# Properties

 Label 144.5.q.c Level 144 Weight 5 Character orbit 144.q Analytic conductor 14.885 Analytic rank 0 Dimension 8 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$144 = 2^{4} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$5$$ Character orbit: $$[\chi]$$ $$=$$ 144.q (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$14.8852746841$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{8} - \cdots)$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$2^{2}\cdot 3^{6}$$ Twist minimal: no (minimal twist has level 36) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{7}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 - \beta_{2} ) q^{3} + ( -1 + \beta_{3} - \beta_{7} ) q^{5} + ( 1 + 4 \beta_{1} + \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} + \beta_{7} ) q^{7} + ( 1 - 4 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{5} - 2 \beta_{6} - 3 \beta_{7} ) q^{9} +O(q^{10})$$ $$q + ( 1 - \beta_{2} ) q^{3} + ( -1 + \beta_{3} - \beta_{7} ) q^{5} + ( 1 + 4 \beta_{1} + \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} + \beta_{7} ) q^{7} + ( 1 - 4 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{5} - 2 \beta_{6} - 3 \beta_{7} ) q^{9} + ( 2 - \beta_{1} - 8 \beta_{2} + \beta_{3} + \beta_{4} - 3 \beta_{6} - \beta_{7} ) q^{11} + ( 4 - \beta_{1} + 16 \beta_{2} + 11 \beta_{3} + 4 \beta_{4} - 4 \beta_{5} + \beta_{6} - 2 \beta_{7} ) q^{13} + ( -60 - 66 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} + 3 \beta_{4} - 6 \beta_{5} + 6 \beta_{6} - 6 \beta_{7} ) q^{15} + ( -60 - 107 \beta_{1} - 25 \beta_{2} - 18 \beta_{3} + 2 \beta_{4} + 3 \beta_{5} + 6 \beta_{6} ) q^{17} + ( -61 + 7 \beta_{1} + 35 \beta_{2} + 4 \beta_{3} + 5 \beta_{4} + 12 \beta_{5} - 2 \beta_{6} - 10 \beta_{7} ) q^{19} + ( -102 + 76 \beta_{1} + \beta_{2} + \beta_{3} + 9 \beta_{4} + 12 \beta_{5} - 15 \beta_{6} ) q^{21} + ( 143 - 138 \beta_{1} - 9 \beta_{2} - 53 \beta_{3} - 3 \beta_{5} - 18 \beta_{6} - 10 \beta_{7} ) q^{23} + ( -3 - 80 \beta_{1} - 15 \beta_{2} - 57 \beta_{3} + 3 \beta_{4} - 18 \beta_{5} + 6 \beta_{6} + 3 \beta_{7} ) q^{25} + ( 54 + 273 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} + 3 \beta_{4} - 21 \beta_{5} + 18 \beta_{6} - 15 \beta_{7} ) q^{27} + ( 361 + 190 \beta_{1} + 35 \beta_{2} - 19 \beta_{3} + 8 \beta_{4} + 9 \beta_{5} + 9 \beta_{6} - 8 \beta_{7} ) q^{29} + ( -55 - 40 \beta_{1} - 51 \beta_{2} - 57 \beta_{3} + 12 \beta_{4} + 21 \beta_{5} - 6 \beta_{7} ) q^{31} + ( 726 + 624 \beta_{1} + 3 \beta_{2} + 6 \beta_{4} + 3 \beta_{5} - 18 \beta_{6} - 30 \beta_{7} ) q^{33} + ( 561 + 1073 \beta_{1} + 46 \beta_{2} + 63 \beta_{3} + 19 \beta_{4} + 12 \beta_{5} - 21 \beta_{6} ) q^{35} + ( 9 - 32 \beta_{1} + 32 \beta_{2} + 70 \beta_{3} + 29 \beta_{4} - 3 \beta_{5} + 4 \beta_{6} - 58 \beta_{7} ) q^{37} + ( 907 - 293 \beta_{1} + 27 \beta_{2} + \beta_{3} + 45 \beta_{4} - 6 \beta_{5} + 3 \beta_{6} + 9 \beta_{7} ) q^{39} + ( -658 + 654 \beta_{1} + 18 \beta_{2} - 26 \beta_{3} + 6 \beta_{5} - 27 \beta_{6} - 37 \beta_{7} ) q^{41} + ( -18 - 26 \beta_{1} - 54 \beta_{2} - 27 \beta_{3} - 9 \beta_{5} + 18 \beta_{6} ) q^{43} + ( -222 - 1875 \beta_{1} + 24 \beta_{2} - 33 \beta_{3} + 18 \beta_{4} - 42 \beta_{5} + 21 \beta_{6} - 18 \beta_{7} ) q^{45} + ( -2277 - 1122 \beta_{1} - 3 \beta_{2} - 66 \beta_{3} + 15 \beta_{4} + 27 \beta_{5} - 6 \beta_{6} - 15 \beta_{7} ) q^{47} + ( -141 - 64 \beta_{1} - 160 \beta_{2} - 191 \beta_{3} - 40 \beta_{4} + 40 \beta_{5} + 17 \beta_{6} + 20 \beta_{7} ) q^{49} + ( -2154 - 1644 \beta_{1} - 81 \beta_{2} - 87 \beta_{3} - 48 \beta_{4} - 9 \beta_{5} - 48 \beta_{6} - 21 \beta_{7} ) q^{51} + ( -855 - 1906 \beta_{1} + 196 \beta_{2} + 270 \beta_{3} + 61 \beta_{4} + 45 \beta_{5} - 90 \beta_{6} ) q^{53} + ( 216 - 93 \beta_{1} - 12 \beta_{2} + 183 \beta_{3} + 42 \beta_{4} - 51 \beta_{5} + 33 \beta_{6} - 84 \beta_{7} ) q^{55} + ( -2747 - 30 \beta_{1} + 41 \beta_{2} - 27 \beta_{3} + 27 \beta_{4} - 102 \beta_{5} + 96 \beta_{6} + 63 \beta_{7} ) q^{57} + ( 1700 - 1698 \beta_{1} + 171 \beta_{2} + 244 \beta_{3} + 57 \beta_{5} + 9 \beta_{6} - 46 \beta_{7} ) q^{59} + ( -9 + 434 \beta_{1} - 75 \beta_{2} + 309 \beta_{3} + 24 \beta_{4} + 111 \beta_{5} + 33 \beta_{6} + 24 \beta_{7} ) q^{61} + ( 1201 + 3695 \beta_{1} + 155 \beta_{2} + 10 \beta_{3} + 30 \beta_{4} + 10 \beta_{5} - 71 \beta_{6} ) q^{63} + ( 4235 + 2096 \beta_{1} - 467 \beta_{2} - 125 \beta_{3} - 44 \beta_{4} + 27 \beta_{5} - 141 \beta_{6} + 44 \beta_{7} ) q^{65} + ( -97 - 13 \beta_{1} + 147 \beta_{2} - 66 \beta_{3} - 186 \beta_{4} - 111 \beta_{5} + 102 \beta_{6} + 93 \beta_{7} ) q^{67} + ( 4323 + 3489 \beta_{1} - 294 \beta_{2} - 213 \beta_{3} - 159 \beta_{4} - 177 \beta_{5} + 105 \beta_{6} + 102 \beta_{7} ) q^{69} + ( 2697 + 5420 \beta_{1} - 212 \beta_{2} + 72 \beta_{3} + 31 \beta_{4} + 105 \beta_{5} - 24 \beta_{6} ) q^{71} + ( -880 + 135 \beta_{1} + 453 \beta_{2} + 132 \beta_{3} - 42 \beta_{4} + 93 \beta_{5} + 72 \beta_{6} + 84 \beta_{7} ) q^{73} + ( 3042 - 1355 \beta_{1} - 