Defining parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(144, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 156 | 38 | 118 |
Cusp forms | 132 | 34 | 98 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(144, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(144, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)