Properties

Label 144.3.w.a.5.5
Level $144$
Weight $3$
Character 144.5
Analytic conductor $3.924$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 144.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.92371580679\)
Analytic rank: \(0\)
Dimension: \(184\)
Relative dimension: \(46\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 5.5
Character \(\chi\) \(=\) 144.5
Dual form 144.3.w.a.29.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.88357 + 0.672432i) q^{2} +(2.93495 + 0.621365i) q^{3} +(3.09567 - 2.53315i) q^{4} +(1.03307 + 3.85549i) q^{5} +(-5.94600 + 0.803167i) q^{6} +(-11.2715 + 6.50760i) q^{7} +(-4.12754 + 6.85298i) q^{8} +(8.22781 + 3.64735i) q^{9} +O(q^{10})\) \(q+(-1.88357 + 0.672432i) q^{2} +(2.93495 + 0.621365i) q^{3} +(3.09567 - 2.53315i) q^{4} +(1.03307 + 3.85549i) q^{5} +(-5.94600 + 0.803167i) q^{6} +(-11.2715 + 6.50760i) q^{7} +(-4.12754 + 6.85298i) q^{8} +(8.22781 + 3.64735i) q^{9} +(-4.53842 - 6.56740i) q^{10} +(9.91527 + 2.65679i) q^{11} +(10.6596 - 5.51110i) q^{12} +(-3.10413 - 11.5848i) q^{13} +(16.8547 - 19.8368i) q^{14} +(0.636352 + 11.9576i) q^{15} +(3.16635 - 15.6836i) q^{16} +31.4441i q^{17} +(-17.9502 - 1.33739i) q^{18} +(-8.43842 + 8.43842i) q^{19} +(12.9646 + 9.31838i) q^{20} +(-37.1248 + 12.0957i) q^{21} +(-20.4626 + 1.66310i) q^{22} +(0.489846 - 0.848438i) q^{23} +(-16.3723 + 17.5484i) q^{24} +(7.85311 - 4.53400i) q^{25} +(13.6368 + 19.7334i) q^{26} +(21.8818 + 15.8172i) q^{27} +(-18.4081 + 48.6977i) q^{28} +(5.25776 - 19.6222i) q^{29} +(-9.23926 - 22.0950i) q^{30} +(0.00519834 - 0.00900379i) q^{31} +(4.58210 + 31.6702i) q^{32} +(27.4499 + 13.9585i) q^{33} +(-21.1440 - 59.2272i) q^{34} +(-36.7343 - 36.7343i) q^{35} +(34.7098 - 9.55126i) q^{36} +(14.4004 + 14.4004i) q^{37} +(10.2201 - 21.5686i) q^{38} +(-1.91208 - 35.9295i) q^{39} +(-30.6856 - 8.83404i) q^{40} +(13.2394 - 22.9314i) q^{41} +(61.7936 - 47.7471i) q^{42} +(0.237711 - 0.887151i) q^{43} +(37.4244 - 16.8923i) q^{44} +(-5.56235 + 35.4902i) q^{45} +(-0.352142 + 1.92748i) q^{46} +(-30.9514 + 17.8698i) q^{47} +(19.0383 - 44.0630i) q^{48} +(60.1978 - 104.266i) q^{49} +(-11.7431 + 13.8208i) q^{50} +(-19.5383 + 92.2868i) q^{51} +(-38.9553 - 27.9995i) q^{52} +(51.9761 - 51.9761i) q^{53} +(-51.8520 - 15.0788i) q^{54} +40.9728i q^{55} +(1.92709 - 104.104i) q^{56} +(-30.0096 + 19.5230i) q^{57} +(3.29126 + 40.4953i) q^{58} +(-1.19336 - 4.45369i) q^{59} +(32.2602 + 35.4047i) q^{60} +(98.6852 + 26.4426i) q^{61} +(-0.00373700 + 0.0204548i) q^{62} +(-116.475 + 12.4323i) q^{63} +(-29.9268 - 56.5720i) q^{64} +(41.4582 - 23.9359i) q^{65} +(-61.0900 - 7.83365i) q^{66} +(-19.9909 - 74.6071i) q^{67} +(79.6526 + 97.3407i) q^{68} +(1.96486 - 2.18574i) q^{69} +(93.8928 + 44.4902i) q^{70} -22.1692 q^{71} +(-58.9558 + 41.3305i) q^{72} -139.277i q^{73} +(-36.8075 - 17.4409i) q^{74} +(25.8657 - 8.42738i) q^{75} +(-4.74682 + 47.4983i) q^{76} +(-129.049 + 34.5786i) q^{77} +(27.7617 + 66.3900i) q^{78} +(-24.2871 - 42.0665i) q^{79} +(63.7388 - 3.99448i) q^{80} +(54.3937 + 60.0194i) q^{81} +(-9.51761 + 52.0955i) q^{82} +(-16.5541 + 61.7807i) q^{83} +(-84.2860 + 131.487i) q^{84} +(-121.232 + 32.4841i) q^{85} +(0.148803 + 1.83086i) q^{86} +(27.6238 - 54.3232i) q^{87} +(-59.1326 + 56.9832i) q^{88} +38.6386 q^{89} +(-13.3877 - 70.5885i) q^{90} +(110.377 + 110.377i) q^{91} +(-0.632815 - 3.86733i) q^{92} +(0.0208515 - 0.0231956i) q^{93} +(46.2830 - 54.4718i) q^{94} +(-41.2517 - 23.8167i) q^{95} +(-6.23059 + 95.7976i) q^{96} +(38.8429 + 67.2779i) q^{97} +(-43.2752 + 236.870i) q^{98} +(71.8907 + 58.0240i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} + O(q^{10}) \) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} - 8q^{10} - 6q^{11} - 64q^{12} - 2q^{13} - 6q^{14} - 8q^{15} - 2q^{16} + 54q^{18} - 8q^{19} + 120q^{20} - 22q^{21} - 2q^{22} - 160q^{24} + 44q^{27} - 72q^{28} - 6q^{29} - 90q^{30} - 4q^{31} - 6q^{32} - 8q^{33} + 6q^{34} - 202q^{36} - 8q^{37} - 6q^{38} - 2q^{40} + 44q^{42} - 2q^{43} + 46q^{45} - 160q^{46} - 12q^{47} - 118q^{48} + 472q^{49} + 228q^{50} - 48q^{51} - 2q^{52} + 206q^{54} - 300q^{56} - 92q^{58} - 438q^{59} - 90q^{60} - 2q^{61} - 204q^{63} + 244q^{64} - 12q^{65} - 508q^{66} - 2q^{67} - 144q^{68} + 14q^{69} + 96q^{70} + 6q^{72} + 246q^{74} + 152q^{75} - 158q^{76} - 6q^{77} + 304q^{78} - 4q^{79} - 8q^{81} - 388q^{82} - 726q^{83} + 542q^{84} + 48q^{85} + 894q^{86} + 22q^{88} - 528q^{90} - 204q^{91} - 348q^{92} + 62q^{93} - 18q^{94} - 12q^{95} + 262q^{96} - 4q^{97} + 286q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88357 + 0.672432i −0.941785 + 0.336216i
\(3\) 2.93495 + 0.621365i 0.978315 + 0.207122i
\(4\) 3.09567 2.53315i 0.773918 0.633286i
\(5\) 1.03307 + 3.85549i 0.206615 + 0.771097i 0.988951 + 0.148241i \(0.0473611\pi\)
−0.782336 + 0.622856i \(0.785972\pi\)
\(6\) −5.94600 + 0.803167i −0.991000 + 0.133861i
\(7\) −11.2715 + 6.50760i −1.61021 + 0.929658i −0.620895 + 0.783894i \(0.713230\pi\)
−0.989319 + 0.145763i \(0.953436\pi\)
\(8\) −4.12754 + 6.85298i −0.515943 + 0.856623i
\(9\) 8.22781 + 3.64735i 0.914201 + 0.405261i
\(10\) −4.53842 6.56740i −0.453842 0.656740i
\(11\) 9.91527 + 2.65679i 0.901388 + 0.241526i 0.679612 0.733572i \(-0.262148\pi\)
0.221776 + 0.975098i \(0.428815\pi\)
\(12\) 10.6596 5.51110i 0.888303 0.459259i
\(13\) −3.10413 11.5848i −0.238780 0.891138i −0.976409 0.215931i \(-0.930721\pi\)
0.737629 0.675206i \(-0.235945\pi\)
\(14\) 16.8547 19.8368i 1.20391 1.41692i
\(15\) 0.636352 + 11.9576i 0.0424234 + 0.797170i
\(16\) 3.16635 15.6836i 0.197897 0.980223i
\(17\) 31.4441i 1.84966i 0.380386 + 0.924828i \(0.375791\pi\)
−0.380386 + 0.924828i \(0.624209\pi\)
\(18\) −17.9502 1.33739i −0.997236 0.0742993i
\(19\) −8.43842 + 8.43842i −0.444127 + 0.444127i −0.893396 0.449269i \(-0.851684\pi\)
0.449269 + 0.893396i \(0.351684\pi\)