68 \beta_{2} - 95 \beta_{3} - 162 \beta_{4} - 72 \beta_{5} - 18 \beta_{6} + 135 \beta_{7} ) q^{75} + ( -2015 + 2310 \beta_{1} + 288 \beta_{2} - 163 \beta_{3} + 96 \beta_{5} - 126 \beta_{6} + 73 \beta_{7} ) q^{77} + ( 29 - 479 \beta_{1} - 157 \beta_{2} - 44 \beta_{3} + 122 \beta_{4} + 26 \beta_{5} + 93 \beta_{6} + 122 \beta_{7} ) q^{79} + ( 33 - 5019 \beta_{1} + 300 \beta_{2} + 375 \beta_{3} - 120 \beta_{5} + 78 \beta_{6} - 45 \beta_{7} ) q^{81} + ( -6309 - 3030 \beta_{1} - 435 \beta_{2} - 390 \beta_{3} - 201 \beta_{4} + 63 \beta_{5} - 78 \beta_{6} + 201 \beta_{7} ) q^{83} + ( -849 - 675 \beta_{1} + 6 \beta_{2} - 384 \beta_{3} - 138 \beta_{4} - 48 \beta_{5} + 153 \beta_{6} + 69 \beta_{7} ) q^{85} + ( -4002 - 2343 \beta_{1} - 219 \beta_{2} + 162 \beta_{3} - 33 \beta_{4} - 129 \beta_{5} + 81 \beta_{6} + 138 \beta_{7} ) q^{87} + ( -1473 - 2798 \beta_{1} - 160 \beta_{2} + 198 \beta_{3} - 241 \beta_{4} + 39 \beta_{5} - 66 \beta_{6} ) q^{89} + ( -1870 + 183 \beta_{1} + 618 \beta_{2} + 309 \beta_{3} - 120 \beta_{4} + 63 \beta_{5} + 183 \beta_{6} + 240 \beta_{7} ) q^{91} + ( -4909 - 625 \beta_{1} - 108 \beta_{2} - 67 \beta_{3} - 135 \beta_{4} - 99 \beta_{5} - 99 \beta_{6} ) q^{93} + ( 3290 - 2706 \beta_{1} + 306 \beta_{2} - 536 \beta_{3} + 102 \beta_{5} - 180 \beta_{6} + 302 \beta_{7} ) q^{95} + ( -50 - 1792 \beta_{1} - 272 \beta_{2} - 274 \beta_{3} + 61 \beta_{4} - 71 \beta_{5} + 111 \beta_{6} + 61 \beta_{7} ) q^{97} + ( 2814 + 2991 \beta_{1} - 60 \beta_{2} + 618 \beta_{3} + 18 \beta_{4} - 237 \beta_{5} + 168 \beta_{6} - 81 \beta_{7} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + 9q^{3} - 9q^{5} - 13q^{7} + 21q^{9} + O(q^{10})$$ $$8q + 9q^{3} - 9q^{5} - 13q^{7} + 21q^{9} + 18q^{11} - 5q^{13} - 225q^{15} - 562q^{19} - 1167q^{21} + 1719q^{23} + 353q^{25} - 648q^{27} + 2115q^{29} - 187q^{31} + 3258q^{33} + 16q^{37} + 8265q^{39} - 7920q^{41} + 68q^{43} + 5679q^{45} - 13689q^{47} - 327q^{49} - 10449q^{51} + 1818q^{55} - 21861q^{57} + 20052q^{59} - 1937q^{61} - 5559q^{63} + 25965q^{65} - 154q^{67} + 21645q^{69} - 7802q^{73} + 30297q^{75} - 25641q^{77} + 2195q^{79} + 19701q^{81} - 37017q^{83} - 3042q^{85} - 22455q^{87} - 15830q^{91} - 36489q^{93} + 37116q^{95} + 7282q^{97} + 10035q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{8} - 3 x^{7} + 6 x^{6} + 121 x^{5} + 1104 x^{4} - 1647 x^{3} + 6529 x^{2} + 85254 x + 440076$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-115 \nu^{7} - 175 \nu^{6} + 4562 \nu^{5} - 26525 \nu^{4} - 