Properties

Label 144.3.w.a.5.6
Level $144$
Weight $3$
Character 144.5
Analytic conductor $3.924$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 144.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.92371580679\)
Analytic rank: \(0\)
Dimension: \(184\)
Relative dimension: \(46\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 5.6
Character \(\chi\) \(=\) 144.5
Dual form 144.3.w.a.29.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.84760 - 0.765753i) q^{2} +(-0.120474 + 2.99758i) q^{3} +(2.82724 + 2.82961i) q^{4} +(2.37709 + 8.87143i) q^{5} +(2.51799 - 5.44607i) q^{6} +(0.152137 - 0.0878365i) q^{7} +(-3.05683 - 7.39295i) q^{8} +(-8.97097 - 0.722263i) q^{9} +O(q^{10})\) \(q+(-1.84760 - 0.765753i) q^{2} +(-0.120474 + 2.99758i) q^{3} +(2.82724 + 2.82961i) q^{4} +(2.37709 + 8.87143i) q^{5} +(2.51799 - 5.44607i) q^{6} +(0.152137 - 0.0878365i) q^{7} +(-3.05683 - 7.39295i) q^{8} +(-8.97097 - 0.722263i) q^{9} +(2.40141 - 18.2111i) q^{10} +(-4.63677 - 1.24242i) q^{11} +(-8.82259 + 8.13400i) q^{12} +(-1.64807 - 6.15069i) q^{13} +(-0.348350 + 0.0457871i) q^{14} +(-26.8792 + 6.05674i) q^{15} +(-0.0133749 + 16.0000i) q^{16} +15.8968i q^{17} +(16.0217 + 8.20400i) q^{18} +(20.9764 - 20.9764i) q^{19} +(-18.3820 + 31.8079i) q^{20} +(0.244968 + 0.466626i) q^{21} +(7.61551 + 5.84611i) q^{22} +(-11.4512 + 19.8341i) q^{23} +(22.5292 - 8.27244i) q^{24} +(-51.4010 + 29.6764i) q^{25} +(-1.66493 + 12.6260i) q^{26} +(3.24581 - 26.8042i) q^{27} +(0.678673 + 0.182154i) q^{28} +(-6.20718 + 23.1655i) q^{29} +(54.2999 + 9.39239i) q^{30} +(12.6661 - 21.9383i) q^{31} +(12.2768 - 29.5513i) q^{32} +(4.28286 - 13.7494i) q^{33} +(12.1730 - 29.3708i) q^{34} +(1.14088 + 1.14088i) q^{35} +(-23.3194 - 27.4264i) q^{36} +(5.74306 + 5.74306i) q^{37} +(-54.8187 + 22.6932i) q^{38} +(18.6357 - 4.19923i) q^{39} +(58.3197 - 44.6922i) q^{40} +(-8.55194 + 14.8124i) q^{41} +(-0.0952832 - 1.04972i) q^{42} +(-11.6752 + 43.5723i) q^{43} +(-9.59372 - 16.6329i) q^{44} +(-14.9173 - 81.3022i) q^{45} +(36.3453 - 27.8767i) q^{46} +(44.9311 - 25.9410i) q^{47} +(-47.9597 - 1.96768i) q^{48} +(-24.4846 + 42.4085i) q^{49} +(117.693 - 15.4696i) q^{50} +(-47.6518 - 1.91515i) q^{51} +(12.7446 - 22.0529i) q^{52} +(30.5548 - 30.5548i) q^{53} +(-26.5224 + 47.0379i) q^{54} -44.0881i q^{55} +(-1.11443 - 0.856243i) q^{56} +(60.3513 + 65.4055i) q^{57} +(29.2074 - 38.0474i) q^{58} +(-21.7187 - 81.0555i) q^{59} +(-93.1323 - 58.9337i) q^{60} +(114.236 + 30.6095i) q^{61} +(-40.2012 + 30.8341i) q^{62} +(-1.42826 + 0.678096i) q^{63} +(-45.3115 + 45.1981i) q^{64} +(50.6478 - 29.2415i) q^{65} +(-18.4417 + 22.1238i) q^{66} +(15.7420 + 58.7498i) q^{67} +(-44.9816 + 44.9440i) q^{68} +(-58.0747 - 36.7155i) q^{69} +(-1.23426 - 2.98152i) q^{70} +23.5916 q^{71} +(22.0831 + 68.5298i) q^{72} +117.626i q^{73} +(-6.21310 - 15.0086i) q^{74} +(-82.7648 - 157.654i) q^{75} +(118.660 + 0.0495959i) q^{76} +(-0.814556 + 0.218260i) q^{77} +(-37.6470 - 6.51188i) q^{78} +(-39.7980 - 68.9322i) q^{79} +(-141.975 + 37.9148i) q^{80} +(79.9567 + 12.9588i) q^{81} +(27.1432 - 20.8187i) q^{82} +(-32.1186 + 119.868i) q^{83} +(-0.627783 + 2.01243i) q^{84} +(-141.027 + 37.7880i) q^{85} +(54.9367 - 71.5639i) q^{86} +(-68.6926 - 21.3974i) q^{87} +(4.98869 + 38.0773i) q^{88} +63.8239 q^{89} +(-34.6962 + 161.637i) q^{90} +(-0.790989 - 0.790989i) q^{91} +(-88.4982 + 23.6734i) q^{92} +(64.2359 + 40.6106i) q^{93} +(-102.879 + 13.5224i) q^{94} +(235.953 + 136.228i) q^{95} +(87.1035 + 40.3607i) q^{96} +(6.55800 + 11.3588i) q^{97} +(77.7121 - 59.6048i) q^{98} +(40.6990 + 14.4947i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} + O(q^{10}) \) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} - 8q^{10} - 6q^{11} - 64q^{12} - 2q^{13} - 6q^{14} - 8q^{15} - 2q^{16} + 54q^{18} - 8q^{19} + 120q^{20} - 22q^{21} - 2q^{22} - 160q^{24} + 44q^{27} - 72q^{28} - 6q^{29} - 90q^{30} - 4q^{31} - 6q^{32} - 8q^{33} + 6q^{34} - 202q^{36} - 8q^{37} - 6q^{38} - 2q^{40} + 44q^{42} - 2q^{43} + 46q^{45} - 160q^{46} - 12q^{47} - 118q^{48} + 472q^{49} + 228q^{50} - 48q^{51} - 2q^{52} + 206q^{54} - 300q^{56} - 92q^{58} - 438q^{59} - 90q^{60} - 2q^{61} - 204q^{63} + 244q^{64} - 12q^{65} - 508q^{66} - 2q^{67} - 144q^{68} + 14q^{69} + 96q^{70} + 6q^{72} + 246q^{74} + 152q^{75} - 158q^{76} - 6q^{77} + 304q^{78} - 4q^{79} - 8q^{81} - 388q^{82} - 726q^{83} + 542q^{84} + 48q^{85} + 894q^{86} + 22q^{88} - 528q^{90} - 204q^{91} - 348q^{92} + 62q^{93} - 18q^{94} - 12q^{95} + 262q^{96} - 4q^{97} + 286q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84760 0.765753i −0.923800 0.382876i
\(3\) −0.120474 + 2.99758i −0.0401581 + 0.999193i
\(4\) 2.82724 + 2.82961i 0.706811 + 0.707402i
\(5\) 2.37709 + 8.87143i 0.475418 + 1.77429i 0.619796 + 0.784763i \(0.287215\pi\)
−0.144378 + 0.989523i \(0.546118\pi\)
\(6\) 2.51799 5.44607i 0.419666 0.907679i
\(7\) 0.152137 0.0878365i 0.0217339 0.0125481i −0.489094 0.872231i \(-0.662672\pi\)
0.510828 + 0.859683i \(0.329339\pi\)
\(8\) −3.05683 7.39295i −0.382104 0.924119i
\(9\) −8.97097 0.722263i −0.996775 0.0802515i
\(10\) 2.40141 18.2111i 0.240141 1.82111i
\(11\) −4.63677 1.24242i −0.421525 0.112947i 0.0418205 0.999125i \(-0.486684\pi\)
−0.463345 + 0.886178i \(0.653351\pi\)
\(12\) −8.82259 + 8.13400i −0.735216 + 0.677833i
\(13\) −1.64807 6.15069i −0.126775 0.473130i 0.873122 0.487502i \(-0.162092\pi\)
−0.999897 + 0.0143717i \(0.995425\pi\)
\(14\) −0.348350 + 0.0457871i −0.0248821 + 0.00327051i
\(15\) −26.8792 + 6.05674i −1.79195 + 0.403783i
\(16\) −0.0133749 + 16.0000i −0.000835931 + 1.00000i
\(17\) 15.8968i 0.935103i 0.883966 + 0.467552i \(0.154864\pi\)
−0.883966 + 0.467552i \(0.845136\pi\)
\(18\) 16.0217 + 8.20400i 0.890094 + 0.455778i
\(19\) 20.9764 20.9764i 1.10402 1.10402i 0.110099 0.993921i \(-0.464883\pi\)
0.993921 0.110099i \(-0.0351169\pi\)
\(20\) −18.3820 + 31.8079i −0.919102 + 1.59040i
\(21\) 0.244968 + 0.466626i 0.0116652 + 0.0222203i
\(22\) 7.61551 + 5.84611i 0.346159 + 0.265732i
\(23\) −11.4512 + 19.8341i −0.497879 + 0.862352i −0.999997 0.00244693i \(-0.999221\pi\)
0.502118 + 0.864799i \(0.332554\pi\)
\(24\) 22.5292 8.27244i 0.938718 0.344685i
\(25\) −51.4010 + 29.6764i −2.05604 + 1.18706i
\(26\) −1.66493 + 12.6260i −0.0640359 + 0.485617i
\(27\) 3.24581 26.8042i 0.120215 0.992748i
\(28\) 0.678673 + 0.182154i 0.0242383 + 0.00650549i