\(20\) 12.9646 + 9.31838i 0.648228 + 0.465919i
\(21\) −37.1248 + 12.0957i −1.76785 + 0.575988i
\(22\) −20.4626 + 1.66310i −0.930119 + 0.0755954i
\(23\) 0.489846 0.848438i 0.0212976 0.0368886i −0.855180 0.518331i \(-0.826554\pi\)
0.876478 + 0.481442i \(0.159887\pi\)
\(24\) −16.3723 + 17.5484i −0.682180 + 0.731184i
\(25\) 7.85311 4.53400i 0.314124 0.181360i
\(26\) 13.6368 + 19.7334i 0.524494 + 0.758978i
\(27\) 21.8818 + 15.8172i 0.810439 + 0.585824i
\(28\) −18.4081 + 48.6977i −0.657433 + 1.73920i
\(29\) 5.25776 19.6222i 0.181302 0.676629i −0.814090 0.580739i \(-0.802764\pi\)
0.995392 0.0958899i \(-0.0305697\pi\)
\(30\) −9.23926 22.0950i −0.307975 0.736500i
\(31\) 0.00519834 0.00900379i 0.000167688 0.000290445i −0.865942 0.500145i \(-0.833280\pi\)
0.866109 + 0.499855i \(0.166613\pi\)
\(32\) 4.58210 + 31.6702i 0.143191 + 0.989695i
\(33\) 27.4499 + 13.9585i 0.831816 + 0.422986i
\(34\) −21.1440 59.2272i −0.621884 1.74198i
\(35\) −36.7343 36.7343i −1.04955 1.04955i
\(36\) 34.7098 9.55126i 0.964162 0.265313i
\(37\) 14.4004 + 14.4004i 0.389201 + 0.389201i 0.874402 0.485202i \(-0.161254\pi\)
−0.485202 + 0.874402i \(0.661254\pi\)
\(38\) 10.2201 21.5686i 0.268950 0.567595i
\(39\) −1.91208 35.9295i −0.0490277 0.921270i
\(40\) −30.6856 8.83404i −0.767141 0.220851i
\(41\) 13.2394 22.9314i 0.322913 0.559302i −0.658175 0.752865i \(-0.728671\pi\)
0.981088 + 0.193563i \(0.0620045\pi\)
\(42\) 61.7936 47.7471i 1.47128 1.13684i
\(43\) 0.237711 0.887151i 0.00552817 0.0206314i −0.963107 0.269120i \(-0.913267\pi\)
0.968635 + 0.248489i \(0.0799338\pi\)
\(44\) 37.4244 16.8923i 0.850555 0.383915i
\(45\) −5.56235 + 35.4902i −0.123608 + 0.788671i
\(46\) −0.352142 + 1.92748i −0.00765526 + 0.0419017i
\(47\) −30.9514 + 17.8698i −0.658541 + 0.380209i −0.791721 0.610883i \(-0.790815\pi\)
0.133180 + 0.991092i \(0.457481\pi\)
\(48\) 19.0383 44.0630i 0.396631 0.917978i
\(49\) 60.1978 104.266i 1.22853 2.12787i
\(50\) −11.7431 + 13.8208i −0.234862 + 0.276416i
\(51\) −19.5383 + 92.2868i −0.383104 + 1.80955i
\(52\) −38.9553 27.9995i −0.749141 0.538451i
\(53\) 51.9761 51.9761i 0.980681 0.980681i −0.0191363 0.999817i \(-0.506092\pi\)
0.999817 + 0.0191363i \(0.00609163\pi\)
\(54\) −51.8520 15.0788i −0.960222 0.279237i
\(55\) 40.9728i 0.744960i
\(56\) 1.92709 104.104i 0.0344123 1.85900i
\(57\) −30.0096 + 19.5230i −0.526485 + 0.342508i
\(58\) 3.29126 + 40.4953i 0.0567459 + 0.698196i
\(59\) −1.19336 4.45369i −0.0202265 0.0754863i 0.955075 0.296365i \(-0.0957743\pi\)
−0.975301 + 0.220878i \(0.929108\pi\)
\(60\) 32.2602 + 35.4047i 0.537669 + 0.590078i
\(61\) 98.6852 + 26.4426i 1.61779 + 0.433485i 0.950351 0.311179i \(-0.100724\pi\)
0.667439 + 0.744665i \(0.267391\pi\)
\(62\) −0.00373700 + 0.0204548i −6.02742e−5 + 0.000329916i
\(63\) −116.475 + 12.4323i −1.84881 + 0.197337i
\(64\) −29.9268 56.5720i −0.467606 0.883937i
\(65\) 41.4582 23.9359i 0.637818 0.368244i
\(66\) −61.0900 7.83365i −0.925607 0.118692i