65600 \nu^{3} + 13645 \nu^{2} + 1909485 \nu - 10751676$$$$)/5629338$$ $$\beta_{2}$$ $$=$$ $$($$$$-119 \nu^{7} - 2867 \nu^{6} - 8306 \nu^{5} + 100469 \nu^{4} - 747082 \nu^{3} - 2322289 \nu^{2} - 2730825 \nu + 44309382$$$$)/5629338$$ $$\beta_{3}$$ $$=$$ $$($$$$-505 \nu^{7} + 7625 \nu^{6} + 8618 \nu^{5} - 281663 \nu^{4} + 505282 \nu^{3} + 4989577 \nu^{2} - 1691073 \nu - 150628920$$$$)/5629338$$ $$\beta_{4}$$ $$=$$ $$($$$$-457 \nu^{7} + 5180 \nu^{6} - 10711 \nu^{5} - 33392 \nu^{4} - 143180 \nu^{3} + 5464828 \nu^{2} - 10223505 \nu - 17103723$$$$)/2814669$$ $$\beta_{5}$$ $$=$$ $$($$$$665 \nu^{7} - 8053 \nu^{6} + 23477 \nu^{5} - 118565 \nu^{4} + 198040 \nu^{3} - 3976835 \nu^{2} + 11774691 \nu - 86664786$$$$)/2814669$$ $$\beta_{6}$$ $$=$$ $$($$$$-20 \nu^{7} + 202 \nu^{6} - 485 \nu^{5} + 2360 \nu^{4} - 6760 \nu^{3} + 102320 \nu^{2} + 396585 \nu + 1802148$$$$)/72171$$ $$\beta_{7}$$ $$=$$ $$($$$$4613 \nu^{7} - 22861 \nu^{6} + 141194 \nu^{5} + 376069 \nu^{4} + 1408318 \nu^{3} + 434023 \nu^{2} + 77216913 \nu + 183190098$$$$)/5629338$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{6} + \beta_{5} - 2 \beta_{1} + 2$$$$)/9$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{6} + 4 \beta_{5} + 9 \beta_{4} - 9 \beta_{3} - 9 \beta_{2} + 10 \beta_{1} + 2$$$$)/9$$ $$\nu^{3}$$ $$=$$ $$($$$$-9 \beta_{7} - 2 \beta_{6} + \beta_{5} + 9 \beta_{4} - 90 \beta_{3} - 162 \beta_{2} + 169 \beta_{1} - 382$$$$)/9$$ $$\nu^{4}$$ $$=$$ $$($$$$9 \beta_{7} - 20 \beta_{6} - 116 \beta_{5} - 18 \beta_{4} - 225 \beta_{3} - 234 \beta_{2} + 664 \beta_{1} - 6385$$$$)/9$$ $$\nu^{5}$$ $$=$$ $$($$$$270 \beta_{7} - 560 \beta_{6} - 1205 \beta_{5} - 720 \beta_{4} + 720 \beta_{3} + 450 \beta_{2} + 6586 \beta_{1} - 7978$$$$)/9$$ $$\nu^{6}$$ $$=$$ $$($$$$1395 \beta_{7} - 353 \beta_{6} - 5165 \beta_{5} - 7470 \beta_{4} + 16380 \beta_{3} + 16605 \beta_{2} - 28730 \beta_{1} + 11714$$$$)/9$$ $$\nu^{7}$$ $$=$$ $$($$$$11646 \beta_{7} + 799 \beta_{6} + 3322 \beta_{5} - 17109 \beta_{4} + 105804 \beta_{3} + 137898 \beta_{2} - 417152 \beta_{1} + 548321$$$$)/9$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/144\mathbb{Z}\right)^\times$$.

 $$n$$ $$37$$ $$65$$ $$127$$ $$\chi(n)$$ $$1$$ $$1 + \beta_{1}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
65.1
 4.23522 + 4.06612i 3.72537 − 4.42407i −3.41053 + 2.74723i −3.05006 − 3.25531i 4.23522 − 4.06612i 3.72537 + 4.42407i −3.41053 − 2.74723i −3.05006 + 3.25531i
0 −8.37420 + 3.29740i 0 10.6364 6.14094i 0 −7.14202 + 12.3703i 0 59.2543 55.2261i 0
