Properties

Label 144.5
Level 144
Weight 5
Dimension 1006
Nonzero newspaces 8
Newform subspaces 23
Sturm bound 5760
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 23 \)
Sturm bound: \(5760\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(144))\).

Total New Old
Modular forms 2416 1046 1370
Cusp forms 2192 1006 1186
Eisenstein series 224 40 184

Trace form

\( 1006 q - 6 q^{2} - 6 q^{3} - 12 q^{4} + 27 q^{5} - 8 q^{6} - 39 q^{7} - 96 q^{8} + 110 q^{9} - 116 q^{10} + 93 q^{11} - 8 q^{12} - 3 q^{13} + 168 q^{14} - 261 q^{15} + 1732 q^{16} + 24 q^{17} - 1108 q^{18}+ \cdots - 55845 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(144))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
144.5.b \(\chi_{144}(55, \cdot)\) None 0 1
144.5.e \(\chi_{144}(17, \cdot)\) 144.5.e.a 2 1
144.5.e.b 2
144.5.e.c 2
144.5.e.d 2
144.5.g \(\chi_{144}(127, \cdot)\) 144.5.g.a 1 1
144.5.g.b 1
144.5.g.c 2
144.5.g.d 2
144.5.g.e 2
144.5.g.f 2
144.5.h \(\chi_{144}(89, \cdot)\) None 0 1
144.5.j \(\chi_{144}(53, \cdot)\) 144.5.j.a 64 2
144.5.m \(\chi_{144}(19, \cdot)\) 144.5.m.a 14 2
144.5.m.b 32
144.5.m.c 32
144.5.n \(\chi_{144}(41, \cdot)\) None 0 2
144.5.o \(\chi_{144}(31, \cdot)\) 144.5.o.a 16 2
144.5.o.b 16
144.5.o.c 16
144.5.q \(\chi_{144}(65, \cdot)\) 144.5.q.a 6 2
144.5.q.b 8
144.5.q.c 8
144.5.q.d 24
144.5.t \(\chi_{144}(7, \cdot)\) None 0 2
144.5.v \(\chi_{144}(43, \cdot)\) 144.5.v.a 376 4
144.5.w \(\chi_{144}(5, \cdot)\) 144.5.w.a 376 4

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(144))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(144)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)