\(29\) −6.20718 + 23.1655i −0.214041 + 0.798810i 0.772462 + 0.635062i \(0.219025\pi\)
−0.986502 + 0.163749i \(0.947641\pi\)
\(30\) 54.2999 + 9.39239i 1.81000 + 0.313080i
\(31\) 12.6661 21.9383i 0.408584 0.707688i −0.586148 0.810204i \(-0.699356\pi\)
0.994731 + 0.102516i \(0.0326894\pi\)
\(32\) 12.2768 29.5513i 0.383649 0.923479i
\(33\) 4.28286 13.7494i 0.129784 0.416649i
\(34\) 12.1730 29.3708i 0.358029 0.863848i
\(35\) 1.14088 + 1.14088i 0.0325966 + 0.0325966i
\(36\) −23.3194 27.4264i −0.647761 0.761843i
\(37\) 5.74306 + 5.74306i 0.155218 + 0.155218i 0.780444 0.625226i \(-0.214993\pi\)
−0.625226 + 0.780444i \(0.714993\pi\)
\(38\) −54.8187 + 22.6932i −1.44260 + 0.597190i
\(39\) 18.6357 4.19923i 0.477840 0.107673i
\(40\) 58.3197 44.6922i 1.45799 1.11730i
\(41\) −8.55194 + 14.8124i −0.208584 + 0.361278i −0.951269 0.308363i \(-0.900219\pi\)
0.742685 + 0.669641i \(0.233552\pi\)
\(42\) −0.0952832 1.04972i −0.00226865 0.0249934i
\(43\) −11.6752 + 43.5723i −0.271515 + 1.01331i 0.686625 + 0.727012i \(0.259091\pi\)
−0.958141 + 0.286298i \(0.907575\pi\)
\(44\) −9.59372 16.6329i −0.218039 0.378020i
\(45\) −14.9173 81.3022i −0.331496 1.80672i
\(46\) 36.3453 27.8767i 0.790115 0.606014i
\(47\) 44.9311 25.9410i 0.955981 0.551936i 0.0610472 0.998135i \(-0.480556\pi\)
0.894934 + 0.446199i \(0.147223\pi\)
\(48\) −47.9597 1.96768i −0.999159 0.0409934i
\(49\) −24.4846 + 42.4085i −0.499685 + 0.865480i
\(50\) 117.693 15.4696i 2.35386 0.309392i
\(51\) −47.6518 1.91515i −0.934349 0.0375520i
\(52\) 12.7446 22.0529i 0.245088 0.424095i
\(53\) 30.5548 30.5548i 0.576506 0.576506i −0.357433 0.933939i \(-0.616348\pi\)
0.933939 + 0.357433i \(0.116348\pi\)
\(54\) −26.5224 + 47.0379i −0.491155 + 0.871072i
\(55\) 44.0881i 0.801602i
\(56\) −1.11443 0.856243i −0.0199005 0.0152900i
\(57\) 60.3513 + 65.4055i 1.05879 + 1.14746i
\(58\) 29.2074 38.0474i 0.503576 0.655989i
\(59\) −21.7187 81.0555i −0.368114 1.37382i −0.863149 0.504948i \(-0.831511\pi\)
0.495035 0.868873i \(-0.335155\pi\)
\(60\) −93.1323 58.9337i −1.55220 0.982228i
\(61\) 114.236 + 30.6095i 1.87273 + 0.501796i 0.999905 + 0.0137580i \(0.00437944\pi\)
0.872822 + 0.488038i \(0.162287\pi\)
\(62\) −40.2012 + 30.8341i −0.648407 + 0.497325i
\(63\) −1.42826 + 0.678096i −0.0226708 + 0.0107634i
\(64\) −45.3115 + 45.1981i −0.707993 + 0.706220i
\(65\) 50.6478 29.2415i 0.779197 0.449870i
\(66\) −18.4417 + 22.1238i −0.279419 + 0.335209i
\(67\) 15.7420 + 58.7498i 0.234955 + 0.876863i 0.978169 + 0.207810i \(0.0666336\pi\)
−0.743214 + 0.669053i \(0.766700\pi\)
\(68\) −44.9816 + 44.9440i −0.661494 + 0.660941i
\(69\) −58.0747 36.7155i −0.841663 0.532108i
\(70\) −1.23426 2.98152i −0.0176322 0.0425931i
\(71\) 23.5916 0.332276 0.166138 0.986103i \(-0.446870\pi\)
0.166138 + 0.986103i \(0.446870\pi\)
\(72\) 22.0831 + 68.5298i 0.306710 + 0.951803i
\(73\) 117.626i 1.61132i 0.592378 + 0.805660i \(0.298189\pi\)
−0.592378 + 0.805660i \(0.701811\pi\)
\(74\) −6.21310 15.0086i −0.0839609 0.202819i
\(75\) −82.7648 157.654i −1.10353 2.10205i
\(76\) 118.660 + 0.0495959i 1.56132 + 0.000652578i
\(77\) −0.814556 + 0.218260i −0.0105786 + 0.00283454i
\(78\) −37.6470 6.51188i −0.482653 0.0834857i
\(79\) −39.7980 68.9322i −0.503772 0.872559i −0.999990 0.00436115i \(-0.998612\pi\)
0.496218 0.868198i \(-0.334722\pi\)
\(80\) −141.975 + 37.9148i −1.77468 + 0.473935i
\(81\) 79.9567 + 12.9588i 0.987119 + 0.159985i
\(82\) 27.1432 20.8187i 0.331014 0.253886i
\(83\) −32.1186 + 119.868i −0.386971 + 1.44420i 0.448065 + 0.894001i \(0.352113\pi\)
−0.835036 + 0.550195i \(0.814553\pi\)
\(84\) −0.627783 + 2.01243i −0.00747361 + 0.0239575i
\(85\) −141.027 + 37.7880i −1.65914 + 0.444565i
\(86\) 54.9367 71.5639i 0.638798 0.832138i
\(87\) −68.6926 21.3974i −0.789570 0.245947i
\(88\) 4.98869 + 38.0773i 0.0566896 + 0.432697i
\(89\) 63.8239 0.717122 0.358561 0.933506i \(-0.383267\pi\)
0.358561 + 0.933506i \(0.383267\pi\)
\(90\) −34.6962 + 161.637i −0.385513 + 1.79597i
\(91\) −0.790989 0.790989i −0.00869219 0.00869219i
\(92\) −88.4982 + 23.6734i −0.961937 + 0.257319i
\(93\) 64.2359 + 40.6106i 0.690709 + 0.436674i
\(94\) −102.879 + 13.5224i −1.09446 + 0.143855i
\(95\) 235.953 + 136.228i 2.48372 + 1.43398i
\(96\) 87.1035 + 40.3607i 0.907328 + 0.420424i
\(97\) 6.55800 + 11.3588i 0.0676082 + 0.117101i 0.897848 0.440306i \(-0.145130\pi\)
−0.830240 + 0.557406i \(0.811797\pi\)
\(98\) 77.7121 59.6048i 0.792981 0.608212i
\(99\) 40.6990 + 14.4947i 0.411101 + 0.146411i
\(100\) −229.296 61.5424i −2.29296 0.615424i
\(101\) 65.8389 + 17.6415i 0.651870 + 0.174668i 0.569574 0.821940i \(-0.307108\pi\)
0.0822960 + 0.996608i \(0.473775\pi\)
\(102\) 86.5749 + 40.0279i 0.848773 + 0.392431i
\(103\) 33.4114 + 19.2901i 0.324383 + 0.187282i 0.653344 0.757061i \(-0.273365\pi\)
−0.328962 + 0.944343i \(0.606699\pi\)
\(104\) −40.4339 + 30.9858i −0.388788 + 0.297940i
\(105\) −3.55732 + 3.28243i −0.0338793 + 0.0312613i
\(106\) −79.8505 + 33.0556i −0.753306 + 0.311845i
\(107\) −16.2307 + 16.2307i −0.151688 + 0.151688i −0.778872 0.627183i \(-0.784208\pi\)
0.627183 + 0.778872i \(0.284208\pi\)
\(108\) 85.0221 66.5976i 0.787242 0.616645i
\(109\) 107.518 107.518i 0.986404 0.986404i −0.0135051 0.999909i \(-0.504299\pi\)
0.999909 + 0.0135051i \(0.00429895\pi\)
\(110\) −33.7606 + 81.4571i −0.306915 + 0.740519i
\(111\) −17.9072 + 16.5234i −0.161326 + 0.148859i
\(112\) 1.40335 + 2.43537i 0.0125299 + 0.0217444i
\(113\) −116.194 67.0844i −1.02826 0.593668i −0.111776 0.993733i \(-0.535654\pi\)
−0.916486 + 0.400066i \(0.868987\pi\)
\(114\) −61.4205 167.057i −0.538776 1.46541i
\(115\) −203.177 54.4412i −1.76676 0.473402i
\(116\) −83.0985 + 47.9306i −0.716366 + 0.413195i
\(117\) 10.3424 + 56.3681i 0.0883966 + 0.481778i
\(118\) −21.9409 + 166.389i −0.185940 + 1.41008i
\(119\) 1.39632 + 2.41849i 0.0117337 + 0.0203234i
\(120\) 126.942 + 180.202i 1.05785 + 1.50168i
\(121\) −84.8330 48.9784i −0.701100 0.404780i
\(122\) −187.624 144.031i −1.53790 1.18058i
\(123\) −43.3710 27.4196i −0.352610 0.222924i
\(124\) 97.8870 26.1849i 0.789412 0.211169i
\(125\) −223.098 223.098i −1.78479 1.78479i
\(126\) 3.15811 0.159154i 0.0250643 0.00126313i
\(127\) 112.014 0.881998 0.440999 0.897508i \(-0.354624\pi\)
0.440999 + 0.897508i \(0.354624\pi\)
\(128\) 118.328 48.8104i 0.924438 0.381331i
\(129\) −129.205 40.2466i −1.00159 0.311989i