\(67\) −19.9909 74.6071i −0.298372 1.11354i −0.938502 0.345273i \(-0.887786\pi\)
0.640131 0.768266i \(-0.278880\pi\)
\(68\) 79.6526 + 97.3407i 1.17136 + 1.43148i
\(69\) 1.96486 2.18574i 0.0284762 0.0316775i
\(70\) 93.8928 + 44.4902i 1.34133 + 0.635575i
\(71\) −22.1692 −0.312242 −0.156121 0.987738i \(-0.549899\pi\)
−0.156121 + 0.987738i \(0.549899\pi\)
\(72\) −58.9558 + 41.3305i −0.818831 + 0.574034i
\(73\) 139.277i 1.90790i −0.299959 0.953952i \(-0.596973\pi\)
0.299959 0.953952i \(-0.403027\pi\)
\(74\) −36.8075 17.4409i −0.497399 0.235688i
\(75\) 25.8657 8.42738i 0.344876 0.112365i
\(76\) −4.74682 + 47.4983i −0.0624581 + 0.624978i
\(77\) −129.049 + 34.5786i −1.67596 + 0.449073i
\(78\) 27.7617 + 66.3900i 0.355919 + 0.851154i
\(79\) −24.2871 42.0665i −0.307432 0.532488i 0.670368 0.742029i \(-0.266136\pi\)
−0.977800 + 0.209541i \(0.932803\pi\)
\(80\) 63.7388 3.99448i 0.796735 0.0499310i
\(81\) 54.3937 + 60.0194i 0.671527 + 0.740980i
\(82\) −9.51761 + 52.0955i −0.116068 + 0.635311i
\(83\) −16.5541 + 61.7807i −0.199447 + 0.744346i 0.791624 + 0.611009i \(0.209236\pi\)
−0.991071 + 0.133337i \(0.957431\pi\)
\(84\) −84.2860 + 131.487i −1.00340 + 1.56532i
\(85\) −121.232 + 32.4841i −1.42626 + 0.382166i
\(86\) 0.148803 + 1.83086i 0.00173027 + 0.0212890i
\(87\) 27.6238 54.3232i 0.317515 0.624405i
\(88\) −59.1326 + 56.9832i −0.671962 + 0.647536i
\(89\) 38.6386 0.434141 0.217071 0.976156i \(-0.430350\pi\)
0.217071 + 0.976156i \(0.430350\pi\)
\(90\) −13.3877 70.5885i −0.148752 0.784317i
\(91\) 110.377 + 110.377i 1.21294 + 1.21294i
\(92\) −0.632815 3.86733i −0.00687843 0.0420362i
\(93\) 0.0208515 0.0231956i 0.000224210 0.000249415i
\(94\) 46.2830 54.4718i 0.492372 0.579487i
\(95\) −41.2517 23.8167i −0.434229 0.250702i
\(96\) −6.23059 + 95.7976i −0.0649019 + 0.997892i
\(97\) 38.8429 + 67.2779i 0.400442 + 0.693586i 0.993779 0.111368i \(-0.0355232\pi\)
−0.593337 + 0.804954i \(0.702190\pi\)
\(98\) −43.2752 + 236.870i −0.441583 + 2.41705i
\(99\) 71.8907 + 58.0240i 0.726169 + 0.586101i
\(100\) 12.8254 33.9288i 0.128254 0.339288i
\(101\) 47.7201 + 12.7866i 0.472476 + 0.126600i 0.487197 0.873292i \(-0.338019\pi\)
−0.0147210 + 0.999892i \(0.504686\pi\)
\(102\) −25.2549 186.967i −0.247597 1.83301i
\(103\) 54.4476 + 31.4354i 0.528618 + 0.305198i 0.740453 0.672108i \(-0.234611\pi\)
−0.211836 + 0.977305i \(0.567944\pi\)
\(104\) 92.2028 + 26.5441i 0.886566 + 0.255232i
\(105\) −84.9876 130.638i −0.809406 1.24418i
\(106\) −62.9502 + 132.851i −0.593870 + 1.25331i
\(107\) 22.0577 22.0577i 0.206146 0.206146i −0.596481 0.802627i \(-0.703435\pi\)
0.802627 + 0.596481i \(0.203435\pi\)
\(108\) 107.806 6.46493i 0.998207 0.0598605i
\(109\) −70.2106 + 70.2106i −0.644134 + 0.644134i −0.951569 0.307435i \(-0.900529\pi\)
0.307435 + 0.951569i \(0.400529\pi\)
\(110\) −27.5514 77.1752i −0.250468 0.701592i
\(111\) 33.3165 + 51.2124i 0.300149 + 0.461373i