65.2 0 −0.256692 8.99634i 0 −7.67992 + 4.43400i 0 30.9381 53.5864i 0 −80.8682 + 4.61857i 0
65.3 0 4.23662 + 7.94047i 0 −34.8718 + 20.1332i 0 7.38688 12.7945i 0 −45.1021 + 67.2815i 0
65.4 0 8.89427 1.37550i 0 27.4152 15.8282i 0 −37.6830 + 65.2688i 0 77.2160 24.4682i 0
113.1 0 −8.37420 3.29740i 0 10.6364 + 6.14094i 0 −7.14202 12.3703i 0 59.2543 + 55.2261i 0
113.2 0 −0.256692 + 8.99634i 0 −7.67992 4.43400i 0 30.9381 + 53.5864i 0 −80.8682 4.61857i 0
113.3 0 4.23662 7.94047i 0 −34.8718 20.1332i 0 7.38688 + 12.7945i 0 −45.1021 67.2815i 0
113.4 0 8.89427 + 1.37550i 0 27.4152 + 15.8282i 0 −37.6830 65.2688i 0 77.2160 + 24.4682i 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 113.4 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.5.q.c 8
3.b odd 2 1 432.5.q.c 8
4.b odd 2 1 36.5.g.a 8
9.c even 3 1 432.5.q.c 8
9.c even 3 1 1296.5.e.g 8
9.d odd 6 1 inner 144.5.q.c 8
9.d odd 6 1 1296.5.e.g 8
12.b even 2 1 108.5.g.a 8
36.f odd 6 1 108.5.g.a 8
36.f odd 6 1 324.5.c.a 8
36.h even 6 1 36.5.g.a 8
36.h even 6 1 324.5.c.a 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.5.g.a 8 4.b odd 2 1
36.5.g.a 8 36.h even 6 1
108.5.g.a 8 12.b even 2 1
108.5.g.a 8 36.f odd 6 1
144.5.q.c 8 1.a even 1 1 trivial
144.5.q.c 8 9.d odd 6 1 inner
324.5.c.a 8 36.f odd 6 1
324.5.c.a 8 36.h even 6 1
432.5.q.c 8 3.b odd 2 1
432.5.q.c 8 9.c even 3 1
1296.5.e.g 8 9.c even 3 1
1296.5.e.g 8 9.d odd 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}^{8} + \cdots$$ acting on $$S_{5}^{\mathrm{new}}(144, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 - 9 T + 30 T^{2} + 189 T^{3} - 6966 T^{4} + 15309 T^{5} + 196830 T^{6} - 4782969 T^{7} + 43046721 T^{8}$$
$5$ $$1 + 9 T + 1114 T^{2} + 9783 T^{3} + 533599 T^{4} + 10528056 T^{5} + 59806456 T^{6} + 10305069192 T^{7} - 6001445444 T^{8} + 6440668245000 T^{9} + 23361896875000 T^{10} + 2570326171875000 T^{11} + 81420745849609375 T^{12} + 932979583740234375 T^{13} + 66399574279785156250 T^{14} +$$$$33\!\cdots\!25$$$$T^{15} +$$$$23\!\cdots\!25$$$$T^{16}$$
$7$ $$1 + 13 T - 4554 T^{2} - 124753 T^{3} + 8962391 T^{4} + 347580324 T^{5} + 2901735784 T^{6} - 447642835484 T^{7} - 30706182623268 T^{8} - 1074790447997084 T^{9} + 16727929349338984 T^{10} + 4810959089900633124 T^{11} +$$$$29\!\cdots\!91$$$$T^{12} -$$$$99\!\cdots\!53$$$$T^{13} -$$$$87\!\cdots\!54$$$$T^{14} +$$$$59\!\cdots\!13$$$$T^{15} +$$$$11\!\cdots\!01$$$$T^{16}$$