\(130\) −115.969 + 15.2429i −0.892066 + 0.117253i
\(131\) 184.358 49.3987i 1.40732 0.377089i 0.526350 0.850268i \(-0.323560\pi\)
0.880966 + 0.473179i \(0.156894\pi\)
\(132\) 51.0141 26.7541i 0.386471 0.202683i
\(133\) 1.34880 5.03378i 0.0101413 0.0378480i
\(134\) 15.9030 120.601i 0.118679 0.900005i
\(135\) 245.507 34.9210i 1.81857 0.258674i
\(136\) 117.524 48.5937i 0.864147 0.357307i
\(137\) 19.3954 + 33.5938i 0.141572 + 0.245210i 0.928089 0.372359i \(-0.121451\pi\)
−0.786517 + 0.617569i \(0.788118\pi\)
\(138\) 79.1839 + 112.306i 0.573796 + 0.813814i
\(139\) 53.7676 14.4070i 0.386817 0.103647i −0.0601690 0.998188i \(-0.519164\pi\)
0.446986 + 0.894541i \(0.352497\pi\)
\(140\) −0.00269746 + 6.45379i −1.92676e−5 + 0.0460985i
\(141\) 72.3471 + 137.810i 0.513100 + 0.977374i
\(142\) −43.5878 18.0653i −0.306956 0.127221i
\(143\) 30.5670i 0.213755i
\(144\) 11.6762 143.526i 0.0810847 0.996707i
\(145\) −220.266 −1.51908
\(146\) 90.0727 217.326i 0.616936 1.48854i
\(147\) −124.173 78.5036i −0.844715 0.534038i
\(148\) −0.0135787 + 32.4876i −9.17480e−5 + 0.219511i
\(149\) −53.1960 198.530i −0.357020 1.33242i −0.877923 0.478801i \(-0.841072\pi\)
0.520903 0.853616i \(-0.325595\pi\)
\(150\) 32.1923 + 354.659i 0.214615 + 2.36439i
\(151\) −5.71679 + 3.30059i −0.0378595 + 0.0218582i −0.518810 0.854889i \(-0.673625\pi\)
0.480951 + 0.876748i \(0.340292\pi\)
\(152\) −219.199 90.9561i −1.44210 0.598396i
\(153\) 11.4816 142.609i 0.0750434 0.932087i
\(154\) 1.67210 + 0.220492i 0.0108578 + 0.00143177i
\(155\) 224.733 + 60.2169i 1.44989 + 0.388496i
\(156\) 64.5700 + 40.8596i 0.413910 + 0.261921i
\(157\) 34.0372 + 127.028i 0.216797 + 0.809099i 0.985526 + 0.169524i \(0.0542229\pi\)
−0.768729 + 0.639575i \(0.779110\pi\)
\(158\) 20.7457 + 157.834i 0.131302 + 0.998952i
\(159\) 87.9094 + 95.2715i 0.552889 + 0.599192i
\(160\) 291.345 + 38.6661i 1.82091 + 0.241663i
\(161\) 4.02334i 0.0249897i
\(162\) −137.805 85.1697i −0.850646 0.525739i
\(163\) −0.0853767 + 0.0853767i −0.000523784 + 0.000523784i −0.707369 0.706845i \(-0.750118\pi\)
0.706845 + 0.707369i \(0.250118\pi\)
\(164\) −66.0917 + 17.6796i −0.402998 + 0.107803i
\(165\) 132.158 + 5.31149i 0.800955 + 0.0321908i
\(166\) 151.132 196.874i 0.910433 1.18599i
\(167\) −88.3205 + 152.976i −0.528865 + 0.916021i 0.470568 + 0.882363i \(0.344049\pi\)
−0.999433 + 0.0336575i \(0.989284\pi\)
\(168\) 2.70092 3.23744i 0.0160769 0.0192705i
\(169\) 111.243 64.2264i 0.658245 0.380038i
\(170\) 289.497 + 38.1746i 1.70293 + 0.224557i
\(171\) −203.329 + 173.028i −1.18906 + 1.01186i
\(172\) −156.301 + 90.1534i −0.908728 + 0.524148i
\(173\) 7.95033 29.6711i 0.0459557 0.171509i −0.939134 0.343552i \(-0.888370\pi\)
0.985090 + 0.172043i \(0.0550367\pi\)
\(174\) 110.531 + 92.1353i 0.635238 + 0.529513i
\(175\) −5.21334 + 9.02977i −0.0297905 + 0.0515987i
\(176\) 19.9407 74.1717i 0.113299 0.421430i
\(177\) 245.587 55.3386i 1.38750 0.312647i
\(178\) −117.921 48.8733i −0.662477 0.274569i
\(179\) −127.258 127.258i −0.710936 0.710936i 0.255795 0.966731i \(-0.417663\pi\)
−0.966731 + 0.255795i \(0.917663\pi\)
\(180\) 187.879 272.071i 1.04377 1.51151i
\(181\) 56.1430 + 56.1430i 0.310182 + 0.310182i 0.844980 0.534798i \(-0.179612\pi\)
−0.534798 + 0.844980i \(0.679612\pi\)
\(182\) 0.855729 + 2.06713i 0.00470181 + 0.0113579i
\(183\) −105.517 + 338.745i −0.576596 + 1.85107i
\(184\) 181.637 + 24.0288i 0.987158 + 0.130592i
\(185\) −37.2973 + 64.6009i −0.201607 + 0.349194i
\(186\) −87.5845 124.221i −0.470885 0.667855i
\(187\) 19.7504 73.7096i 0.105617 0.394169i
\(188\) 200.434 + 53.7959i 1.06614 + 0.286149i
\(189\) −1.86058 4.36302i −0.00984433 0.0230848i
\(190\) −331.630 432.376i −1.74542 2.27566i
\(191\) −275.862 + 159.269i −1.44430 + 0.833868i −0.998133 0.0610811i \(-0.980545\pi\)
−0.446169 + 0.894949i \(0.647212\pi\)
\(192\) −130.026 141.270i −0.677218 0.735782i
\(193\) −120.351 + 208.454i −0.623580 + 1.08007i 0.365234 + 0.930916i \(0.380989\pi\)
−0.988814 + 0.149156i \(0.952344\pi\)
\(194\) −3.41853 26.0083i −0.0176213 0.134063i
\(195\) 81.5521 + 155.344i 0.418216 + 0.796634i
\(196\) −189.223 + 50.6175i −0.965425 + 0.258253i
\(197\) 117.662 117.662i 0.597267 0.597267i −0.342317 0.939585i \(-0.611212\pi\)
0.939585 + 0.342317i \(0.111212\pi\)
\(198\) −64.0961 57.9457i −0.323717 0.292655i
\(199\) 38.2379i 0.192150i −0.995374 0.0960752i \(-0.969371\pi\)
0.995374 0.0960752i \(-0.0306289\pi\)
\(200\) 376.520 + 289.290i 1.88260 + 1.44645i
\(201\) −178.004 + 40.1100i −0.885591 + 0.199552i
\(202\) −108.135 83.0107i −0.535321 0.410944i
\(203\) 1.09043 + 4.06955i 0.00537159 + 0.0200471i
\(204\) −129.304 140.251i −0.633844 0.687503i
\(205\) −151.736 40.6575i −0.740175 0.198329i
\(206\) −46.9594 61.2252i −0.227958 0.297210i
\(207\) 117.054 169.660i 0.565479 0.819615i
\(208\) 98.4331 26.2869i 0.473236 0.126379i
\(209\) −123.324 + 71.2012i −0.590067 + 0.340676i
\(210\) 9.08604 3.34058i 0.0432669 0.0159075i
\(211\) −24.0736 89.8438i −0.114093 0.425800i 0.885125 0.465354i \(-0.154073\pi\)
−0.999217 + 0.0395540i \(0.987406\pi\)
\(212\) 172.844 + 0.0722428i 0.815302 + 0.000340768i
\(213\) −2.84218 + 70.7177i −0.0133436 + 0.332008i
\(214\) 42.4164 17.5591i 0.198208 0.0820517i
\(215\) −414.302 −1.92698
\(216\) −208.084 + 57.9398i −0.963352 + 0.268240i
\(217\) 4.45018i 0.0205078i
\(218\) −280.982 + 116.318i −1.28891 + 0.533568i
\(219\) −352.594 14.1710i −1.61002 0.0647076i
\(220\) 124.752 124.648i 0.567055 0.566581i
\(221\) 97.7761 26.1990i 0.442426 0.118548i
\(222\) 45.7381 16.8161i 0.206027 0.0757483i
\(223\) −24.4650 42.3747i −0.109709 0.190021i 0.805944 0.591992i \(-0.201658\pi\)
−0.915652 + 0.401971i \(0.868325\pi\)
\(224\) −0.727934 5.57421i −0.00324970 0.0248849i
\(225\) 482.551 229.101i 2.14467 1.01823i
\(226\) 163.309 + 212.921i 0.722607 + 0.942127i
\(227\) −7.19676 + 26.8587i −0.0317038 + 0.118320i −0.979964 0.199173i \(-0.936174\pi\)
0.948261 + 0.317493i \(0.102841\pi\)
\(228\) −14.4442 + 355.688i −0.0633517 + 1.56003i
\(229\) −173.916 + 46.6006i −0.759458 + 0.203496i −0.617709 0.786407i \(-0.711939\pi\)
−0.141749 + 0.989903i \(0.545272\pi\)
\(230\) 333.702 + 256.169i 1.45088 + 1.11378i
\(231\) −0.556117 2.46799i −0.00240743 0.0106839i
\(232\) 190.236 24.9237i 0.819982 0.107430i
\(233\) 287.618 1.23441 0.617205 0.786802i \(-0.288265\pi\)
0.617205 + 0.786802i \(0.288265\pi\)
