Properties

Label 144.4.i.a.49.1
Level $144$
Weight $4$
Character 144.49
Analytic conductor $8.496$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,4,Mod(49,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 144.49
Dual form 144.4.i.a.97.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.19615i q^{3} +(4.50000 - 7.79423i) q^{5} +(-15.5000 - 26.8468i) q^{7} -27.0000 q^{9} +O(q^{10})\) \(q+5.19615i q^{3} +(4.50000 - 7.79423i) q^{5} +(-15.5000 - 26.8468i) q^{7} -27.0000 q^{9} +(-7.50000 - 12.9904i) q^{11} +(18.5000 - 32.0429i) q^{13} +(40.5000 + 23.3827i) q^{15} -42.0000 q^{17} +28.0000 q^{19} +(139.500 - 80.5404i) q^{21} +(97.5000 - 168.875i) q^{23} +(22.0000 + 38.1051i) q^{25} -140.296i q^{27} +(-55.5000 - 96.1288i) q^{29} +(-102.500 + 177.535i) q^{31} +(67.5000 - 38.9711i) q^{33} -279.000 q^{35} -166.000 q^{37} +(166.500 + 96.1288i) q^{39} +(130.500 - 226.033i) q^{41} +(-21.5000 - 37.2391i) q^{43} +(-121.500 + 210.444i) q^{45} +(88.5000 + 153.286i) q^{47} +(-309.000 + 535.204i) q^{49} -218.238i q^{51} +114.000 q^{53} -135.000 q^{55} +145.492i q^{57} +(79.5000 - 137.698i) q^{59} +(-95.5000 - 165.411i) q^{61} +(418.500 + 724.863i) q^{63} +(-166.500 - 288.386i) q^{65} +(-210.500 + 364.597i) q^{67} +(877.500 + 506.625i) q^{69} -156.000 q^{71} +182.000 q^{73} +(-198.000 + 114.315i) q^{75} +(-232.500 + 402.702i) q^{77} +(566.500 + 981.207i) q^{79} +729.000 q^{81} +(-541.500 - 937.906i) q^{83} +(-189.000 + 327.358i) q^{85} +(499.500 - 288.386i) q^{87} -1050.00 q^{89} -1147.00 q^{91} +(-922.500 - 532.606i) q^{93} +(126.000 - 218.238i) q^{95} +(450.500 + 780.289i) q^{97} +(202.500 + 350.740i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 9 q^{5} - 31 q^{7} - 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 9 q^{5} - 31 q^{7} - 54 q^{9} - 15 q^{11} + 37 q^{13} + 81 q^{15} - 84 q^{17} + 56 q^{19} + 279 q^{21} + 195 q^{23} + 44 q^{25} - 111 q^{29} - 205 q^{31} + 135 q^{33} - 558 q^{35} - 332 q^{37} + 333 q^{39} + 261 q^{41} - 43 q^{43} - 243 q^{45} + 177 q^{47} - 618 q^{49} + 228 q^{53} - 270 q^{55} + 159 q^{59} - 191 q^{61} + 837 q^{63} - 333 q^{65} - 421 q^{67} + 1755 q^{69} - 312 q^{71} + 364 q^{73} - 396 q^{75} - 465 q^{77} + 1133 q^{79} + 1458 q^{81} - 1083 q^{83} - 378 q^{85} + 999 q^{87} - 2100 q^{89} - 2294 q^{91} - 1845 q^{93} + 252 q^{95} + 901 q^{97} + 405 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.19615i 1.00000i
\(4\) 0 0
\(5\) 4.50000 7.79423i 0.402492 0.697137i −0.591534 0.806280i \(-0.701477\pi\)
0.994026 + 0.109143i \(0.0348107\pi\)
\(6\) 0 0
\(7\) −15.5000 26.8468i −0.836921 1.44959i −0.892456 0.451134i \(-0.851020\pi\)
0.0555351 0.998457i \(-0.482314\pi\)
\(8\) 0 0
\(9\) −27.0000 −1.00000
\(10\) 0 0
\(11\) −7.50000 12.9904i −0.205576 0.356068i 0.744740 0.667355i \(-0.232573\pi\)
−0.950316 + 0.311287i \(0.899240\pi\)
\(12\) 0 0
\(13\) 18.5000 32.0429i 0.394691 0.683624i −0.598371 0.801219i \(-0.704185\pi\)
0.993062 + 0.117595i \(0.0375185\pi\)
\(14\) 0 0
\(15\) 40.5000 + 23.3827i 0.697137 + 0.402492i
\(16\) 0 0
\(17\) −42.0000 −0.599206 −0.299603 0.954064i \(-0.596854\pi\)
−0.299603 + 0.954064i \(0.596854\pi\)
\(18\) 0 0
\(19\) 28.0000 0.338086 0.169043 0.985609i \(-0.445932\pi\)
0.169043 + 0.985609i \(0.445932\pi\)
\(20\) 0 0
\(21\) 139.500 80.5404i 1.44959 0.836921i
\(22\) 0 0
\(23\) 97.5000 168.875i 0.883920 1.53099i 0.0369731 0.999316i \(-0.488228\pi\)
0.846947 0.531678i \(-0.178438\pi\)
\(24\) 0 0
\(25\) 22.0000 + 38.1051i 0.176000 + 0.304841i
\(26\) 0 0
\(27\) 140.296i 1.00000i
\(28\) 0 0
\(29\) −55.5000 96.1288i −0.355382 0.615540i 0.631801 0.775131i \(-0.282316\pi\)
−0.987183 + 0.159590i \(0.948983\pi\)
\(30\) 0 0
\(31\) −102.500 + 177.535i −0.593856 + 1.02859i 0.399851 + 0.916580i \(0.369062\pi\)
−0.993707 + 0.112009i \(0.964271\pi\)
\(32\) 0 0
\(33\) 67.5000 38.9711i 0.356068 0.205576i
\(34\) 0 0
\(35\) −279.000 −1.34742
\(36\) 0 0
\(37\) −166.000 −0.737574 −0.368787 0.929514i \(-0.620227\pi\)
−0.368787 + 0.929514i \(0.620227\pi\)
\(38\) 0 0
\(39\) 166.500 + 96.1288i 0.683624 + 0.394691i
\(40\) 0 0
\(41\) 130.500 226.033i 0.497090 0.860985i −0.502905 0.864342i \(-0.667735\pi\)
