Defining parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(144))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 8 | 76 |
Cusp forms | 60 | 7 | 53 |
Eisenstein series | 24 | 1 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(4\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(144))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
144.4.a.a | $1$ | $8.496$ | \(\Q\) | None | \(0\) | \(0\) | \(-16\) | \(12\) | $+$ | $+$ | \(q-2^{4}q^{5}+12q^{7}+2^{6}q^{11}+58q^{13}+\cdots\) | |
144.4.a.b | $1$ | $8.496$ | \(\Q\) | None | \(0\) | \(0\) | \(-14\) | \(24\) | $+$ | $-$ | \(q-14q^{5}+24q^{7}-28q^{11}-74q^{13}+\cdots\) | |
144.4.a.c | $1$ | $8.496$ | \(\Q\) | None | \(0\) | \(0\) | \(-6\) | \(16\) | $-$ | $-$ | \(q-6q^{5}+2^{4}q^{7}+12q^{11}+38q^{13}+\cdots\) | |
144.4.a.d | $1$ | $8.496$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-20\) | $-$ | $+$ | \(q-20q^{7}-70q^{13}-56q^{19}-5^{3}q^{25}+\cdots\) | |
144.4.a.e | $1$ | $8.496$ | \(\Q\) | None | \(0\) | \(0\) | \(2\) | \(-24\) | $+$ | $-$ | \(q+2q^{5}-24q^{7}-44q^{11}+22q^{13}+\cdots\) | |
144.4.a.f | $1$ | $8.496$ | \(\Q\) | None | \(0\) | \(0\) | \(16\) | \(12\) | $+$ | $+$ | \(q+2^{4}q^{5}+12q^{7}-2^{6}q^{11}+58q^{13}+\cdots\) | |
144.4.a.g | $1$ | $8.496$ | \(\Q\) | None | \(0\) | \(0\) | \(18\) | \(-8\) | $-$ | $-$ | \(q+18q^{5}-8q^{7}+6^{2}q^{11}-10q^{13}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(144))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(144)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)