\(234\) 24.0554 112.065i 0.102801 0.478911i
\(235\) 336.939 + 336.939i 1.43378 + 1.43378i
\(236\) 167.951 290.619i 0.711657 1.23144i
\(237\) 211.424 110.993i 0.892086 0.468325i
\(238\) −0.727866 5.53763i −0.00305826 0.0232674i
\(239\) 84.1372 + 48.5766i 0.352038 + 0.203249i 0.665583 0.746324i \(-0.268183\pi\)
−0.313544 + 0.949574i \(0.601516\pi\)
\(240\) −96.5483 430.148i −0.402285 1.79228i
\(241\) −141.026 244.264i −0.585169 1.01354i −0.994854 0.101316i \(-0.967695\pi\)
0.409685 0.912227i \(-0.365639\pi\)
\(242\) 119.232 + 155.454i 0.492695 + 0.642370i
\(243\) −48.4778 + 238.115i −0.199497 + 0.979898i
\(244\) 236.361 + 409.785i 0.968693 + 1.67945i
\(245\) −434.426 116.404i −1.77317 0.475119i
\(246\) 59.1356 + 83.8720i 0.240389 + 0.340943i
\(247\) −163.590 94.4487i −0.662307 0.382383i
\(248\) −200.907 26.5781i −0.810110 0.107170i
\(249\) −355.445 110.719i −1.42749 0.444655i
\(250\) 241.358 + 583.035i 0.965432 + 2.33214i
\(251\) −66.4969 + 66.4969i −0.264928 + 0.264928i −0.827053 0.562125i \(-0.809984\pi\)
0.562125 + 0.827053i \(0.309984\pi\)
\(252\) −5.95679 2.12428i −0.0236381 0.00842967i
\(253\) 77.7390 77.7390i 0.307269 0.307269i
\(254\) −206.956 85.7749i −0.814789 0.337696i
\(255\) −96.2825 427.292i −0.377579 1.67565i
\(256\) −256.000 0.427996i −0.999999 0.00167186i
\(257\) −108.901 62.8742i −0.423741 0.244647i 0.272936 0.962032i \(-0.412005\pi\)
−0.696676 + 0.717385i \(0.745339\pi\)
\(258\) 207.900 + 173.299i 0.805814 + 0.671700i
\(259\) 1.37818 + 0.369283i 0.00532117 + 0.00142580i
\(260\) 225.936 + 60.6406i 0.868984 + 0.233233i
\(261\) 72.4160 203.334i 0.277456 0.779057i
\(262\) −378.448 49.9040i −1.44446 0.190473i
\(263\) −155.750 269.767i −0.592205 1.02573i −0.993935 0.109971i \(-0.964924\pi\)
0.401729 0.915758i \(-0.368409\pi\)
\(264\) −114.741 + 10.3666i −0.434624 + 0.0392676i
\(265\) 343.696 + 198.433i 1.29697 + 0.748804i
\(266\) −6.34667 + 8.26757i −0.0238597 + 0.0310811i
\(267\) −7.68914 + 191.317i −0.0287983 + 0.716544i
\(268\) −121.733 + 210.644i −0.454226 + 0.785984i
\(269\) −7.50488 7.50488i −0.0278992 0.0278992i 0.693020 0.720919i \(-0.256280\pi\)
−0.720919 + 0.693020i \(0.756280\pi\)
\(270\) −480.339 123.478i −1.77903 0.457325i
\(271\) 89.9461 0.331905 0.165952 0.986134i \(-0.446930\pi\)
0.165952 + 0.986134i \(0.446930\pi\)
\(272\) −254.348 0.212617i −0.935103 0.000781681i
\(273\) 2.46635 2.27576i 0.00903424 0.00833612i
\(274\) −10.1103 76.9199i −0.0368991 0.280729i
\(275\) 275.205 73.7410i 1.00075 0.268149i
\(276\) −60.3011 268.132i −0.218482 0.971494i
\(277\) 62.9239 234.835i 0.227162 0.847780i −0.754365 0.656455i \(-0.772055\pi\)
0.981527 0.191325i \(-0.0612783\pi\)
\(278\) −110.373 14.5544i −0.397026 0.0523538i
\(279\) −129.472 + 187.660i −0.464059 + 0.672616i
\(280\) 4.94699 11.9220i 0.0176678 0.0425784i
\(281\) −40.1511 69.5437i −0.142886 0.247487i 0.785696 0.618613i \(-0.212305\pi\)
−0.928582 + 0.371126i \(0.878972\pi\)
\(282\) −28.1402 310.017i −0.0997880 1.09935i
\(283\) 125.011 33.4966i 0.441735 0.118362i −0.0310947 0.999516i \(-0.509899\pi\)
0.472829 + 0.881154i \(0.343233\pi\)
\(284\) 66.6992 + 66.7550i 0.234856 + 0.235053i
\(285\) −436.780 + 690.877i −1.53256 + 2.42413i
\(286\) 23.4067 56.4755i 0.0818417 0.197467i
\(287\) 3.00469i 0.0104693i
\(288\) −131.478 + 256.237i −0.456522 + 0.889712i
\(289\) 36.2932 0.125582
\(290\) 406.963 + 168.669i 1.40332 + 0.581619i
\(291\) −34.8389 + 18.2897i −0.119721 + 0.0628511i
\(292\) −332.837 + 332.558i −1.13985 + 1.13890i
\(293\) −5.53874 20.6709i −0.0189036 0.0705490i 0.955830 0.293921i \(-0.0949602\pi\)
−0.974733 + 0.223372i \(0.928294\pi\)
\(294\) 169.308 + 240.129i 0.575877 + 0.816766i
\(295\) 667.450 385.353i 2.26254 1.30628i
\(296\) 24.9026 60.0137i 0.0841304 0.202749i
\(297\) −48.3521 + 120.252i −0.162802 + 0.404890i
\(298\) −53.7402 + 407.539i −0.180336 + 1.36758i
\(299\) 140.866 + 37.7449i 0.471124 + 0.126237i
\(300\) 212.102 679.918i 0.707008 2.26639i
\(301\) 2.05101 + 7.65448i 0.00681399 + 0.0254302i
\(302\) 13.0898 1.72052i 0.0433436 0.00569708i
\(303\) −60.8137 + 195.232i −0.200705 + 0.644330i
\(304\) 335.341 + 335.903i 1.10310 + 1.10494i
\(305\) 1086.20i 3.56132i
\(306\) −130.417 + 254.693i −0.426199 + 0.832329i
\(307\) 117.087 117.087i 0.381390 0.381390i −0.490213 0.871603i \(-0.663081\pi\)
0.871603 + 0.490213i \(0.163081\pi\)
\(308\) −2.92054 1.68780i −0.00948226 0.00547987i
\(309\) −61.8488 + 97.8294i −0.200158 + 0.316600i
\(310\) −369.105 283.347i −1.19066 0.914021i
\(311\) 20.7760 35.9850i 0.0668037 0.115707i −0.830689 0.556737i \(-0.812053\pi\)
0.897493 + 0.441029i \(0.145387\pi\)
\(312\) −88.0111 124.937i −0.282087 0.400439i
\(313\) −258.796 + 149.416i −0.826825 + 0.477368i −0.852764 0.522296i \(-0.825076\pi\)
0.0259390 + 0.999664i \(0.491742\pi\)
\(314\) 34.3854 260.762i 0.109508 0.830452i
\(315\) −9.41078 11.0588i −0.0298755 0.0351073i
\(316\) 82.5324 307.501i 0.261178 0.973104i
\(317\) 76.0339 283.762i 0.239855 0.895149i −0.736046 0.676932i \(-0.763309\pi\)
0.975900 0.218217i \(-0.0700242\pi\)
\(318\) −89.4669 243.341i −0.281342 0.765222i
\(319\) 57.5625 99.7012i 0.180447 0.312543i
\(320\) −508.681 294.538i −1.58963 0.920432i
\(321\) −46.6973 50.6081i −0.145474 0.157658i
\(322\) 3.08089 7.43353i 0.00956797 0.0230855i
\(323\) 333.456 + 333.456i 1.03237 + 1.03237i
\(324\) 189.389 + 262.884i 0.584533 + 0.811370i
\(325\) 267.243 + 267.243i 0.822286 + 0.822286i
\(326\) 0.223119 0.0923645i 0.000684416 0.000283327i
\(327\) 309.341 + 335.247i 0.945996 + 1.02522i
\(328\) 135.649 + 17.9451i 0.413565 + 0.0547106i
\(329\) 4.55713 7.89318i 0.0138515 0.0239914i
\(330\) −240.107 111.014i −0.727597 0.336405i
\(331\) 38.6312 144.174i 0.116711 0.435570i −0.882699 0.469940i \(-0.844276\pi\)
0.999409 + 0.0343696i \(0.0109423\pi\)
\(332\) −429.988 + 248.014i −1.29514 + 0.747030i
\(333\) −47.3728 55.6688i −0.142261 0.167174i
\(334\) 280.322 215.006i 0.839288 0.643730i
\(335\) −483.775 + 279.307i −1.44410 + 0.833754i
\(336\) −7.46929 + 3.91325i −0.0222300 + 0.0116466i
\(337\) 190.091 329.247i 0.564068 0.976994i −0.433068 0.901361i \(-0.642569\pi\)
0.997136 0.0756331i \(-0.0240978\pi\)
\(338\) −254.715 + 33.4797i −0.753594 + 0.0990523i
\(339\) 215.089 340.218i 0.634482 1.00359i
\(340\) −505.643 292.215i −1.48718 0.859456i
\(341\) −85.9864 + 85.9864i −0.252159 + 0.252159i