0.999994 + 0.00335732i \(0.00106867\pi\)
\(42\) 0 0
\(43\) −21.5000 37.2391i −0.0762493 0.132068i 0.825380 0.564578i \(-0.190961\pi\)
−0.901629 + 0.432511i \(0.857628\pi\)
\(44\) 0 0
\(45\) −121.500 + 210.444i −0.402492 + 0.697137i
\(46\) 0 0
\(47\) 88.5000 + 153.286i 0.274661 + 0.475726i 0.970049 0.242907i \(-0.0781011\pi\)
−0.695389 + 0.718634i \(0.744768\pi\)
\(48\) 0 0
\(49\) −309.000 + 535.204i −0.900875 + 1.56036i
\(50\) 0 0
\(51\) 218.238i 0.599206i
\(52\) 0 0
\(53\) 114.000 0.295455 0.147727 0.989028i \(-0.452804\pi\)
0.147727 + 0.989028i \(0.452804\pi\)
\(54\) 0 0
\(55\) −135.000 −0.330971
\(56\) 0 0
\(57\) 145.492i 0.338086i
\(58\) 0 0
\(59\) 79.5000 137.698i 0.175424 0.303843i −0.764884 0.644168i \(-0.777204\pi\)
0.940308 + 0.340325i \(0.110537\pi\)
\(60\) 0 0
\(61\) −95.5000 165.411i −0.200451 0.347192i 0.748223 0.663448i \(-0.230907\pi\)
−0.948674 + 0.316256i \(0.897574\pi\)
\(62\) 0 0
\(63\) 418.500 + 724.863i 0.836921 + 1.44959i
\(64\) 0 0
\(65\) −166.500 288.386i −0.317720 0.550307i
\(66\) 0 0
\(67\) −210.500 + 364.597i −0.383831 + 0.664815i −0.991606 0.129294i \(-0.958729\pi\)
0.607775 + 0.794109i \(0.292062\pi\)
\(68\) 0 0
\(69\) 877.500 + 506.625i 1.53099 + 0.883920i
\(70\) 0 0
\(71\) −156.000 −0.260758 −0.130379 0.991464i \(-0.541619\pi\)
−0.130379 + 0.991464i \(0.541619\pi\)
\(72\) 0 0
\(73\) 182.000 0.291801 0.145901 0.989299i \(-0.453392\pi\)
0.145901 + 0.989299i \(0.453392\pi\)
\(74\) 0 0
\(75\) −198.000 + 114.315i −0.304841 + 0.176000i
\(76\) 0 0
\(77\) −232.500 + 402.702i −0.344102 + 0.596002i
\(78\) 0 0
\(79\) 566.500 + 981.207i 0.806788 + 1.39740i 0.915078 + 0.403278i \(0.132129\pi\)
−0.108290 + 0.994119i \(0.534537\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) −541.500 937.906i −0.716113 1.24034i −0.962529 0.271179i \(-0.912586\pi\)
0.246416 0.969164i \(-0.420747\pi\)
\(84\) 0 0
\(85\) −189.000 + 327.358i −0.241176 + 0.417728i
\(86\) 0 0
\(87\) 499.500 288.386i 0.615540 0.355382i
\(88\) 0 0
\(89\) −1050.00 −1.25056 −0.625280 0.780401i \(-0.715015\pi\)
−0.625280 + 0.780401i \(0.715015\pi\)
\(90\) 0 0
\(91\) −1147.00 −1.32130
\(92\) 0 0
\(93\) −922.500 532.606i −1.02859 0.593856i
\(94\) 0 0
\(95\) 126.000 218.238i 0.136077 0.235693i
\(96\) 0 0
\(97\) 450.500 + 780.289i 0.471560 + 0.816766i 0.999471 0.0325338i \(-0.0103576\pi\)
−0.527910 + 0.849300i \(0.677024\pi\)
\(98\) 0 0
\(99\) 202.500 + 350.740i 0.205576 + 0.356068i
\(100\) 0 0
\(101\) −193.500 335.152i −0.190633 0.330187i 0.754827 0.655924i \(-0.227721\pi\)
−0.945460 + 0.325737i \(0.894387\pi\)
\(102\) 0 0
\(103\) 275.500 477.180i 0.263552 0.456485i −0.703631 0.710565i \(-0.748439\pi\)
0.967183 + 0.254080i \(0.0817727\pi\)
\(104\) 0 0
\(105\) 1449.73i 1.34742i
\(106\) 0 0
\(107\) 12.0000 0.0108419 0.00542095 0.999985i \(-0.498274\pi\)
0.00542095 + 0.999985i \(0.498274\pi\)
\(108\) 0 0
\(109\) −502.000 −0.441127 −0.220564 0.975373i \(-0.570790\pi\)
−0.220564 + 0.975373i \(0.570790\pi\)
\(110\) 0 0
\(111\) 862.561i 0.737574i
\(112\) 0 0
\(113\) 700.500 1213.30i 0.583164 1.01007i −0.411938 0.911212i \(-0.635148\pi\)
0.995102 0.0988572i \(-0.0315187\pi\)
\(114\) 0 0
\(115\) −877.500 1519.87i −0.711542 1.23243i
\(116\) 0 0
\(117\) −499.500 + 865.159i −0.394691 + 0.683624i
\(118\) 0 0
\(119\) 651.000 + 1127.57i 0.501488 + 0.868603i
\(120\) 0 0
\(121\) 553.000 957.824i 0.415477 0.719627i
\(122\) 0 0
\(123\) 1174.50 + 678.098i 0.860985 + 0.497090i
\(124\) 0 0
\(125\) 1521.00 1.08834
\(126\) 0 0
\(127\) 880.000 0.614861 0.307431 0.951571i \(-0.400531\pi\)
0.307431 + 0.951571i \(0.400531\pi\)
\(128\) 0 0
\(129\) 193.500 111.717i 0.132068 0.0762493i
\(130\) 0 0
\(131\) 751.500 1301.64i 0.501213 0.868126i −0.498786 0.866725i \(-0.666221\pi\)
0.999999 0.00140084i \(-0.000445901\pi\)
\(132\) 0 0
\(133\) −434.000 751.710i −0.282952 0.490087i
\(134\) 0 0
\(135\) −1093.50 631.333i −0.697137 0.402492i
\(136\) 0 0
\(137\) 1330.50 + 2304.49i 0.829725 + 1.43713i 0.898254 + 0.439476i \(0.144836\pi\)
−0.0685295 + 0.997649i \(0.521831\pi\)
\(138\) 0 0
\(139\) −60.5000 + 104.789i −0.0369176 + 0.0639431i −0.883894 0.467688i \(-0.845087\pi\)