$11$ $$1 - 18 T + 33850 T^{2} - 607356 T^{3} + 452208721 T^{4} - 17443950048 T^{5} + 9074477968558 T^{6} - 445095012639474 T^{7} + 191968264536523468 T^{8} - 6516636080054538834 T^{9} +$$$$19\!\cdots\!98$$$$T^{10} -$$$$54\!\cdots\!08$$$$T^{11} +$$$$20\!\cdots\!81$$$$T^{12} -$$$$40\!\cdots\!56$$$$T^{13} +$$$$33\!\cdots\!50$$$$T^{14} -$$$$25\!\cdots\!58$$$$T^{15} +$$$$21\!\cdots\!21$$$$T^{16}$$
$13$ $$1 + 5 T - 42054 T^{2} - 7266665 T^{3} + 352176575 T^{4} + 250092029040 T^{5} + 23191943061904 T^{6} - 3464858176098460 T^{7} - 548440340475170196 T^{8} - 98959814367548116060 T^{9} +$$$$18\!\cdots\!84$$$$T^{10} +$$$$58\!\cdots\!40$$$$T^{11} +$$$$23\!\cdots\!75$$$$T^{12} -$$$$13\!\cdots\!65$$$$T^{13} -$$$$22\!\cdots\!94$$$$T^{14} +$$$$77\!\cdots\!05$$$$T^{15} +$$$$44\!\cdots\!81$$$$T^{16}$$
$17$ $$1 - 288125 T^{2} + 52320681154 T^{4} - 6759733382202755 T^{6} +$$$$63\!\cdots\!86$$$$T^{8} -$$$$47\!\cdots\!55$$$$T^{10} +$$$$25\!\cdots\!74$$$$T^{12} -$$$$97\!\cdots\!25$$$$T^{14} +$$$$23\!\cdots\!61$$$$T^{16}$$
$19$ $$( 1 + 281 T + 110170 T^{2} - 68843041 T^{3} - 21846246566 T^{4} - 8971693946161 T^{5} + 1871079140226970 T^{6} + 621941492257591241 T^{7} +$$$$28\!\cdots\!81$$$$T^{8} )^{2}$$
$23$ $$1 - 1719 T + 1529458 T^{2} - 935945649 T^{3} + 342642958747 T^{4} + 16333135609500 T^{5} - 118516645434237428 T^{6} +$$$$10\!\cdots\!68$$$$T^{7} -$$$$65\!\cdots\!00$$$$T^{8} +$$$$29\!\cdots\!88$$$$T^{9} -$$$$92\!\cdots\!68$$$$T^{10} +$$$$35\!\cdots\!00$$$$T^{11} +$$$$21\!\cdots\!67$$$$T^{12} -$$$$16\!\cdots\!49$$$$T^{13} +$$$$73\!\cdots\!78$$$$T^{14} -$$$$23\!\cdots\!39$$$$T^{15} +$$$$37\!\cdots\!21$$$$T^{16}$$
$29$ $$1 - 2115 T + 4091014 T^{2} - 5498870985 T^{3} + 7048695081595 T^{4} - 8024737206821040 T^{5} + 8297140249856169556 T^{6} -$$$$79\!\cdots\!80$$$$T^{7} +$$$$68\!\cdots\!24$$$$T^{8} -$$$$56\!\cdots\!80$$$$T^{9} +$$$$41\!\cdots\!16$$$$T^{10} -$$$$28\!\cdots\!40$$$$T^{11} +$$$$17\!\cdots\!95$$$$T^{12} -$$$$97\!\cdots\!85$$$$T^{13} +$$$$51\!\cdots\!34$$$$T^{14} -$$$$18\!\cdots\!15$$$$T^{15} +$$$$62\!\cdots\!41$$$$T^{16}$$
$31$ $$1 + 187 T - 2516004 T^{2} - 186847537 T^{3} + 3362431719041 T^{4} + 296059350096 T^{5} - 3460282108678916846 T^{6} + 13487262715981377034 T^{7} +$$$$31\!\cdots\!92$$$$T^{8} +$$$$12\!\cdots\!14$$$$T^{9} -$$$$29\!\cdots\!86$$$$T^{10} +$$$$23\!\cdots\!56$$$$T^{11} +$$$$24\!\cdots\!21$$$$T^{12} -$$$$12\!\cdots\!37$$$$T^{13} -$$$$15\!\cdots\!84$$$$T^{14} +$$$$10\!\cdots\!67$$$$T^{15} +$$$$52\!\cdots\!61$$$$T^{16}$$