\(342\) 508.167 163.987i 1.48587 0.479493i
\(343\) 17.2105i 0.0501765i
\(344\) 357.817 46.8793i 1.04017 0.136277i
\(345\) 187.670 602.482i 0.543970 1.74632i
\(346\) −37.4097 + 48.7322i −0.108121 + 0.140845i
\(347\) −63.5936 237.334i −0.183267 0.683961i −0.994995 0.0999256i \(-0.968140\pi\)
0.811728 0.584036i \(-0.198527\pi\)
\(348\) −133.665 254.869i −0.384094 0.732382i
\(349\) 219.123 + 58.7139i 0.627861 + 0.168235i 0.558699 0.829371i \(-0.311301\pi\)
0.0691619 + 0.997605i \(0.477967\pi\)
\(350\) 16.5467 12.6913i 0.0472764 0.0362608i
\(351\) −170.214 + 24.2113i −0.484939 + 0.0689780i
\(352\) −93.6396 + 121.770i −0.266022 + 0.345937i
\(353\) 459.864 265.502i 1.30273 0.752131i 0.321858 0.946788i \(-0.395693\pi\)
0.980871 + 0.194657i \(0.0623593\pi\)
\(354\) −496.122 85.8153i −1.40147 0.242416i
\(355\) 56.0794 + 209.291i 0.157970 + 0.589552i
\(356\) 180.446 + 180.597i 0.506870 + 0.507294i
\(357\) −7.41784 + 3.89420i −0.0207783 + 0.0109081i
\(358\) 137.673 + 332.569i 0.384562 + 0.928963i
\(359\) 202.774 0.564831 0.282415 0.959292i \(-0.408864\pi\)
0.282415 + 0.959292i \(0.408864\pi\)
\(360\) −555.464 + 358.810i −1.54295 + 0.996695i
\(361\) 519.017i 1.43772i
\(362\) −60.7381 146.721i −0.167785 0.405308i
\(363\) 157.037 248.393i 0.432608 0.684279i
\(364\) 0.00187019 4.47451i 5.13789e−6 0.0122926i
\(365\) −1043.51 + 279.609i −2.85894 + 0.766051i
\(366\) 454.348 545.065i 1.24139 1.48925i
\(367\) −278.651 482.637i −0.759266 1.31509i −0.943225 0.332153i \(-0.892225\pi\)
0.183959 0.982934i \(-0.441108\pi\)
\(368\) −317.192 183.485i −0.861936 0.498600i
\(369\) 87.4177 126.705i 0.236904 0.343373i
\(370\) 118.379 90.7960i 0.319943 0.245395i
\(371\) 1.96470 7.33235i 0.00529568 0.0197638i
\(372\) 66.6985 + 296.579i 0.179297 + 0.797255i
\(373\) 409.025 109.598i 1.09658 0.293828i 0.335210 0.942144i \(-0.391193\pi\)
0.761372 + 0.648316i \(0.224526\pi\)
\(374\) −92.9342 + 121.062i −0.248487 + 0.323695i
\(375\) 695.633 641.878i 1.85502 1.71167i
\(376\) −329.127 252.876i −0.875339 0.672543i
\(377\) 152.714 0.405076
\(378\) 0.0966066 + 9.48585i 0.000255573 + 0.0250949i
\(379\) 97.4851 + 97.4851i 0.257217 + 0.257217i 0.823921 0.566704i \(-0.191782\pi\)
−0.566704 + 0.823921i \(0.691782\pi\)
\(380\) 281.626 + 1052.80i 0.741122 + 2.77054i
\(381\) −13.4948 + 335.770i −0.0354194 + 0.881287i
\(382\) 631.642 83.0230i 1.65351 0.217338i
\(383\) −228.390 131.861i −0.596320 0.344285i 0.171273 0.985224i \(-0.445212\pi\)
−0.767592 + 0.640938i \(0.778545\pi\)
\(384\) 132.058 + 360.578i 0.343900 + 0.939006i
\(385\) −3.87255 6.70745i −0.0100586 0.0174219i
\(386\) 381.984 292.980i 0.989597 0.759016i
\(387\) 136.208 382.453i 0.351959 0.988252i
\(388\) −13.5999 + 50.6706i −0.0350512 + 0.130594i
\(389\) 680.629 + 182.374i 1.74969 + 0.468828i 0.984560 0.175049i \(-0.0560085\pi\)
0.765129 + 0.643877i \(0.222675\pi\)
\(390\) −31.7206 349.462i −0.0813348 0.896056i
\(391\) −315.298 182.037i −0.806388 0.465569i
\(392\) 388.369 + 51.3775i 0.990738 + 0.131065i
\(393\) 125.866 + 558.580i 0.320270 + 1.42132i
\(394\) −307.491 + 127.292i −0.780435 + 0.323076i
\(395\) 516.923 516.923i 1.30867 1.30867i
\(396\) 74.0517 + 156.142i 0.186999 + 0.394298i
\(397\) 497.096 497.096i 1.25213 1.25213i 0.297367 0.954763i \(-0.403891\pi\)
0.954763 0.297367i \(-0.0961086\pi\)
\(398\) −29.2808 + 70.6484i −0.0735699 + 0.177508i
\(399\) 14.9267 + 4.64957i 0.0374102 + 0.0116531i
\(400\) −474.135 822.813i −1.18534 2.05703i
\(401\) −138.667 80.0593i −0.345802 0.199649i 0.317032 0.948415i \(-0.397314\pi\)
−0.662835 + 0.748766i \(0.730647\pi\)
\(402\) 359.594 + 62.1998i 0.894513 + 0.154726i
\(403\) −155.811 41.7493i −0.386627 0.103596i
\(404\) 136.224 + 236.175i 0.337189 + 0.584592i
\(405\) 75.1012 + 740.134i 0.185435 + 1.82749i
\(406\) 1.10159 8.35391i 0.00271327 0.0205761i
\(407\) −19.4940 33.7645i −0.0478967 0.0829595i
\(408\) 131.505 + 358.142i 0.322316 + 0.877799i
\(409\) −146.314 84.4742i −0.357735 0.206538i 0.310352 0.950622i \(-0.399553\pi\)
−0.668087 + 0.744083i \(0.732887\pi\)
\(410\) 249.213 + 191.311i 0.607837 + 0.466612i
\(411\) −103.037 + 54.0920i −0.250697 + 0.131611i
\(412\) 39.8788 + 149.079i 0.0967933 + 0.361842i
\(413\) −10.4239 10.4239i −0.0252394 0.0252394i
\(414\) −346.187 + 223.830i −0.836200 + 0.540652i
\(415\) −1139.75 −2.74639
\(416\) −201.994 26.8078i −0.485563 0.0644418i
\(417\) 36.7085 + 162.908i 0.0880299 + 0.390667i
\(418\) 282.376 37.1155i 0.675541 0.0887930i
\(419\) −291.258 + 78.0423i −0.695126 + 0.186258i −0.589046 0.808099i \(-0.700497\pi\)
−0.106080 + 0.994358i \(0.533830\pi\)
\(420\) −19.3454 0.785602i −0.0460605 0.00187048i
\(421\) −145.324 + 542.357i −0.345188 + 1.28826i 0.547204 + 0.836999i \(0.315692\pi\)
−0.892392 + 0.451261i \(0.850974\pi\)
\(422\) −24.3198 + 184.430i −0.0576300 + 0.437037i
\(423\) −421.812 + 200.264i −0.997191 + 0.473437i
\(424\) −319.291 132.489i −0.753045 0.312475i
\(425\) −471.758 817.109i −1.11002 1.92261i
\(426\) 59.4035 128.482i 0.139445 0.301600i
\(427\) 20.0683 5.37727i 0.0469983 0.0125931i
\(428\) −91.8144 0.0383753i −0.214520 8.96618e-5i
\(429\) −91.6269 3.68253i −0.213582 0.00858400i
\(430\) 765.463 + 317.253i 1.78015 + 0.737797i
\(431\) 245.416i 0.569410i 0.958615 + 0.284705i \(0.0918956\pi\)
−0.958615 + 0.284705i \(0.908104\pi\)
\(432\) 428.824 + 52.2915i 0.992647 + 0.121045i
\(433\) −210.321 −0.485731 −0.242865 0.970060i \(-0.578087\pi\)
−0.242865 + 0.970060i \(0.578087\pi\)
\(434\) −3.40774 + 8.22216i −0.00785194 + 0.0189451i
\(435\) 26.5364 660.265i 0.0610033 1.51785i
\(436\) 608.214 + 0.254212i 1.39499 + 0.000583056i
\(437\) 175.842 + 656.253i 0.402385 + 1.50172i
\(438\) 640.602 + 296.182i 1.46256 + 0.676216i
\(439\) 263.157 151.934i 0.599446 0.346090i −0.169378 0.985551i \(-0.554176\pi\)
0.768824 + 0.639461i \(0.220842\pi\)
\(440\) −325.941 + 134.770i −0.740776 + 0.306295i
\(441\) 250.280 362.761i 0.567529 0.822588i
\(442\) −200.713 26.4670i −0.454102 0.0598802i
\(443\) −288.312 77.2530i −0.650818 0.174386i −0.0817191 0.996655i \(-0.526041\pi\)
−0.569099 + 0.822269i \(0.692708\pi\)
\(444\) −97.3826 3.95463i −0.219330 0.00890682i
\(445\) 151.715 + 566.209i 0.340933 + 1.27238i
\(446\) 12.7530 + 97.0256i 0.0285943 + 0.217546i
\(447\) 601.519 135.541i 1.34568 0.303225i
\(448\) −2.92354 + 10.8563i −0.00652575 + 0.0242329i