0.846976 + 0.531631i \(0.178421\pi\)
\(140\) 0 0
\(141\) −796.500 + 459.859i −0.475726 + 0.274661i
\(142\) 0 0
\(143\) −555.000 −0.324555
\(144\) 0 0
\(145\) −999.000 −0.572155
\(146\) 0 0
\(147\) −2781.00 1605.61i −1.56036 0.900875i
\(148\) 0 0
\(149\) 1414.50 2449.99i 0.777721 1.34705i −0.155532 0.987831i \(-0.549709\pi\)
0.933253 0.359221i \(-0.116957\pi\)
\(150\) 0 0
\(151\) 230.500 + 399.238i 0.124224 + 0.215162i 0.921429 0.388546i \(-0.127023\pi\)
−0.797205 + 0.603708i \(0.793689\pi\)
\(152\) 0 0
\(153\) 1134.00 0.599206
\(154\) 0 0
\(155\) 922.500 + 1597.82i 0.478045 + 0.827998i
\(156\) 0 0
\(157\) 1488.50 2578.16i 0.756658 1.31057i −0.187889 0.982190i \(-0.560164\pi\)
0.944546 0.328379i \(-0.106502\pi\)
\(158\) 0 0
\(159\) 592.361i 0.295455i
\(160\) 0 0
\(161\) −6045.00 −2.95909
\(162\) 0 0
\(163\) 3316.00 1.59343 0.796715 0.604355i \(-0.206569\pi\)
0.796715 + 0.604355i \(0.206569\pi\)
\(164\) 0 0
\(165\) 701.481i 0.330971i
\(166\) 0 0
\(167\) −340.500 + 589.763i −0.157777 + 0.273277i −0.934067 0.357099i \(-0.883766\pi\)
0.776290 + 0.630376i \(0.217099\pi\)
\(168\) 0 0
\(169\) 414.000 + 717.069i 0.188439 + 0.326386i
\(170\) 0 0
\(171\) −756.000 −0.338086
\(172\) 0 0
\(173\) 1990.50 + 3447.65i 0.874768 + 1.51514i 0.857009 + 0.515301i \(0.172320\pi\)
0.0177589 + 0.999842i \(0.494347\pi\)
\(174\) 0 0
\(175\) 682.000 1181.26i 0.294596 0.510256i
\(176\) 0 0
\(177\) 715.500 + 413.094i 0.303843 + 0.175424i
\(178\) 0 0
\(179\) −2004.00 −0.836793 −0.418397 0.908264i \(-0.637408\pi\)
−0.418397 + 0.908264i \(0.637408\pi\)
\(180\) 0 0
\(181\) 1274.00 0.523181 0.261590 0.965179i \(-0.415753\pi\)
0.261590 + 0.965179i \(0.415753\pi\)
\(182\) 0 0
\(183\) 859.500 496.233i 0.347192 0.200451i
\(184\) 0 0
\(185\) −747.000 + 1293.84i −0.296868 + 0.514190i
\(186\) 0 0
\(187\) 315.000 + 545.596i 0.123182 + 0.213358i
\(188\) 0 0
\(189\) −3766.50 + 2174.59i −1.44959 + 0.836921i
\(190\) 0 0
\(191\) 580.500 + 1005.46i 0.219914 + 0.380902i 0.954781 0.297309i \(-0.0960891\pi\)
−0.734868 + 0.678210i \(0.762756\pi\)
\(192\) 0 0
\(193\) −1805.50 + 3127.22i −0.673382 + 1.16633i 0.303557 + 0.952813i \(0.401826\pi\)
−0.976939 + 0.213519i \(0.931508\pi\)
\(194\) 0 0
\(195\) 1498.50 865.159i 0.550307 0.317720i
\(196\) 0 0
\(197\) 2046.00 0.739957 0.369978 0.929040i \(-0.379365\pi\)
0.369978 + 0.929040i \(0.379365\pi\)
\(198\) 0 0
\(199\) −2996.00 −1.06724 −0.533620 0.845724i \(-0.679169\pi\)
−0.533620 + 0.845724i \(0.679169\pi\)
\(200\) 0 0
\(201\) −1894.50 1093.79i −0.664815 0.383831i
\(202\) 0 0
\(203\) −1720.50 + 2979.99i −0.594854 + 1.03032i
\(204\) 0 0
\(205\) −1174.50 2034.29i −0.400149 0.693079i
\(206\) 0 0
\(207\) −2632.50 + 4559.62i −0.883920 + 1.53099i
\(208\) 0 0
\(209\) −210.000 363.731i −0.0695024 0.120382i
\(210\) 0 0
\(211\) 377.500 653.849i 0.123167 0.213331i −0.797848 0.602858i \(-0.794028\pi\)
0.921015 + 0.389528i \(0.127362\pi\)
\(212\) 0 0
\(213\) 810.600i 0.260758i
\(214\) 0 0
\(215\) −387.000 −0.122759
\(216\) 0 0
\(217\) 6355.00 1.98804
\(218\) 0 0
\(219\) 945.700i 0.291801i
\(220\) 0 0
\(221\) −777.000 + 1345.80i −0.236501 + 0.409631i
\(222\) 0 0
\(223\) −1731.50 2999.05i −0.519954 0.900587i −0.999731 0.0231966i \(-0.992616\pi\)
0.479777 0.877391i \(-0.340718\pi\)
\(224\) 0 0
\(225\) −594.000 1028.84i −0.176000 0.304841i
\(226\) 0 0
\(227\) 3112.50 + 5391.01i 0.910061 + 1.57627i 0.813976 + 0.580899i \(0.197299\pi\)
0.0960856 + 0.995373i \(0.469368\pi\)
\(228\) 0 0
\(229\) 732.500 1268.73i 0.211375 0.366113i −0.740770 0.671759i \(-0.765539\pi\)
0.952145 + 0.305646i \(0.0988724\pi\)
\(230\) 0 0
\(231\) −2092.50 1208.11i −0.596002 0.344102i
\(232\) 0 0
\(233\) 2634.00 0.740597 0.370298 0.928913i \(-0.379255\pi\)
0.370298 + 0.928913i \(0.379255\pi\)
\(234\) 0 0
\(235\) 1593.00 0.442195
\(236\) 0 0
\(237\) −5098.50 + 2943.62i −1.39740 + 0.806788i
\(238\) 0 0
\(239\) 3457.50 5988.57i 0.935762 1.62079i 0.162492 0.986710i \(-0.448047\pi\)
0.773270 0.634077i \(-0.218620\pi\)
\(240\) 0 0
\(241\) 744.500 + 1289.51i 0.198994 + 0.344667i 0.948202 0.317667i \(-0.102899\pi\)
−0.749209 + 0.662334i \(0.769566\pi\)