\(112\) 66.3729 + 197.383i 0.592615 + 1.76234i
\(113\) −140.398 81.0590i −1.24246 0.717337i −0.272868 0.962051i \(-0.587972\pi\)
−0.969595 + 0.244715i \(0.921306\pi\)
\(114\) 43.3974 56.9523i 0.380679 0.499582i
\(115\) 3.77718 + 1.01209i 0.0328451 + 0.00880081i
\(116\) −33.4297 74.0627i −0.288187 0.638471i
\(117\) 16.7135 106.639i 0.142850 0.911447i
\(118\) 5.24259 + 7.58638i 0.0444287 + 0.0642914i
\(119\) −204.626 354.423i −1.71955 2.97834i
\(120\) −84.5715 44.9944i −0.704763 0.374953i
\(121\) −13.5351 7.81447i −0.111860 0.0645824i
\(122\) −203.661 + 16.5526i −1.66935 + 0.135677i
\(123\) 53.1058 59.0758i 0.431754 0.480291i
\(124\) −0.00671556 0.0410409i −5.41578e−5 0.000330975i
\(125\) 96.1539 + 96.1539i 0.769231 + 0.769231i
\(126\) 211.029 101.739i 1.67484 0.807450i
\(127\) 62.8249 0.494684 0.247342 0.968928i \(-0.420443\pi\)
0.247342 + 0.968928i \(0.420443\pi\)
\(128\) 94.4100 + 86.4335i 0.737578 + 0.675262i
\(129\) 1.24892 2.45604i 0.00968151 0.0190390i
\(130\) −61.9941 + 72.9627i −0.476878 + 0.561252i
\(131\) −111.938 + 29.9937i −0.854489 + 0.228960i −0.659369 0.751820i \(-0.729176\pi\)
−0.195120 + 0.980779i \(0.562510\pi\)
\(132\) 120.335 26.3237i 0.911628 0.199422i
\(133\) 40.1997 150.027i 0.302254 1.12803i
\(134\) 87.8225 + 127.085i 0.655392 + 0.948396i
\(135\) −38.3776 + 100.705i −0.284278 + 0.745967i
\(136\) −215.486 129.787i −1.58446 0.954316i
\(137\) 42.9034 + 74.3109i 0.313164 + 0.542415i 0.979045 0.203642i \(-0.0652778\pi\)
−0.665882 + 0.746057i \(0.731945\pi\)
\(138\) −2.23119 + 5.43824i −0.0161680 + 0.0394075i
\(139\) −29.4548 + 7.89240i −0.211905 + 0.0567798i −0.363210 0.931707i \(-0.618319\pi\)
0.151305 + 0.988487i \(0.451653\pi\)
\(140\) −206.770 20.6639i −1.47693 0.147599i
\(141\) −101.944 + 33.2148i −0.723010 + 0.235566i
\(142\) 41.7572 14.9073i 0.294065 0.104981i
\(143\) 123.113i 0.860932i
\(144\) 83.2555 117.493i 0.578163 0.815921i
\(145\) 81.0849 0.559206
\(146\) 93.6543 + 262.338i 0.641468 + 1.79684i
\(147\) 241.464 268.609i 1.64261 1.82727i
\(148\) 81.0574 + 8.10060i 0.547685 + 0.0547338i
\(149\) 24.3932 + 91.0367i 0.163713 + 0.610984i 0.998201 + 0.0599584i \(0.0190968\pi\)
−0.834488 + 0.551026i \(0.814237\pi\)
\(150\) −43.0531 + 33.2665i −0.287020 + 0.221777i
\(151\) 132.853 76.7026i 0.879820 0.507964i 0.00922099 0.999957i \(-0.497065\pi\)
0.870599 + 0.491993i \(0.163731\pi\)
\(152\) −22.9984 92.6583i −0.151305 0.609594i
\(153\) −114.688 + 258.716i −0.749593 + 1.69096i
\(154\) 219.821 151.908i 1.42741 0.986416i
\(155\) 0.0400842 + 0.0107405i 0.000258608 + 6.92938e-5i
\(156\) −96.9339 106.382i −0.621371 0.681938i
\(157\) −2.61700 9.76676i −0.0166688 0.0622087i 0.957091 0.289789i \(-0.0935852\pi\)
−0.973759 + 0.227580i \(0.926919\pi\)
\(158\) 74.0334 + 62.9038i 0.468566 + 0.398125i
\(159\) 184.843 120.251i 1.16254 0.756294i
\(160\) −117.371 + 50.3839i −0.733566 + 0.314899i
\(161\) 12.7509i 0.0791980i