\(449\) 236.230i 0.526124i −0.964779 0.263062i \(-0.915268\pi\)
0.964779 0.263062i \(-0.0847323\pi\)
\(450\) −1067.00 + 53.7717i −2.37110 + 0.119493i
\(451\) 58.0566 58.0566i 0.128729 0.128729i
\(452\) −138.685 518.447i −0.306826 1.14701i
\(453\) −9.20506 17.5342i −0.0203202 0.0387068i
\(454\) 33.8639 44.1131i 0.0745900 0.0971655i
\(455\) 5.13695 8.89746i 0.0112900 0.0195548i
\(456\) 299.056 646.108i 0.655825 1.41690i
\(457\) −239.630 + 138.351i −0.524355 + 0.302736i −0.738715 0.674018i \(-0.764567\pi\)
0.214360 + 0.976755i \(0.431234\pi\)
\(458\) 357.011 + 47.0773i 0.779501 + 0.102789i
\(459\) 426.100 + 51.5979i 0.928322 + 0.112414i
\(460\) −420.385 728.831i −0.913880 1.58442i
\(461\) 12.4615 46.5071i 0.0270316 0.100883i −0.951092 0.308907i \(-0.900037\pi\)
0.978124 + 0.208024i \(0.0667033\pi\)
\(462\) −0.862389 + 4.98570i −0.00186664 + 0.0107916i
\(463\) −419.804 + 727.122i −0.906704 + 1.57046i −0.0880912 + 0.996112i \(0.528077\pi\)
−0.818613 + 0.574345i \(0.805257\pi\)
\(464\) −370.565 99.6246i −0.798631 0.214708i
\(465\) −207.580 + 666.400i −0.446408 + 1.43312i
\(466\) −531.402 220.244i −1.14035 0.472627i
\(467\) −537.958 537.958i −1.15195 1.15195i −0.986162 0.165783i \(-0.946985\pi\)
−0.165783 0.986162i \(-0.553015\pi\)
\(468\) −130.259 + 188.631i −0.278331 + 0.403058i
\(469\) 7.55532 + 7.55532i 0.0161094 + 0.0161094i
\(470\) −364.516 880.540i −0.775566 1.87349i
\(471\) −384.879 + 86.7255i −0.817152 + 0.184131i
\(472\) −532.849 + 408.339i −1.12892 + 0.865124i
\(473\) 108.270 187.529i 0.228901 0.396468i
\(474\) −475.621 + 43.1720i −1.00342 + 0.0910802i
\(475\) −455.704 + 1700.71i −0.959377 + 3.58044i
\(476\) −2.89565 + 10.7887i −0.00608331 + 0.0226653i
\(477\) −296.175 + 252.038i −0.620912 + 0.528381i
\(478\) −118.254 154.178i −0.247393 0.322549i
\(479\) 694.558 401.003i 1.45002 0.837167i 0.451534 0.892254i \(-0.350877\pi\)
0.998482 + 0.0550867i \(0.0175435\pi\)
\(480\) −151.004 + 868.673i −0.314593 + 1.80974i
\(481\) 25.8588 44.7888i 0.0537605 0.0931159i
\(482\) 73.5134 + 559.293i 0.152517 + 1.16036i
\(483\) −12.0603 0.484710i −0.0249696 0.00100354i
\(484\) −101.254 378.518i −0.209203 0.782062i
\(485\) −85.1797 + 85.1797i −0.175628 + 0.175628i
\(486\) 271.905 402.820i 0.559475 0.828847i
\(487\) 29.2261i 0.0600125i −0.999550 0.0300062i \(-0.990447\pi\)
0.999550 0.0300062i \(-0.00955271\pi\)
\(488\) −122.907 938.113i −0.251858 1.92236i
\(489\) −0.245638 0.266209i −0.000502327 0.000544395i
\(490\) 713.508 + 547.731i 1.45614 + 1.11782i
\(491\) −126.657 472.690i −0.257957 0.962710i −0.966421 0.256963i \(-0.917278\pi\)
0.708464 0.705747i \(-0.249388\pi\)
\(492\) −45.0337 200.245i −0.0915319 0.407002i
\(493\) −368.256 98.6740i −0.746970 0.200150i
\(494\) 229.924 + 299.773i 0.465434 + 0.606827i
\(495\) −31.8432 + 395.513i −0.0643297 + 0.799016i
\(496\) 350.844 + 202.951i 0.707346 + 0.409175i
\(497\) 3.58916 2.07220i 0.00722165 0.00416942i
\(498\) 571.937 + 476.748i 1.14847 + 0.957325i
\(499\) 114.690 + 428.028i 0.229839 + 0.857771i 0.980408 + 0.196979i \(0.0631130\pi\)
−0.750569 + 0.660792i \(0.770220\pi\)
\(500\) 0.527487 1262.03i 0.00105497 2.52407i
\(501\) −447.916 283.177i −0.894044 0.565224i
\(502\) 173.780 71.9394i 0.346175 0.143306i
\(503\) −494.665 −0.983429 −0.491715 0.870756i \(-0.663630\pi\)
−0.491715 + 0.870756i \(0.663630\pi\)
\(504\) 9.37909 + 8.48624i 0.0186093 + 0.0168378i
\(505\) 626.020i 1.23964i
\(506\) −203.159 + 84.1016i −0.401501 + 0.166209i
\(507\) 179.122 + 341.199i 0.353297 + 0.672976i
\(508\) 316.690 + 316.955i 0.623406 + 0.623927i
\(509\) −446.618 + 119.671i −0.877443 + 0.235110i −0.669303 0.742989i \(-0.733407\pi\)
−0.208139 + 0.978099i \(0.566741\pi\)
\(510\) −149.308 + 863.193i −0.292762 + 1.69253i
\(511\) 10.3319 + 17.8954i 0.0202190 + 0.0350203i
\(512\) 472.657 + 196.823i 0.923158 + 0.384420i
\(513\) −494.169 630.340i −0.963293 1.22873i
\(514\) 153.060 + 199.558i 0.297782 + 0.388245i
\(515\) −91.7086 + 342.261i −0.178075 + 0.664585i
\(516\) −251.412 479.386i −0.487232 0.929043i
\(517\) −240.565 + 64.4591i −0.465309 + 0.124679i
\(518\) −2.26355 1.73764i −0.00436979 0.00335451i
\(519\) 87.9835 + 27.4064i 0.169525 + 0.0528061i
\(520\) −371.003 285.050i −0.713468 0.548174i
\(521\) 160.785 0.308608 0.154304 0.988023i \(-0.450686\pi\)
0.154304 + 0.988023i \(0.450686\pi\)
\(522\) −289.499 + 320.227i −0.554596 + 0.613461i
\(523\) −136.570 136.570i −0.261129 0.261129i 0.564384 0.825512i \(-0.309114\pi\)
−0.825512 + 0.564384i \(0.809114\pi\)
\(524\) 661.005 + 382.000i 1.26146 + 0.729008i
\(525\) −26.4394 16.7153i −0.0503607 0.0318386i
\(526\) 81.1887 + 617.687i 0.154351 + 1.17431i
\(527\) 348.748 + 201.350i 0.661761 + 0.382068i
\(528\) 219.933 + 68.7097i 0.416540 + 0.130132i
\(529\) 2.23883 + 3.87777i 0.00423220 + 0.00733038i
\(530\) −483.062 629.811i −0.911438 1.18832i
\(531\) 136.295 + 742.833i 0.256676 + 1.39893i
\(532\) 18.0570 10.4152i 0.0339418 0.0195774i
\(533\) 105.201 + 28.1885i 0.197375 + 0.0528864i
\(534\) 160.708 347.589i 0.300952 0.650917i
\(535\) −182.571 105.407i −0.341254 0.197023i
\(536\) 386.214 295.968i 0.720549 0.552179i
\(537\) 396.796 366.134i 0.738913 0.681813i
\(538\) 8.11912 + 19.6129i 0.0150913 + 0.0364552i
\(539\) 166.218 166.218i 0.308383 0.308383i
\(540\) 792.921 + 595.959i 1.46837 + 1.10363i
\(541\) 26.3367 26.3367i 0.0486815 0.0486815i −0.682347 0.731028i \(-0.739041\pi\)
0.731028 + 0.682347i \(0.239041\pi\)
\(542\) −166.184 68.8765i −0.306613 0.127078i
\(543\) −175.057 + 161.529i −0.322388 + 0.297476i
\(544\) 469.770 + 195.161i 0.863548 + 0.358751i
\(545\) 1209.42 + 698.258i 2.21912 + 1.28121i
\(546\) −6.29949 + 2.31608i −0.0115375 + 0.00424190i
\(547\) −92.2354 24.7144i −0.168621 0.0451817i 0.173521 0.984830i \(-0.444486\pi\)
−0.342142 + 0.939648i \(0.611152\pi\)
\(548\) −40.2218 + 149.859i −0.0733974 + 0.273466i
\(549\) −1002.70 357.106i −1.82642 0.650467i
\(550\) −564.936 74.4954i −1.02716 0.135446i
\(551\) 355.724 + 616.132i 0.645597 + 1.11821i
\(552\) −93.9110 + 541.577i −0.170129 + 0.981118i
\(553\) −12.1095 6.99144i −0.0218979 0.0126427i
\(554\) −296.084 + 385.697i −0.534447 + 0.696204i
\(555\) −189.153 119.584i −0.340816 0.215468i
\(556\) 192.780 + 111.409i 0.346727 + 0.200376i
\(557\) 714.172 + 714.172i 1.28218 + 1.28218i 0.939427 + 0.342749i \(0.111358\pi\)
0.342749 + 0.939427i \(0.388642\pi\)