\(242\) 0 0
\(243\) 3788.00i 1.00000i
\(244\) 0 0
\(245\) 2781.00 + 4816.83i 0.725190 + 1.25607i
\(246\) 0 0
\(247\) 518.000 897.202i 0.133439 0.231124i
\(248\) 0 0
\(249\) 4873.50 2813.72i 1.24034 0.716113i
\(250\) 0 0
\(251\) 4620.00 1.16180 0.580900 0.813975i \(-0.302701\pi\)
0.580900 + 0.813975i \(0.302701\pi\)
\(252\) 0 0
\(253\) −2925.00 −0.726850
\(254\) 0 0
\(255\) −1701.00 982.073i −0.417728 0.241176i
\(256\) 0 0
\(257\) −1675.50 + 2902.05i −0.406672 + 0.704377i −0.994515 0.104598i \(-0.966644\pi\)
0.587842 + 0.808976i \(0.299978\pi\)
\(258\) 0 0
\(259\) 2573.00 + 4456.57i 0.617291 + 1.06918i
\(260\) 0 0
\(261\) 1498.50 + 2595.48i 0.355382 + 0.615540i
\(262\) 0 0
\(263\) −301.500 522.213i −0.0706893 0.122437i 0.828514 0.559968i \(-0.189187\pi\)
−0.899204 + 0.437530i \(0.855853\pi\)
\(264\) 0 0
\(265\) 513.000 888.542i 0.118918 0.205972i
\(266\) 0 0
\(267\) 5455.96i 1.25056i
\(268\) 0 0
\(269\) −1470.00 −0.333188 −0.166594 0.986026i \(-0.553277\pi\)
−0.166594 + 0.986026i \(0.553277\pi\)
\(270\) 0 0
\(271\) −2072.00 −0.464447 −0.232223 0.972662i \(-0.574600\pi\)
−0.232223 + 0.972662i \(0.574600\pi\)
\(272\) 0 0
\(273\) 5959.99i 1.32130i
\(274\) 0 0
\(275\) 330.000 571.577i 0.0723627 0.125336i
\(276\) 0 0
\(277\) −3569.50 6182.56i −0.774262 1.34106i −0.935209 0.354097i \(-0.884788\pi\)
0.160947 0.986963i \(-0.448545\pi\)
\(278\) 0 0
\(279\) 2767.50 4793.45i 0.593856 1.02859i
\(280\) 0 0
\(281\) −4213.50 7298.00i −0.894507 1.54933i −0.834414 0.551138i \(-0.814194\pi\)
−0.0600924 0.998193i \(-0.519140\pi\)
\(282\) 0 0
\(283\) −228.500 + 395.774i −0.0479962 + 0.0831318i −0.889025 0.457858i \(-0.848617\pi\)
0.841029 + 0.540990i \(0.181950\pi\)
\(284\) 0 0
\(285\) 1134.00 + 654.715i 0.235693 + 0.136077i
\(286\) 0 0
\(287\) −8091.00 −1.66410
\(288\) 0 0
\(289\) −3149.00 −0.640953
\(290\) 0 0
\(291\) −4054.50 + 2340.87i −0.816766 + 0.471560i
\(292\) 0 0
\(293\) 2944.50 5100.02i 0.587097 1.01688i −0.407513 0.913199i \(-0.633604\pi\)
0.994610 0.103683i \(-0.0330628\pi\)
\(294\) 0 0
\(295\) −715.500 1239.28i −0.141214 0.244589i
\(296\) 0 0
\(297\) −1822.50 + 1052.22i −0.356068 + 0.205576i
\(298\) 0 0
\(299\) −3607.50 6248.37i −0.697750 1.20854i
\(300\) 0 0
\(301\) −666.500 + 1154.41i −0.127629 + 0.221060i
\(302\) 0 0
\(303\) 1741.50 1005.46i 0.330187 0.190633i
\(304\) 0 0
\(305\) −1719.00 −0.322720
\(306\) 0 0
\(307\) 1204.00 0.223830 0.111915 0.993718i \(-0.464302\pi\)
0.111915 + 0.993718i \(0.464302\pi\)
\(308\) 0 0
\(309\) 2479.50 + 1431.54i 0.456485 + 0.263552i
\(310\) 0 0
\(311\) −1642.50 + 2844.89i −0.299478 + 0.518711i −0.976017 0.217696i \(-0.930146\pi\)
0.676539 + 0.736407i \(0.263479\pi\)
\(312\) 0 0
\(313\) 5028.50 + 8709.62i 0.908075 + 1.57283i 0.816735 + 0.577013i \(0.195782\pi\)
0.0913406 + 0.995820i \(0.470885\pi\)
\(314\) 0 0
\(315\) 7533.00 1.34742
\(316\) 0 0
\(317\) −1147.50 1987.53i −0.203312 0.352147i 0.746281 0.665631i \(-0.231837\pi\)
−0.949594 + 0.313483i \(0.898504\pi\)
\(318\) 0 0
\(319\) −832.500 + 1441.93i −0.146116 + 0.253081i
\(320\) 0 0
\(321\) 62.3538i 0.0108419i
\(322\) 0 0
\(323\) −1176.00 −0.202583
\(324\) 0 0
\(325\) 1628.00 0.277862
\(326\) 0 0
\(327\) 2608.47i 0.441127i
\(328\) 0 0
\(329\) 2743.50 4751.88i 0.459739 0.796291i
\(330\) 0 0
\(331\) −3339.50 5784.18i −0.554548 0.960506i −0.997939 0.0641773i \(-0.979558\pi\)
0.443390 0.896329i \(-0.353776\pi\)
\(332\) 0 0
\(333\) 4482.00 0.737574
\(334\) 0 0
\(335\) 1894.50 + 3281.37i 0.308978 + 0.535165i
\(336\) 0 0
\(337\) −1091.50 + 1890.53i −0.176433 + 0.305590i −0.940656 0.339361i \(-0.889789\pi\)
0.764224 + 0.644951i \(0.223122\pi\)
\(338\) 0 0
\(339\) 6304.50 + 3639.90i 1.01007 + 0.583164i
\(340\) 0 0
\(341\) 3075.00 0.488330
\(342\) 0 0
\(343\) 8525.00 1.34200
\(344\) 0 0
\(345\) 7897.50 4559.62i 1.23243 0.711542i
\(346\) 0 0
\(347\) 1945.50 3369.70i 0.300980 0.521312i −0.675379 0.737471i \(-0.736020\pi\)
0.976358 + 0.216159i \(0.0693531\pi\)
\(348\) 0 0
\(349\) −1397.50 2420.54i −0.214345 0.371257i 0.738725 0.674007i \(-0.235428\pi\)
−0.953070 + 0.302751i \(0.902095\pi\)
\(350\) 0 0
\(351\) −4495.50 2595.48i −0.683624 0.394691i