\(162\) −142.813 76.4746i −0.881564 0.472065i
\(163\) −177.195 + 177.195i −1.08708 + 1.08708i −0.0912569 + 0.995827i \(0.529088\pi\)
−0.995827 + 0.0912569i \(0.970912\pi\)
\(164\) −17.1036 104.525i −0.104290 0.637350i
\(165\) −25.4591 + 120.253i −0.154298 + 0.728806i
\(166\) −10.3626 127.500i −0.0624250 0.768071i
\(167\) 2.69555 4.66883i 0.0161410 0.0279571i −0.857842 0.513913i \(-0.828195\pi\)
0.873983 + 0.485956i \(0.161529\pi\)
\(168\) 70.3424 304.342i 0.418705 1.81156i
\(169\) 21.7866 12.5785i 0.128915 0.0744291i
\(170\) 206.506 142.707i 1.21474 0.839451i
\(171\) −100.208 + 38.6519i −0.586009 + 0.226034i
\(172\) −1.51141 3.34849i −0.00878725 0.0194679i
\(173\) −64.7869 + 241.788i −0.374491 + 1.39762i 0.479597 + 0.877489i \(0.340783\pi\)
−0.854087 + 0.520129i \(0.825884\pi\)
\(174\) −15.5027 + 120.897i −0.0890962 + 0.694809i
\(175\) −59.0109 + 102.210i −0.337205 + 0.584056i
\(176\) 73.0631 147.094i 0.415131 0.835764i
\(177\) −0.735086 13.8129i −0.00415303 0.0780387i
\(178\) −72.7784 + 25.9818i −0.408868 + 0.145965i
\(179\) 145.570 + 145.570i 0.813242 + 0.813242i 0.985119 0.171876i \(-0.0549829\pi\)
−0.171876 + 0.985119i \(0.554983\pi\)
\(180\) 72.6826 + 123.956i 0.403792 + 0.688645i
\(181\) −21.3508 21.3508i −0.117960 0.117960i 0.645663 0.763623i \(-0.276581\pi\)
−0.763623 + 0.645663i \(0.776581\pi\)
\(182\) −282.125 133.682i −1.55014 0.734518i
\(183\) 273.205 + 138.927i 1.49292 + 0.759165i
\(184\) 3.79247 + 6.85887i 0.0206113 + 0.0372764i
\(185\) −40.6439 + 70.3973i −0.219697 + 0.380526i
\(186\) −0.0236778 + 0.0577117i −0.000127300 + 0.000310278i
\(187\) −83.5404 + 311.777i −0.446740 + 1.66726i
\(188\) −50.5486 + 133.724i −0.268875 + 0.711296i
\(189\) −349.573 35.8857i −1.84959 0.189871i
\(190\) 93.7156 + 17.1214i 0.493240 + 0.0901127i
\(191\) 16.8638 9.73634i 0.0882923 0.0509756i −0.455204 0.890387i \(-0.650434\pi\)
0.543496 + 0.839412i \(0.317100\pi\)
\(192\) −52.6816 184.631i −0.274384 0.961620i
\(193\) 95.4963 165.404i 0.494799 0.857018i −0.505183 0.863012i \(-0.668575\pi\)
0.999982 + 0.00599489i \(0.00190824\pi\)
\(194\) −118.403 100.603i −0.610325 0.518574i
\(195\) 136.550 44.4899i 0.700259 0.228153i
\(196\) −77.7675 475.262i −0.396773 2.42480i
\(197\) −59.8357 + 59.8357i −0.303734 + 0.303734i −0.842473 0.538739i \(-0.818901\pi\)
0.538739 + 0.842473i \(0.318901\pi\)
\(198\) −174.428 60.9506i −0.880951 0.307831i
\(199\) 3.21256i 0.0161435i −0.999967 0.00807176i \(-0.997431\pi\)
0.999967 0.00807176i \(-0.00256935\pi\)
\(200\) −1.34265 + 72.5315i −0.00671323 + 0.362658i
\(201\) −12.3140 231.389i −0.0612635 1.15119i
\(202\) −98.4822 + 8.00414i −0.487536 + 0.0396245i
\(203\) 68.4309 + 255.387i 0.337098 + 1.25807i
\(204\) 173.292 + 335.183i 0.849470 + 1.64305i
\(205\) 102.089 + 27.3546i 0.497995 + 0.133437i
\(206\) −123.694 22.5983i −0.600457 0.109701i
\(207\) 7.12490 5.19415i 0.0344198 0.0250925i
\(208\) −191.520 + 12.0024i −0.920767 + 0.0577040i