\(558\) 382.914 247.576i 0.686226 0.443685i
\(559\) 287.242 0.513849
\(560\) −18.2693 + 18.2388i −0.0326238 + 0.0325693i
\(561\) 218.571 + 68.0836i 0.389610 + 0.121361i
\(562\) 20.9298 + 159.235i 0.0372416 + 0.283336i
\(563\) 221.880 59.4525i 0.394103 0.105599i −0.0563249 0.998412i \(-0.517938\pi\)
0.450427 + 0.892813i \(0.351272\pi\)
\(564\) −185.405 + 594.336i −0.328732 + 1.05379i
\(565\) 318.932 1190.27i 0.564481 2.10667i
\(566\) −256.620 33.8393i −0.453393 0.0597867i
\(567\) 13.3027 5.05160i 0.0234615 0.00890935i
\(568\) −72.1156 174.412i −0.126964 0.307063i
\(569\) 425.161 + 736.400i 0.747207 + 1.29420i 0.949157 + 0.314804i \(0.101939\pi\)
−0.201950 + 0.979396i \(0.564728\pi\)
\(570\) 1336.03 941.998i 2.34392 1.65263i
\(571\) −346.248 + 92.7770i −0.606389 + 0.162482i −0.548933 0.835866i \(-0.684966\pi\)
−0.0574565 + 0.998348i \(0.518299\pi\)
\(572\) −86.4925 + 86.4203i −0.151211 + 0.151084i
\(573\) −444.187 846.105i −0.775195 1.47662i
\(574\) 2.30085 5.55146i 0.00400845 0.00967154i
\(575\) 1359.32i 2.36404i
\(576\) 439.133 372.744i 0.762384 0.647124i
\(577\) −1019.52 −1.76693 −0.883465 0.468498i \(-0.844795\pi\)
−0.883465 + 0.468498i \(0.844795\pi\)
\(578\) −67.0554 27.7917i −0.116013 0.0480825i
\(579\) −610.358 385.875i −1.05416 0.666450i
\(580\) −622.746 623.267i −1.07370 1.07460i
\(581\) 5.64238 + 21.0576i 0.00971149 + 0.0362438i
\(582\) 78.3738 7.11397i 0.134663 0.0122233i
\(583\) −179.637 + 103.714i −0.308126 + 0.177897i
\(584\) 869.606 359.564i 1.48905 0.615692i
\(585\) −475.480 + 225.744i −0.812787 + 0.385887i
\(586\) −5.59540 + 42.4328i −0.00954847 + 0.0724109i
\(587\) 15.4023 + 4.12702i 0.0262389 + 0.00703071i 0.271915 0.962321i \(-0.412343\pi\)
−0.245676 + 0.969352i \(0.579010\pi\)
\(588\) −128.933 573.310i −0.219275 0.975018i
\(589\) −194.498 725.875i −0.330217 1.23239i
\(590\) −1528.27 + 200.875i −2.59028 + 0.340466i
\(591\) 338.525 + 366.876i 0.572801 + 0.620771i
\(592\) −91.9657 + 91.8121i −0.155347 + 0.155088i
\(593\) 95.3011i 0.160710i 0.996766 + 0.0803550i \(0.0256054\pi\)
−0.996766 + 0.0803550i \(0.974395\pi\)
\(594\) 181.419 185.152i 0.305419 0.311704i
\(595\) −18.1363 + 18.1363i −0.0304811 + 0.0304811i
\(596\) 411.364 711.817i 0.690209 1.19432i
\(597\) 114.621 + 4.60669i 0.191995 + 0.00771640i
\(598\) −231.361 177.606i −0.386891 0.297000i
\(599\) 80.2810 139.051i 0.134025 0.232138i −0.791200 0.611558i \(-0.790543\pi\)
0.925225 + 0.379420i \(0.123876\pi\)
\(600\) −912.530 + 1093.80i −1.52088 + 1.82300i
\(601\) −610.116 + 352.250i −1.01517 + 0.586107i −0.912700 0.408629i \(-0.866007\pi\)
−0.102467 + 0.994736i \(0.532674\pi\)
\(602\) 2.07199 15.7130i 0.00344185 0.0261013i
\(603\) −98.7879 538.413i −0.163827 0.892891i
\(604\) −25.5021 6.84470i −0.0422221 0.0113323i
\(605\) 232.852 869.016i 0.384880 1.43639i
\(606\) 261.859 314.142i 0.432110 0.518387i
\(607\) 409.614 709.472i 0.674817 1.16882i −0.301706 0.953401i \(-0.597556\pi\)
0.976522 0.215416i \(-0.0691107\pi\)
\(608\) −362.358 877.402i −0.595984 1.44310i
\(609\) −12.3302 + 2.77839i −0.0202466 + 0.00456221i
\(610\) 831.762 2006.86i 1.36354 3.28994i
\(611\) −233.605 233.605i −0.382332 0.382332i
\(612\) 435.990 370.703i 0.712402 0.605724i
\(613\) 457.259 + 457.259i 0.745937 + 0.745937i 0.973713 0.227776i \(-0.0731455\pi\)
−0.227776 + 0.973713i \(0.573145\pi\)
\(614\) −305.989 + 126.670i −0.498353 + 0.206303i
\(615\) 140.154 449.942i 0.227893 0.731613i
\(616\) 4.10354 + 5.35479i 0.00666160 + 0.00869284i
\(617\) 31.0475 53.7759i 0.0503201 0.0871570i −0.839768 0.542945i \(-0.817309\pi\)
0.890088 + 0.455788i \(0.150643\pi\)
\(618\) 189.185 133.389i 0.306125 0.215839i
\(619\) 77.6672 289.858i 0.125472 0.468268i −0.874384 0.485235i \(-0.838734\pi\)
0.999856 + 0.0169666i \(0.00540090\pi\)
\(620\) 464.984 + 806.154i 0.749974 + 1.30025i
\(621\) 494.469 + 371.319i 0.796246 + 0.597937i
\(622\) −65.9412 + 50.5766i −0.106015 + 0.0813129i
\(623\) 9.70999 5.60607i 0.0155859 0.00899850i
\(624\) 66.9384 + 298.228i 0.107273 + 0.477930i
\(625\) 706.966 1224.50i 1.13115 1.95920i
\(626\) 592.568 77.8871i 0.946594 0.124420i
\(627\) −198.574 378.252i −0.316705 0.603272i
\(628\) −263.210 + 455.453i −0.419123 + 0.725243i
\(629\) −91.2959 + 91.2959i −0.145145 + 0.145145i
\(630\) 8.91904 + 27.6386i 0.0141572 + 0.0438708i
\(631\) 76.8052i 0.121720i −0.998146 0.0608599i \(-0.980616\pi\)
0.998146 0.0608599i \(-0.0193843\pi\)
\(632\) −387.956 + 504.939i −0.613855 + 0.798954i
\(633\) 272.214 61.3386i 0.430038 0.0969014i
\(634\) −357.772 + 466.056i −0.564309 + 0.735104i
\(635\) 266.267 + 993.722i 0.419318 + 1.56492i
\(636\) −21.0398 + 518.105i −0.0330815 + 0.814631i
\(637\) 301.194 + 80.7047i 0.472832 + 0.126695i
\(638\) −182.699 + 140.129i −0.286362 + 0.219638i
\(639\) −211.640 17.0393i −0.331204 0.0266656i
\(640\) 714.295 + 933.712i 1.11609 + 1.45893i
\(641\) −174.004 + 100.461i −0.271457 + 0.156726i −0.629549 0.776960i \(-0.716760\pi\)
0.358093 + 0.933686i \(0.383427\pi\)
\(642\) 47.5246 + 129.262i 0.0740259 + 0.201343i
\(643\) 196.502 + 733.357i 0.305602 + 1.14052i 0.932426 + 0.361362i \(0.117688\pi\)
−0.626823 + 0.779162i \(0.715645\pi\)
\(644\) −11.3845 + 11.3750i −0.0176778 + 0.0176630i
\(645\) 49.9127 1241.90i 0.0773841 1.92543i
\(646\) −360.748 871.439i −0.558434 1.34898i
\(647\) −625.588 −0.966905 −0.483453 0.875371i \(-0.660617\pi\)
−0.483453 + 0.875371i \(0.660617\pi\)
\(648\) −148.610 630.729i −0.229337 0.973347i
\(649\) 402.819i 0.620677i
\(650\) −289.116 698.400i −0.444794 1.07446i
\(651\) 13.3398 + 0.536133i 0.0204912 + 0.000823553i
\(652\) −0.482964 0.000201862i −0.000740742 3.09604e-7i
\(653\) 717.588 192.277i 1.09891 0.294452i 0.336589 0.941651i \(-0.390727\pi\)
0.762321 + 0.647199i \(0.224060\pi\)
\(654\) −314.821 856.281i −0.481378 1.30930i
\(655\) 876.474 + 1518.10i 1.33813 + 2.31770i
\(656\) −236.884 137.029i −0.361103 0.208886i
\(657\) 84.9572 1055.22i 0.129311 1.60612i
\(658\) −14.4640 + 11.0938i −0.0219817 + 0.0168599i
\(659\) −147.895 + 551.951i −0.224423 + 0.837558i 0.758212 + 0.652008i \(0.226073\pi\)
−0.982635 + 0.185550i \(0.940593\pi\)
\(660\) 358.613 + 388.971i 0.543352 + 0.589350i
\(661\) −821.329 + 220.074i −1.24255 + 0.332942i −0.819456 0.573142i \(-0.805724\pi\)
−0.423099 + 0.906084i \(0.639058\pi\)
\(662\) −181.776 + 236.793i −0.274587 + 0.357694i