\(352\) 0 0
\(353\) −2377.50 4117.95i −0.358475 0.620896i 0.629232 0.777218i \(-0.283370\pi\)
−0.987706 + 0.156322i \(0.950036\pi\)
\(354\) 0 0
\(355\) −702.000 + 1215.90i −0.104953 + 0.181784i
\(356\) 0 0
\(357\) −5859.00 + 3382.70i −0.868603 + 0.501488i
\(358\) 0 0
\(359\) −4608.00 −0.677440 −0.338720 0.940887i \(-0.609994\pi\)
−0.338720 + 0.940887i \(0.609994\pi\)
\(360\) 0 0
\(361\) −6075.00 −0.885698
\(362\) 0 0
\(363\) 4977.00 + 2873.47i 0.719627 + 0.415477i
\(364\) 0 0
\(365\) 819.000 1418.55i 0.117448 0.203425i
\(366\) 0 0
\(367\) 1922.50 + 3329.87i 0.273443 + 0.473618i 0.969741 0.244135i \(-0.0785041\pi\)
−0.696298 + 0.717753i \(0.745171\pi\)
\(368\) 0 0
\(369\) −3523.50 + 6102.88i −0.497090 + 0.860985i
\(370\) 0 0
\(371\) −1767.00 3060.53i −0.247272 0.428288i
\(372\) 0 0
\(373\) 4158.50 7202.73i 0.577263 0.999848i −0.418529 0.908203i \(-0.637454\pi\)
0.995792 0.0916449i \(-0.0292125\pi\)
\(374\) 0 0
\(375\) 7903.35i 1.08834i
\(376\) 0 0
\(377\) −4107.00 −0.561064
\(378\) 0 0
\(379\) −12560.0 −1.70228 −0.851140 0.524939i \(-0.824088\pi\)
−0.851140 + 0.524939i \(0.824088\pi\)
\(380\) 0 0
\(381\) 4572.61i 0.614861i
\(382\) 0 0
\(383\) 6043.50 10467.6i 0.806288 1.39653i −0.109130 0.994028i \(-0.534806\pi\)
0.915418 0.402505i \(-0.131860\pi\)
\(384\) 0 0
\(385\) 2092.50 + 3624.32i 0.276997 + 0.479772i
\(386\) 0 0
\(387\) 580.500 + 1005.46i 0.0762493 + 0.132068i
\(388\) 0 0
\(389\) 4270.50 + 7396.72i 0.556614 + 0.964084i 0.997776 + 0.0666565i \(0.0212332\pi\)
−0.441162 + 0.897428i \(0.645433\pi\)
\(390\) 0 0
\(391\) −4095.00 + 7092.75i −0.529650 + 0.917380i
\(392\) 0 0
\(393\) 6763.50 + 3904.91i 0.868126 + 0.501213i
\(394\) 0 0
\(395\) 10197.0 1.29890
\(396\) 0 0
\(397\) −13174.0 −1.66545 −0.832726 0.553686i \(-0.813221\pi\)
−0.832726 + 0.553686i \(0.813221\pi\)
\(398\) 0 0
\(399\) 3906.00 2255.13i 0.490087 0.282952i
\(400\) 0 0
\(401\) −4801.50 + 8316.44i −0.597944 + 1.03567i 0.395180 + 0.918604i \(0.370682\pi\)
−0.993124 + 0.117066i \(0.962651\pi\)
\(402\) 0 0
\(403\) 3792.50 + 6568.80i 0.468779 + 0.811949i
\(404\) 0 0
\(405\) 3280.50 5681.99i 0.402492 0.697137i
\(406\) 0 0
\(407\) 1245.00 + 2156.40i 0.151627 + 0.262626i
\(408\) 0 0
\(409\) −5735.50 + 9934.18i −0.693404 + 1.20101i 0.277312 + 0.960780i \(0.410557\pi\)
−0.970716 + 0.240231i \(0.922777\pi\)
\(410\) 0 0
\(411\) −11974.5 + 6913.48i −1.43713 + 0.829725i
\(412\) 0 0
\(413\) −4929.00 −0.587264
\(414\) 0 0
\(415\) −9747.00 −1.15292
\(416\) 0 0
\(417\) −544.500 314.367i −0.0639431 0.0369176i
\(418\) 0 0
\(419\) −2986.50 + 5172.77i −0.348210 + 0.603118i −0.985932 0.167149i \(-0.946544\pi\)
0.637721 + 0.770267i \(0.279877\pi\)
\(420\) 0 0
\(421\) 4452.50 + 7711.96i 0.515443 + 0.892774i 0.999839 + 0.0179250i \(0.00570601\pi\)
−0.484396 + 0.874849i \(0.660961\pi\)
\(422\) 0 0
\(423\) −2389.50 4138.74i −0.274661 0.475726i
\(424\) 0 0
\(425\) −924.000 1600.41i −0.105460 0.182662i
\(426\) 0 0
\(427\) −2960.50 + 5127.74i −0.335524 + 0.581144i
\(428\) 0 0
\(429\) 2883.86i 0.324555i
\(430\) 0 0
\(431\) −1416.00 −0.158251 −0.0791257 0.996865i \(-0.525213\pi\)
−0.0791257 + 0.996865i \(0.525213\pi\)
\(432\) 0 0
\(433\) 10766.0 1.19488 0.597438 0.801915i \(-0.296186\pi\)
0.597438 + 0.801915i \(0.296186\pi\)
\(434\) 0 0
\(435\) 5190.96i 0.572155i
\(436\) 0 0
\(437\) 2730.00 4728.50i 0.298841 0.517608i
\(438\) 0 0
\(439\) 2174.50 + 3766.34i 0.236408 + 0.409471i 0.959681 0.281091i \(-0.0906964\pi\)
−0.723273 + 0.690562i \(0.757363\pi\)
\(440\) 0 0
\(441\) 8343.00 14450.5i 0.900875 1.56036i
\(442\) 0 0
\(443\) −7273.50 12598.1i −0.780078 1.35113i −0.931896 0.362726i \(-0.881846\pi\)
0.151818 0.988408i \(-0.451487\pi\)
\(444\) 0 0
\(445\) −4725.00 + 8183.94i −0.503340 + 0.871811i
\(446\) 0 0
\(447\) 12730.5 + 7349.96i 1.34705 + 0.777721i
\(448\) 0 0
\(449\) −3330.00 −0.350005 −0.175003 0.984568i \(-0.555993\pi\)
−0.175003 + 0.984568i \(0.555993\pi\)
\(450\) 0 0
\(451\) −3915.00 −0.408759
\(452\) 0 0
\(453\) −2074.50 + 1197.71i −0.215162 + 0.124224i
\(454\) 0 0
\(455\) −5161.50 + 8939.98i −0.531813 + 0.921127i
\(456\) 0 0