\(209\) −106.088 + 61.2501i −0.507599 + 0.293063i
\(210\) 247.926 + 188.918i 1.18060 + 0.899610i
\(211\) −55.5817 207.434i −0.263420 0.983098i −0.963210 0.268749i \(-0.913390\pi\)
0.699790 0.714349i \(-0.253277\pi\)
\(212\) 29.2378 292.564i 0.137914 1.38002i
\(213\) −65.0654 13.7752i −0.305471 0.0646721i
\(214\) −26.7149 + 56.3795i −0.124836 + 0.263455i
\(215\) 3.66597 0.0170510
\(216\) −198.714 + 84.6696i −0.919970 + 0.391989i
\(217\) 0.135315i 0.000623571i
\(218\) 85.0347 179.458i 0.390067 0.823203i
\(219\) 86.5419 408.770i 0.395169 1.86653i
\(220\) 103.790 + 126.838i 0.471773 + 0.576538i
\(221\) 364.274 97.6068i 1.64830 0.441660i
\(222\) −97.1909 74.0590i −0.437797 0.333599i
\(223\) 153.067 + 265.119i 0.686398 + 1.18888i 0.972995 + 0.230825i \(0.0741424\pi\)
−0.286598 + 0.958051i \(0.592524\pi\)
\(224\) −257.744 327.153i −1.15064 1.46050i
\(225\) 81.1510 8.66184i 0.360671 0.0384971i
\(226\) 318.957 + 58.2720i 1.41131 + 0.257841i
\(227\) 53.2069 198.571i 0.234392 0.874761i −0.744031 0.668146i \(-0.767088\pi\)
0.978422 0.206616i \(-0.0662450\pi\)
\(228\) −43.4455 + 136.455i −0.190550 + 0.598489i
\(229\) −339.195 + 90.8871i −1.48120 + 0.396887i −0.906756 0.421656i \(-0.861449\pi\)
−0.574446 + 0.818543i \(0.694782\pi\)
\(230\) −7.79516 + 0.633551i −0.0338920 + 0.00275457i
\(231\) −400.238 + 21.2997i −1.73263 + 0.0922065i
\(232\) 112.769 + 117.023i 0.486074 + 0.504409i
\(233\) −24.7739 −0.106326 −0.0531630 0.998586i \(-0.516930\pi\)
−0.0531630 + 0.998586i \(0.516930\pi\)
\(234\) 40.2266 + 212.101i 0.171909 + 0.906416i
\(235\) −100.872 100.872i −0.429242 0.429242i
\(236\) −14.9761 10.7642i −0.0634581 0.0456110i
\(237\) −45.1427 138.554i −0.190476 0.584617i
\(238\) 623.752 + 529.983i 2.62081 + 2.22682i
\(239\) 256.674 + 148.191i 1.07395 + 0.620046i 0.929258 0.369431i \(-0.120447\pi\)
0.144693 + 0.989477i \(0.453781\pi\)
\(240\) 189.552 + 27.8815i 0.789800 + 0.116173i
\(241\) −58.2744 100.934i −0.241802 0.418814i 0.719425 0.694570i \(-0.244405\pi\)
−0.961228 + 0.275756i \(0.911072\pi\)
\(242\) 30.7489 + 5.61769i 0.127062 + 0.0232136i
\(243\) 122.349 + 209.952i 0.503493 + 0.864000i
\(244\) 372.480 168.126i 1.52656 0.689042i
\(245\) 464.183 + 124.378i 1.89463 + 0.507663i
\(246\) −60.3040 + 146.983i −0.245138 + 0.597494i
\(247\) 123.951 + 71.5633i 0.501827 + 0.289730i
\(248\) 0.0402465 + 0.0727877i 0.000162284 + 0.000293499i
\(249\) −86.9738 + 171.037i −0.349292 + 0.686895i
\(250\) −245.769 116.456i −0.983078 0.465822i
\(251\) −25.0848 + 25.0848i −0.0999393 + 0.0999393i −0.755309 0.655369i \(-0.772513\pi\)
0.655369 + 0.755309i \(0.272513\pi\)
\(252\) −329.076 + 333.535i −1.30586 + 1.32355i
\(253\) 7.11107 7.11107i 0.0281070 0.0281070i
\(254\) −118.335 + 42.2455i −0.465886 + 0.166321i
\(255\) −375.995 + 20.0095i −1.47449 + 0.0784687i
\(256\) −235.948 99.3192i −0.921674 0.387966i