$37$ $$( 1 - 8 T + 3611368 T^{2} + 1256575624 T^{3} + 6911619203950 T^{4} + 2355025028051464 T^{5} + 12684855900547773928 T^{6} - 52663616046720282248 T^{7} +$$$$12\!\cdots\!41$$$$T^{8} )^{2}$$
$41$ $$1 + 7920 T + 37687894 T^{2} + 132890424480 T^{3} + 385083705354505 T^{4} + 963185727644706960 T^{5} +$$$$21\!\cdots\!66$$$$T^{6} +$$$$41\!\cdots\!20$$$$T^{7} +$$$$74\!\cdots\!64$$$$T^{8} +$$$$11\!\cdots\!20$$$$T^{9} +$$$$16\!\cdots\!86$$$$T^{10} +$$$$21\!\cdots\!60$$$$T^{11} +$$$$24\!\cdots\!05$$$$T^{12} +$$$$23\!\cdots\!80$$$$T^{13} +$$$$19\!\cdots\!34$$$$T^{14} +$$$$11\!\cdots\!20$$$$T^{15} +$$$$40\!\cdots\!81$$$$T^{16}$$
$43$ $$1 - 68 T - 12950604 T^{2} + 209786648 T^{3} + 102574547445791 T^{4} - 59145034173804 T^{5} -$$$$54\!\cdots\!36$$$$T^{6} -$$$$27\!\cdots\!16$$$$T^{7} +$$$$21\!\cdots\!12$$$$T^{8} -$$$$94\!\cdots\!16$$$$T^{9} -$$$$63\!\cdots\!36$$$$T^{10} -$$$$23\!\cdots\!04$$$$T^{11} +$$$$14\!\cdots\!91$$$$T^{12} +$$$$97\!\cdots\!48$$$$T^{13} -$$$$20\!\cdots\!04$$$$T^{14} -$$$$37\!\cdots\!68$$$$T^{15} +$$$$18\!\cdots\!01$$$$T^{16}$$
$47$ $$1 + 13689 T + 103685338 T^{2} + 564293857959 T^{3} + 2435028217967227 T^{4} + 8736748337842042500 T^{5} +$$$$26\!\cdots\!72$$$$T^{6} +$$$$71\!\cdots\!32$$$$T^{7} +$$$$16\!\cdots\!20$$$$T^{8} +$$$$35\!\cdots\!92$$$$T^{9} +$$$$63\!\cdots\!92$$$$T^{10} +$$$$10\!\cdots\!00$$$$T^{11} +$$$$13\!\cdots\!67$$$$T^{12} +$$$$15\!\cdots\!59$$$$T^{13} +$$$$13\!\cdots\!78$$$$T^{14} +$$$$90\!\cdots\!29$$$$T^{15} +$$$$32\!\cdots\!41$$$$T^{16}$$
$53$ $$1 - 5145920 T^{2} + 115452291970684 T^{4} - 84051566001475463360 T^{6} +$$$$67\!\cdots\!26$$$$T^{8} -$$$$52\!\cdots\!60$$$$T^{10} +$$$$44\!\cdots\!64$$$$T^{12} -$$$$12\!\cdots\!20$$$$T^{14} +$$$$15\!\cdots\!41$$$$T^{16}$$
$59$ $$1 - 20052 T + 216711700 T^{2} - 1657982214864 T^{3} + 9931594296358591 T^{4} - 49579528565018409012 T^{5} +$$$$21\!\cdots\!48$$$$T^{6} -$$$$84\!\cdots\!76$$$$T^{7} +$$$$30\!\cdots\!08$$$$T^{8} -$$$$10\!\cdots\!36$$$$T^{9} +$$$$31\!\cdots\!08$$$$T^{10} -$$$$88\!\cdots\!72$$$$T^{11} +$$$$21\!\cdots\!31$$$$T^{12} -$$$$43\!\cdots\!64$$$$T^{13} +$$$$68\!\cdots\!00$$$$T^{14} -$$$$76\!\cdots\!92$$$$T^{15} +$$$$46\!\cdots\!81$$$$T^{16}$$
$61$ $$1 + 1937 T - 10529634 T^{2} + 149647181023 T^{3} + 416288373490931 T^{4} - 1350680282380662864 T^{5} +$$$$12\!\cdots\!24$$$$T^{6} +$$$$40\!\cdots\!44$$$$T^{7} -$$$$98\!\cdots\!68$$$$T^{8} +$$$$55\!\cdots\!04$$$$T^{9} +$$$$23\!\cdots\!44$$$$T^{10} -$$$$35\!\cdots\!44$$$$T^{11} +$$$$15\!\cdots\!91$$$$T^{12} +$$$$76\!\cdots\!23$$$$T^{13} -$$$$74\!\cdots\!94$$$$T^{14} +$$$$18\!\cdots\!97$$$$T^{15} +$$$$13\!\cdots\!21$$$$T^{16}$$