\(457\) −4073.50 7055.51i −0.416959 0.722194i 0.578673 0.815560i \(-0.303571\pi\)
−0.995632 + 0.0933655i \(0.970237\pi\)
\(458\) 0 0
\(459\) 5892.44i 0.599206i
\(460\) 0 0
\(461\) −4015.50 6955.05i −0.405684 0.702666i 0.588717 0.808340i \(-0.299633\pi\)
−0.994401 + 0.105674i \(0.966300\pi\)
\(462\) 0 0
\(463\) 2141.50 3709.19i 0.214955 0.372312i −0.738304 0.674468i \(-0.764373\pi\)
0.953259 + 0.302156i \(0.0977063\pi\)
\(464\) 0 0
\(465\) −8302.50 + 4793.45i −0.827998 + 0.478045i
\(466\) 0 0
\(467\) −5460.00 −0.541025 −0.270512 0.962716i \(-0.587193\pi\)
−0.270512 + 0.962716i \(0.587193\pi\)
\(468\) 0 0
\(469\) 13051.0 1.28494
\(470\) 0 0
\(471\) 13396.5 + 7734.47i 1.31057 + 0.756658i
\(472\) 0 0
\(473\) −322.500 + 558.586i −0.0313500 + 0.0542999i
\(474\) 0 0
\(475\) 616.000 + 1066.94i 0.0595032 + 0.103063i
\(476\) 0 0
\(477\) −3078.00 −0.295455
\(478\) 0 0
\(479\) 214.500 + 371.525i 0.0204609 + 0.0354393i 0.876075 0.482176i \(-0.160153\pi\)
−0.855614 + 0.517615i \(0.826820\pi\)
\(480\) 0 0
\(481\) −3071.00 + 5319.13i −0.291113 + 0.504223i
\(482\) 0 0
\(483\) 31410.7i 2.95909i
\(484\) 0 0
\(485\) 8109.00 0.759197
\(486\) 0 0
\(487\) 11296.0 1.05107 0.525535 0.850772i \(-0.323865\pi\)
0.525535 + 0.850772i \(0.323865\pi\)
\(488\) 0 0
\(489\) 17230.4i 1.59343i
\(490\) 0 0
\(491\) −7336.50 + 12707.2i −0.674321 + 1.16796i 0.302346 + 0.953198i \(0.402230\pi\)
−0.976667 + 0.214760i \(0.931103\pi\)
\(492\) 0 0
\(493\) 2331.00 + 4037.41i 0.212947 + 0.368835i
\(494\) 0 0
\(495\) 3645.00 0.330971
\(496\) 0 0
\(497\) 2418.00 + 4188.10i 0.218234 + 0.377992i
\(498\) 0 0
\(499\) 6719.50 11638.5i 0.602818 1.04411i −0.389574 0.920995i \(-0.627378\pi\)
0.992392 0.123116i \(-0.0392888\pi\)
\(500\) 0 0
\(501\) −3064.50 1769.29i −0.273277 0.157777i
\(502\) 0 0
\(503\) 17388.0 1.54134 0.770669 0.637236i \(-0.219922\pi\)
0.770669 + 0.637236i \(0.219922\pi\)
\(504\) 0 0
\(505\) −3483.00 −0.306914
\(506\) 0 0
\(507\) −3726.00 + 2151.21i −0.326386 + 0.188439i
\(508\) 0 0
\(509\) 1894.50 3281.37i 0.164975 0.285745i −0.771671 0.636021i \(-0.780579\pi\)
0.936646 + 0.350276i \(0.113912\pi\)
\(510\) 0 0
\(511\) −2821.00 4886.12i −0.244215 0.422992i
\(512\) 0 0
\(513\) 3928.29i 0.338086i
\(514\) 0 0
\(515\) −2479.50 4294.62i −0.212155 0.367463i
\(516\) 0 0
\(517\) 1327.50 2299.30i 0.112927 0.195596i
\(518\) 0 0
\(519\) −17914.5 + 10342.9i −1.51514 + 0.874768i
\(520\) 0 0
\(521\) 9786.00 0.822903 0.411451 0.911432i \(-0.365022\pi\)
0.411451 + 0.911432i \(0.365022\pi\)
\(522\) 0 0
\(523\) 8008.00 0.669532 0.334766 0.942301i \(-0.391343\pi\)
0.334766 + 0.942301i \(0.391343\pi\)
\(524\) 0 0
\(525\) 6138.00 + 3543.78i 0.510256 + 0.294596i
\(526\) 0 0
\(527\) 4305.00 7456.48i 0.355842 0.616336i
\(528\) 0 0
\(529\) −12929.0 22393.7i −1.06263 1.84053i
\(530\) 0 0
\(531\) −2146.50 + 3717.85i −0.175424 + 0.303843i
\(532\) 0 0
\(533\) −4828.50 8363.21i −0.392393 0.679645i
\(534\) 0 0
\(535\) 54.0000 93.5307i 0.00436378 0.00755829i
\(536\) 0 0
\(537\) 10413.1i 0.836793i
\(538\) 0 0
\(539\) 9270.00 0.740793
\(540\) 0 0
\(541\) −2938.00 −0.233483 −0.116742 0.993162i \(-0.537245\pi\)
−0.116742 + 0.993162i \(0.537245\pi\)
\(542\) 0 0
\(543\) 6619.90i 0.523181i
\(544\) 0 0
\(545\) −2259.00 + 3912.70i −0.177550 + 0.307526i
\(546\) 0 0
\(547\) −5187.50 8985.01i −0.405487 0.702324i 0.588891 0.808213i \(-0.299565\pi\)
−0.994378 + 0.105888i \(0.966231\pi\)
\(548\) 0 0
\(549\) 2578.50 + 4466.09i 0.200451 + 0.347192i
\(550\) 0 0
\(551\) −1554.00 2691.61i −0.120150 0.208106i
\(552\) 0 0
\(553\) 17561.5 30417.4i 1.35044 2.33902i
\(554\) 0 0
\(555\) −6723.00 3881.53i −0.514190 0.296868i
\(556\) 0 0
\(557\) 3306.00 0.251490 0.125745 0.992063i \(-0.459868\pi\)
0.125745 + 0.992063i \(0.459868\pi\)
\(558\) 0 0
\(559\) −1591.00 −0.120379
\(560\) 0 0
\(561\) −2835.00 + 1636.79i −0.213358 + 0.123182i
\(562\) 0 0
\(563\) −10546.5 + 18267.1i −0.789488 + 1.36743i 0.136792 + 0.990600i \(0.456321\pi\)
−0.926281 + 0.376834i \(0.877013\pi\)
\(564\) 0 0
\(565\) −6304.50 10919.7i −0.469438 0.813090i
\(566\) 0 0
\(567\) −11299.5 19571.3i −0.836921 1.44959i
\(568\) 0 0
\(569\) −643.500 1114.57i −0.0474111 0.0821185i 0.841346 0.540497i \(-0.181764\pi\)