\(663\) 66.7541 + 296.248i 0.100685 + 0.446829i
\(664\) 984.362 128.966i 1.48247 0.194226i
\(665\) 47.8631 0.0719745
\(666\) 44.8974 + 139.129i 0.0674135 + 0.208903i
\(667\) −388.387 388.387i −0.582290 0.582290i
\(668\) −682.564 + 182.587i −1.02180 + 0.273334i
\(669\) 129.969 68.2309i 0.194273 0.101989i
\(670\) 1107.70 145.596i 1.65329 0.217308i
\(671\) −491.658 283.859i −0.732724 0.423039i
\(672\) 16.7968 1.51049i 0.0249953 0.00224775i
\(673\) 381.702 + 661.126i 0.567164 + 0.982357i 0.996845 + 0.0793763i \(0.0252929\pi\)
−0.429680 + 0.902981i \(0.641374\pi\)
\(674\) −603.334 + 462.754i −0.895154 + 0.686579i
\(675\) 628.613 + 1474.09i 0.931279 + 2.18383i
\(676\) 496.248 + 133.192i 0.734095 + 0.197029i
\(677\) 198.603 + 53.2156i 0.293358 + 0.0786050i 0.402496 0.915422i \(-0.368143\pi\)
−0.109139 + 0.994027i \(0.534809\pi\)
\(678\) −657.922 + 463.881i −0.970386 + 0.684190i
\(679\) 1.99543 + 1.15206i 0.00293878 + 0.00169671i
\(680\) 710.461 + 927.093i 1.04480 + 1.36337i
\(681\) −79.6441 24.8087i −0.116952 0.0364298i
\(682\) 224.713 93.0240i 0.329491 0.136399i
\(683\) 866.002 866.002i 1.26794 1.26794i 0.320788 0.947151i \(-0.396052\pi\)
0.947151 0.320788i \(-0.103948\pi\)
\(684\) −1064.46 86.1489i −1.55623 0.125949i
\(685\) −251.920 + 251.920i −0.367767 + 0.367767i
\(686\) 13.1790 31.7982i 0.0192114 0.0463530i
\(687\) −118.737 526.941i −0.172834 0.767017i
\(688\) −697.001 187.385i −1.01308 0.272362i
\(689\) −238.290 137.577i −0.345849 0.199676i
\(690\) −808.090 + 969.436i −1.17115 + 1.40498i
\(691\) 209.005 + 56.0026i 0.302467 + 0.0810457i 0.406860 0.913490i \(-0.366624\pi\)
−0.104394 + 0.994536i \(0.533290\pi\)
\(692\) 106.435 61.3910i 0.153808 0.0887153i
\(693\) 7.46500 1.36968i 0.0107720 0.00197645i
\(694\) −64.2441 + 487.196i −0.0925708 + 0.702011i
\(695\) 255.621 + 442.749i 0.367800 + 0.637048i
\(696\) 51.7922 + 573.250i 0.0744141 + 0.823635i
\(697\) −235.469 135.948i −0.337832 0.195047i
\(698\) −359.892 276.274i −0.515604 0.395808i
\(699\) −34.6506 + 862.157i −0.0495716 + 1.23342i
\(700\) −40.2901 + 10.7777i −0.0575573 + 0.0153967i
\(701\) 182.729 + 182.729i 0.260669 + 0.260669i 0.825326 0.564657i \(-0.190991\pi\)
−0.564657 + 0.825326i \(0.690991\pi\)
\(702\) 333.027 + 85.6090i 0.474397 + 0.121950i
\(703\) 240.937 0.342727
\(704\) 266.254 153.277i 0.378202 0.217723i
\(705\) −1050.59 + 969.409i −1.49020 + 1.37505i
\(706\) −1052.95 + 138.400i −1.49143 + 0.196034i
\(707\) 11.5661 3.09913i 0.0163594 0.00438350i
\(708\) 850.920 + 538.459i 1.20187 + 0.760535i
\(709\) 144.701 540.033i 0.204092 0.761682i −0.785632 0.618694i \(-0.787662\pi\)
0.989724 0.142988i \(-0.0456712\pi\)
\(710\) 56.6531 429.629i 0.0797931 0.605111i
\(711\) 307.240 + 647.133i 0.432123 + 0.910173i
\(712\) −195.099 471.847i −0.274015 0.662706i
\(713\) 290.085 + 502.441i 0.406851 + 0.704686i
\(714\) 16.6872 1.51469i 0.0233714 0.00212142i
\(715\) −271.172 + 72.6604i −0.379262 + 0.101623i
\(716\) 0.300884 719.878i 0.000420229 1.00542i
\(717\) −155.749 + 246.356i −0.217223 + 0.343592i
\(718\) −374.646 155.275i −0.521791 0.216261i
\(719\) 459.316i 0.638827i 0.947615 + 0.319413i \(0.103486\pi\)
−0.947615 + 0.319413i \(0.896514\pi\)
\(720\) 1301.03 237.590i 1.80699 0.329986i
\(721\) 6.77750 0.00940013
\(722\) −397.439 + 958.935i −0.550469 + 1.32817i
\(723\) 749.191 393.309i 1.03622 0.543995i
\(724\) −0.132743 + 317.593i −0.000183346 + 0.438664i
\(725\) −368.413 1374.94i −0.508156 1.89646i
\(726\) −480.349 + 338.680i −0.661638 + 0.466501i
\(727\) −471.423 + 272.176i −0.648449 + 0.374382i −0.787862 0.615852i \(-0.788812\pi\)
0.139413 + 0.990234i \(0.455479\pi\)
\(728\) −3.42982 + 8.26567i −0.00471130 + 0.0113539i
\(729\) −707.929 174.003i −0.971097 0.238687i
\(730\) 2142.11 + 282.469i 2.93439 + 0.386944i
\(731\) −692.658 185.597i −0.947549 0.253895i
\(732\) −1256.84 + 659.143i −1.71699 + 0.900469i
\(733\) −80.6004 300.805i −0.109960 0.410375i 0.888901 0.458099i \(-0.151470\pi\)
−0.998861 + 0.0477247i \(0.984803\pi\)
\(734\) 145.254 + 1105.10i 0.197894 + 1.50558i
\(735\) 401.268 1288.20i 0.545943 1.75266i
\(736\) 445.540 + 581.897i 0.605354 + 0.790622i
\(737\) 291.968i 0.396157i
\(738\) −258.537 + 167.159i −0.350322 + 0.226503i
\(739\) 881.931 881.931i 1.19341 1.19341i 0.217309 0.976103i \(-0.430272\pi\)
0.976103 0.217309i \(-0.0697280\pi\)
\(740\) −288.244 + 77.1056i −0.389519 + 0.104197i
\(741\) 302.826 478.995i 0.408672 0.646417i
\(742\) −9.24475 + 12.0428i −0.0124592 + 0.0162302i
\(743\) 404.698 700.957i 0.544681 0.943414i −0.453946 0.891029i \(-0.649984\pi\)
0.998627 0.0523854i \(-0.0166824\pi\)
\(744\) 103.874 599.033i 0.139616 0.805152i
\(745\) 1634.79 943.848i 2.19435 1.26691i
\(746\) −839.639 110.719i −1.12552 0.148417i
\(747\) 374.712 1052.14i 0.501622 1.40848i
\(748\) 264.409 152.509i 0.353487 0.203889i
\(749\) −1.04364 + 3.89493i −0.00139338 + 0.00520018i
\(750\) −1776.77 + 653.250i −2.36903 + 0.870999i
\(751\) −302.047 + 523.161i −0.402193 + 0.696619i −0.993990 0.109468i \(-0.965085\pi\)
0.591797 + 0.806087i \(0.298419\pi\)
\(752\) 414.455 + 719.244i 0.551137 + 0.956442i
\(753\) −191.319 207.341i −0.254075 0.275353i
\(754\) −282.154 116.941i −0.374209 0.155094i
\(755\) −42.8703 42.8703i −0.0567818 0.0567818i
\(756\) 7.08533 17.6000i 0.00937213 0.0232805i
\(757\) −119.189 119.189i −0.157449 0.157449i 0.623986 0.781435i \(-0.285512\pi\)
−0.781435 + 0.623986i \(0.785512\pi\)
\(758\) −105.464 254.763i −0.139134 0.336099i
\(759\) 223.663 + 242.394i 0.294681 + 0.319360i
\(760\) 285.855 2160.82i 0.376125 2.84318i
\(761\) −397.907 + 689.195i −0.522873 + 0.905643i 0.476772 + 0.879027i \(0.341807\pi\)
−0.999646 + 0.0266165i \(0.991527\pi\)
\(762\) 282.050 610.035i 0.370144 0.800571i
\(763\) 6.91349 25.8015i 0.00906094 0.0338159i
\(764\) −1230.60 330.289i −1.61073 0.432315i
\(765\) 1292.44 237.137i 1.68947 0.309983i
\(766\) 321.001 + 418.517i 0.419061 + 0.546367i
\(767\) −462.753 + 267.171i −0.603329 + 0.348332i
\(768\) 32.1244 767.328i 0.0418286 0.999125i
\(769\) 49.5686 85.8554i 0.0644585 0.111645i −0.831995 0.554783i \(-0.812801\pi\)
0.896454 + 0.443137i \(0.146135\pi\)
\(770\) 2.01867 + 15.3581i 0.00262164 + 0.0199456i
\(771\) 201.590 318.866i 0.261466 0.413574i
\(772\) −930.104 + 248.804i −1.20480 + 0.322285i
\(773\) −190.834 + 190.834i −0.246874 + 0.246874i −0.819686