$67$ $$1 + 154 T - 33835854 T^{2} + 25606229228 T^{3} + 539365905411977 T^{4} - 738160924156362336 T^{5} +$$$$70\!\cdots\!02$$$$T^{6} +$$$$11\!\cdots\!78$$$$T^{7} -$$$$26\!\cdots\!64$$$$T^{8} +$$$$22\!\cdots\!38$$$$T^{9} +$$$$28\!\cdots\!82$$$$T^{10} -$$$$60\!\cdots\!96$$$$T^{11} +$$$$88\!\cdots\!37$$$$T^{12} +$$$$85\!\cdots\!28$$$$T^{13} -$$$$22\!\cdots\!34$$$$T^{14} +$$$$20\!\cdots\!14$$$$T^{15} +$$$$27\!\cdots\!61$$$$T^{16}$$
$71$ $$1 - 68871716 T^{2} + 3244147638477940 T^{4} -$$$$11\!\cdots\!24$$$$T^{6} +$$$$30\!\cdots\!74$$$$T^{8} -$$$$73\!\cdots\!64$$$$T^{10} +$$$$13\!\cdots\!40$$$$T^{12} -$$$$18\!\cdots\!96$$$$T^{14} +$$$$17\!\cdots\!41$$$$T^{16}$$
$73$ $$( 1 + 3901 T + 59309470 T^{2} + 292589317519 T^{3} + 2279602007321194 T^{4} + 8309021952930084079 T^{5} +$$$$47\!\cdots\!70$$$$T^{6} +$$$$89\!\cdots\!21$$$$T^{7} +$$$$65\!\cdots\!61$$$$T^{8} )^{2}$$
$79$ $$1 - 2195 T - 87724914 T^{2} + 187644610415 T^{3} + 3128319215246375 T^{4} - 3711455091635884260 T^{5} -$$$$16\!\cdots\!36$$$$T^{6} -$$$$76\!\cdots\!80$$$$T^{7} +$$$$88\!\cdots\!64$$$$T^{8} -$$$$29\!\cdots\!80$$$$T^{9} -$$$$24\!\cdots\!96$$$$T^{10} -$$$$21\!\cdots\!60$$$$T^{11} +$$$$72\!\cdots\!75$$$$T^{12} +$$$$16\!\cdots\!15$$$$T^{13} -$$$$30\!\cdots\!34$$$$T^{14} -$$$$29\!\cdots\!95$$$$T^{15} +$$$$52\!\cdots\!41$$$$T^{16}$$
$83$ $$1 + 37017 T + 725723290 T^{2} + 9956481997959 T^{3} + 104510585134438411 T^{4} +$$$$87\!\cdots\!72$$$$T^{5} +$$$$62\!\cdots\!28$$$$T^{6} +$$$$40\!\cdots\!76$$$$T^{7} +$$$$26\!\cdots\!48$$$$T^{8} +$$$$19\!\cdots\!96$$$$T^{9} +$$$$14\!\cdots\!48$$$$T^{10} +$$$$93\!\cdots\!92$$$$T^{11} +$$$$53\!\cdots\!91$$$$T^{12} +$$$$23\!\cdots\!59$$$$T^{13} +$$$$82\!\cdots\!90$$$$T^{14} +$$$$20\!\cdots\!97$$$$T^{15} +$$$$25\!\cdots\!61$$$$T^{16}$$
$89$ $$1 - 294759296 T^{2} + 46567064448316540 T^{4} -$$$$48\!\cdots\!04$$$$T^{6} +$$$$35\!\cdots\!14$$$$T^{8} -$$$$19\!\cdots\!24$$$$T^{10} +$$$$72\!\cdots\!40$$$$T^{12} -$$$$17\!\cdots\!36$$$$T^{14} +$$$$24\!\cdots\!21$$$$T^{16}$$
$97$ $$1 - 7282 T - 283226964 T^{2} + 993163976152 T^{3} + 57034963146137471 T^{4} - 97460573991801682656 T^{5} -$$$$75\!\cdots\!16$$$$T^{6} +$$$$33\!\cdots\!26$$$$T^{7} +$$$$75\!\cdots\!52$$$$T^{8} +$$$$29\!\cdots\!06$$$$T^{9} -$$$$58\!\cdots\!76$$$$T^{10} -$$$$67\!\cdots\!96$$$$T^{11} +$$$$35\!\cdots\!91$$$$T^{12} +$$$$54\!\cdots\!52$$$$T^{13} -$$$$13\!\cdots\!84$$$$T^{14} -$$$$31\!\cdots\!02$$$$T^{15} +$$$$37\!\cdots\!41$$$$T^{16}$$