−0.888757 + 0.458379i \(0.848430\pi\)
\(570\) 0 0
\(571\) 7517.50 13020.7i 0.550959 0.954289i −0.447247 0.894411i \(-0.647595\pi\)
0.998206 0.0598783i \(-0.0190713\pi\)
\(572\) 0 0
\(573\) −5224.50 + 3016.37i −0.380902 + 0.219914i
\(574\) 0 0
\(575\) 8580.00 0.622280
\(576\) 0 0
\(577\) 1190.00 0.0858585 0.0429292 0.999078i \(-0.486331\pi\)
0.0429292 + 0.999078i \(0.486331\pi\)
\(578\) 0 0
\(579\) −16249.5 9381.65i −1.16633 0.673382i
\(580\) 0 0
\(581\) −16786.5 + 29075.1i −1.19866 + 2.07614i
\(582\) 0 0
\(583\) −855.000 1480.90i −0.0607384 0.105202i
\(584\) 0 0
\(585\) 4495.50 + 7786.43i 0.317720 + 0.550307i
\(586\) 0 0
\(587\) −8941.50 15487.1i −0.628714 1.08896i −0.987810 0.155664i \(-0.950248\pi\)
0.359096 0.933301i \(-0.383085\pi\)
\(588\) 0 0
\(589\) −2870.00 + 4970.99i −0.200775 + 0.347752i
\(590\) 0 0
\(591\) 10631.3i 0.739957i
\(592\) 0 0
\(593\) 20118.0 1.39317 0.696583 0.717476i \(-0.254703\pi\)
0.696583 + 0.717476i \(0.254703\pi\)
\(594\) 0 0
\(595\) 11718.0 0.807380
\(596\) 0 0
\(597\) 15567.7i 1.06724i
\(598\) 0 0
\(599\) −532.500 + 922.317i −0.0363228 + 0.0629129i −0.883615 0.468214i \(-0.844898\pi\)
0.847293 + 0.531127i \(0.178231\pi\)
\(600\) 0 0
\(601\) 10362.5 + 17948.4i 0.703320 + 1.21819i 0.967294 + 0.253656i \(0.0816331\pi\)
−0.263975 + 0.964530i \(0.585034\pi\)
\(602\) 0 0
\(603\) 5683.50 9844.11i 0.383831 0.664815i
\(604\) 0 0
\(605\) −4977.00 8620.42i −0.334453 0.579289i
\(606\) 0 0
\(607\) −7872.50 + 13635.6i −0.526417 + 0.911780i 0.473110 + 0.881004i \(0.343131\pi\)
−0.999526 + 0.0307768i \(0.990202\pi\)
\(608\) 0 0
\(609\) −15484.5 8939.98i −1.03032 0.594854i
\(610\) 0 0
\(611\) 6549.00 0.433624
\(612\) 0 0
\(613\) 5042.00 0.332210 0.166105 0.986108i \(-0.446881\pi\)
0.166105 + 0.986108i \(0.446881\pi\)
\(614\) 0 0
\(615\) 10570.5 6102.88i 0.693079 0.400149i
\(616\) 0 0
\(617\) 5026.50 8706.15i 0.327973 0.568066i −0.654137 0.756376i \(-0.726968\pi\)
0.982110 + 0.188311i \(0.0603012\pi\)
\(618\) 0 0
\(619\) −2991.50 5181.43i −0.194246 0.336445i 0.752407 0.658699i \(-0.228893\pi\)
−0.946653 + 0.322254i \(0.895559\pi\)
\(620\) 0 0
\(621\) −23692.5 13678.9i −1.53099 0.883920i
\(622\) 0 0
\(623\) 16275.0 + 28189.1i 1.04662 + 1.81280i
\(624\) 0 0
\(625\) 4094.50 7091.88i 0.262048 0.453880i
\(626\) 0 0
\(627\) 1890.00 1091.19i 0.120382 0.0695024i
\(628\) 0 0
\(629\) 6972.00 0.441958
\(630\) 0 0
\(631\) 19696.0 1.24261 0.621304 0.783570i \(-0.286603\pi\)
0.621304 + 0.783570i \(0.286603\pi\)
\(632\) 0 0
\(633\) 3397.50 + 1961.55i 0.213331 + 0.123167i
\(634\) 0 0
\(635\) 3960.00 6858.92i 0.247477 0.428642i
\(636\) 0 0
\(637\) 11433.0 + 19802.5i 0.711133 + 1.23172i
\(638\) 0 0
\(639\) 4212.00 0.260758
\(640\) 0 0
\(641\) 5488.50 + 9506.36i 0.338195 + 0.585770i 0.984093 0.177653i \(-0.0568505\pi\)
−0.645899 + 0.763423i \(0.723517\pi\)
\(642\) 0 0
\(643\) −7914.50 + 13708.3i −0.485408 + 0.840752i −0.999859 0.0167681i \(-0.994662\pi\)
0.514451 + 0.857520i \(0.327996\pi\)
\(644\) 0 0
\(645\) 2010.91i 0.122759i
\(646\) 0 0
\(647\) −28224.0 −1.71499 −0.857496 0.514490i \(-0.827981\pi\)
−0.857496 + 0.514490i \(0.827981\pi\)
\(648\) 0 0
\(649\) −2385.00 −0.144252
\(650\) 0 0
\(651\) 33021.5i 1.98804i
\(652\) 0 0
\(653\) −14083.5 + 24393.3i −0.843997 + 1.46185i 0.0424927 + 0.999097i \(0.486470\pi\)
−0.886490 + 0.462749i \(0.846863\pi\)
\(654\) 0 0
\(655\) −6763.50 11714.7i −0.403468 0.698828i
\(656\) 0 0
\(657\) −4914.00 −0.291801
\(658\) 0 0
\(659\) 5368.50 + 9298.51i 0.317340 + 0.549649i 0.979932 0.199331i \(-0.0638770\pi\)
−0.662592 + 0.748980i \(0.730544\pi\)
\(660\) 0 0
\(661\) −5063.50 + 8770.24i −0.297954 + 0.516071i −0.975668 0.219255i \(-0.929637\pi\)
0.677714 + 0.735326i \(0.262971\pi\)
\(662\) 0 0
\(663\) −6993.00 4037.41i −0.409631 0.236501i
\(664\) 0 0
\(665\) −7812.00 −0.455543
\(666\) 0 0
\(667\) −21645.0 −1.25652
\(668\) 0 0
\(669\) 15583.5 8997.14i 0.900587 0.519954i
\(670\) 0 0
\(671\) −1432.50 + 2481.16i −0.0824159 + 0.142748i
\(672\) 0 0
\(673\) −125.500 217.372i −0.00718822 0.0124504i 0.862409 0.506212i \(-0.168955\pi\)
−0.869597 + 0.493762i \(0.835621\pi\)
