1.1 even 1 trivial
162.6.a.i.1.3 3 36.11 even 6
162.6.a.j.1.1 3 36.7 odd 6
432.6.i.b.145.1 6 9.5 odd 6
432.6.i.b.289.1 6 3.2 odd 2