\(674\) 0 0
\(675\) 5346.00 3086.51i 0.304841 0.176000i
\(676\) 0 0
\(677\) −4225.50 7318.78i −0.239881 0.415485i 0.720799 0.693144i \(-0.243775\pi\)
−0.960680 + 0.277659i \(0.910442\pi\)
\(678\) 0 0
\(679\) 13965.5 24189.0i 0.789318 1.36714i
\(680\) 0 0
\(681\) −28012.5 + 16173.0i −1.57627 + 0.910061i
\(682\) 0 0
\(683\) 25884.0 1.45011 0.725054 0.688692i \(-0.241815\pi\)
0.725054 + 0.688692i \(0.241815\pi\)
\(684\) 0 0
\(685\) 23949.0 1.33583
\(686\) 0 0
\(687\) 6592.50 + 3806.18i 0.366113 + 0.211375i
\(688\) 0 0
\(689\) 2109.00 3652.90i 0.116613 0.201980i
\(690\) 0 0
\(691\) 3182.50 + 5512.25i 0.175207 + 0.303467i 0.940233 0.340532i \(-0.110607\pi\)
−0.765026 + 0.643999i \(0.777274\pi\)
\(692\) 0 0
\(693\) 6277.50 10872.9i 0.344102 0.596002i
\(694\) 0 0
\(695\) 544.500 + 943.102i 0.0297181 + 0.0514732i
\(696\) 0 0
\(697\) −5481.00 + 9493.37i −0.297859 + 0.515907i
\(698\) 0 0
\(699\) 13686.7i 0.740597i
\(700\) 0 0
\(701\) 1122.00 0.0604527 0.0302264 0.999543i \(-0.490377\pi\)
0.0302264 + 0.999543i \(0.490377\pi\)
\(702\) 0 0
\(703\) −4648.00 −0.249364
\(704\) 0 0
\(705\) 8277.47i 0.442195i
\(706\) 0 0
\(707\) −5998.50 + 10389.7i −0.319090 + 0.552681i
\(708\) 0 0
\(709\) −2141.50 3709.19i −0.113435 0.196476i 0.803718 0.595011i \(-0.202852\pi\)
−0.917153 + 0.398535i \(0.869519\pi\)
\(710\) 0 0
\(711\) −15295.5 26492.6i −0.806788 1.39740i
\(712\) 0 0
\(713\) 19987.5 + 34619.4i 1.04984 + 1.81838i
\(714\) 0 0
\(715\) −2497.50 + 4325.80i −0.130631 + 0.226260i
\(716\) 0 0
\(717\) 31117.5 + 17965.7i 1.62079 + 0.935762i
\(718\) 0 0
\(719\) −4032.00 −0.209135 −0.104568 0.994518i \(-0.533346\pi\)
−0.104568 + 0.994518i \(0.533346\pi\)
\(720\) 0 0
\(721\) −17081.0 −0.882288
\(722\) 0 0
\(723\) −6700.50 + 3868.54i −0.344667 + 0.198994i
\(724\) 0 0
\(725\) 2442.00 4229.67i 0.125095 0.216670i
\(726\) 0 0
\(727\) 12002.5 + 20788.9i 0.612308 + 1.06055i 0.990850 + 0.134965i \(0.0430922\pi\)
−0.378542 + 0.925584i \(0.623574\pi\)
\(728\) 0 0
\(729\) −19683.0 −1.00000
\(730\) 0 0
\(731\) 903.000 + 1564.04i 0.0456890 + 0.0791357i
\(732\) 0 0
\(733\) 18750.5 32476.8i 0.944837 1.63651i 0.188760 0.982023i \(-0.439553\pi\)
0.756077 0.654482i \(-0.227113\pi\)
\(734\) 0 0
\(735\) −25029.0 + 14450.5i −1.25607 + 0.725190i
\(736\) 0 0
\(737\) 6315.00 0.315626
\(738\) 0 0
\(739\) 880.000 0.0438042 0.0219021 0.999760i \(-0.493028\pi\)
0.0219021 + 0.999760i \(0.493028\pi\)
\(740\) 0 0
\(741\) 4662.00 + 2691.61i 0.231124 + 0.133439i
\(742\) 0 0
\(743\) 811.500 1405.56i 0.0400687 0.0694010i −0.845296 0.534299i \(-0.820576\pi\)
0.885364 + 0.464898i \(0.153909\pi\)
\(744\) 0 0
\(745\) −12730.5 22049.9i −0.626053 1.08436i
\(746\) 0 0
\(747\) 14620.5 + 25323.4i 0.716113 + 1.24034i
\(748\) 0 0
\(749\) −186.000 322.161i −0.00907382 0.0157163i
\(750\) 0 0
\(751\) −3444.50 + 5966.05i −0.167366 + 0.289886i −0.937493 0.348005i \(-0.886859\pi\)
0.770127 + 0.637890i \(0.220193\pi\)
\(752\) 0 0
\(753\) 24006.2i 1.16180i
\(754\) 0 0
\(755\) 4149.00 0.199997
\(756\) 0 0
\(757\) −12850.0 −0.616963 −0.308482 0.951230i \(-0.599821\pi\)
−0.308482 + 0.951230i \(0.599821\pi\)
\(758\) 0 0
\(759\) 15198.7i 0.726850i
\(760\) 0 0
\(761\) −2305.50 + 3993.24i −0.109822 + 0.190217i −0.915698 0.401867i \(-0.868361\pi\)
0.805876 + 0.592084i \(0.201695\pi\)
\(762\) 0 0
\(763\) 7781.00 + 13477.1i 0.369189 + 0.639454i
\(764\) 0 0
\(765\) 5103.00 8838.66i 0.241176 0.417728i
\(766\) 0 0
\(767\) −2941.50 5094.83i −0.138476 0.239848i
\(768\) 0 0
\(769\) 1152.50 1996.19i 0.0540445 0.0936078i −0.837737 0.546073i \(-0.816122\pi\)
0.891782 + 0.452465i \(0.149455\pi\)
\(770\) 0 0
\(771\) −15079.5 8706.15i −0.704377 0.406672i
\(772\) 0 0
\(773\) −34902.0 −1.62398 −0.811991 0.583670i \(-0.801616\pi\)
−0.811991 + 0.583670i \(0.801616\pi\)
\(774\) 0 0
\(775\) −9020.00 −0.418075
\(776\) 0 0
\(777\) −23157.0 + 13369.7i −1.06918 + 0.617291i
\(778\) 0 0
\(779\) 3654.00 6328.91i 0.168059 0.291087i
\(780\) 0 0
\(781\) 1170.00 + 2026.50i 0.0536055 + 0.0928474i
\(782\) 0 0
\(783\) −13486.5 + 7786.43i −0.615540 + 0.355382i
\(784\) 0 0
\(785\) −13396.5 23203.4i −0.609098 1.05499i
\(786\)