\(257\) −136.561 78.8433i −0.531364 0.306783i 0.210208 0.977657i \(-0.432586\pi\)
−0.741572 + 0.670874i \(0.765919\pi\)
\(258\) −0.700902 + 5.46592i −0.00271668 + 0.0211858i
\(259\) −256.027 68.6021i −0.988520 0.264873i
\(260\) 67.7077 179.117i 0.260414 0.688912i
\(261\) 114.829 142.271i 0.439958 0.545100i
\(262\) 190.674 131.766i 0.727765 0.502924i
\(263\) −127.391 220.648i −0.484378 0.838967i 0.515461 0.856913i \(-0.327621\pi\)
−0.999839 + 0.0179459i \(0.994287\pi\)
\(264\) −208.958 + 130.500i −0.791509 + 0.494316i
\(265\) 254.088 + 146.698i 0.958823 + 0.553577i
\(266\) 25.1643 + 309.619i 0.0946025 + 1.16398i
\(267\) 113.402 + 24.0087i 0.424727 + 0.0899201i
\(268\) −250.876 180.319i −0.936104 0.672832i
\(269\) −246.563 246.563i −0.916592 0.916592i 0.0801880 0.996780i \(-0.474448\pi\)
−0.996780 + 0.0801880i \(0.974448\pi\)
\(270\) 4.56922 215.492i 0.0169230 0.798119i
\(271\) −386.322 −1.42554 −0.712770 0.701397i \(-0.752560\pi\)
−0.712770 + 0.701397i \(0.752560\pi\)
\(272\) 493.156 + 99.5631i 1.81307 + 0.366041i
\(273\) 255.367 + 392.537i 0.935411 + 1.43786i
\(274\) −130.781 111.120i −0.477301 0.405548i
\(275\) 89.9116 24.0917i 0.326951 0.0876063i
\(276\) 0.545748 11.7436i 0.00197735 0.0425494i
\(277\) −42.4979 + 158.604i −0.153422 + 0.572579i 0.845813 + 0.533479i \(0.179116\pi\)
−0.999235 + 0.0390998i \(0.987551\pi\)
\(278\) 50.1731 34.6723i 0.180479 0.124720i
\(279\) 0.0756109 0.0551213i 0.000271007 0.000197567i
\(280\) 403.361 100.117i 1.44058 0.357561i
\(281\) 42.3425 + 73.3394i 0.150685 + 0.260994i 0.931480 0.363794i \(-0.118519\pi\)
−0.780794 + 0.624788i \(0.785185\pi\)
\(282\) 169.685 131.113i 0.601719 0.464940i
\(283\) 101.386 27.1664i 0.358255 0.0959942i −0.0752020 0.997168i \(-0.523960\pi\)
0.433457 + 0.901174i \(0.357293\pi\)
\(284\) −68.6285 + 56.1578i −0.241650 + 0.197739i
\(285\) −106.273 95.5331i −0.372887 0.335204i
\(286\) 82.7853 + 231.893i 0.289459 + 0.810813i
\(287\) 344.628i 1.20079i
\(288\) −77.8117 + 277.289i −0.270180 + 0.962810i
\(289\) −699.734 −2.42122
\(290\) −152.729 + 54.5241i −0.526652 + 0.188014i
\(291\) 72.1976 + 221.592i 0.248102 + 0.761486i
\(292\) −352.809 431.156i −1.20825 1.47656i
\(293\) 5.05197 + 18.8542i 0.0172422 + 0.0643488i 0.974011 0.226501i \(-0.0727287\pi\)
−0.956769 + 0.290850i \(0.906062\pi\)
\(294\) −274.193 + 668.312i −0.932631 + 2.27317i
\(295\) 15.9383 9.20199i 0.0540282 0.0311932i
\(296\) −158.124 + 39.2475i −0.534204 + 0.132593i
\(297\) 174.941 + 214.968i 0.589028 + 0.723797i
\(298\) −107.162 155.071i −0.359605 0.520373i
\(299\) −11.3495 3.04109i −0.0379582 0.0101709i
\(300\) 58.7240 91.6100i 0.195747 0.305367i
\(301\) 3.09386 + 11.5465i 0.0102786 + 0.0383603i
\(302\) −198.660 + 233.809i −0.657815 + 0.774203i
\(303\) 132.111 + 67.1795i 0.436009 + 0.221714i
\(304\) 105.626 + 159.063i 0.347452 + 0.523235i
\(305\) 407.796i 1.33704i
\(306\) 42.0530 564.430i 0.137428 1.84454i
\(307\) 196.817 196.817i 0.641097 0.641097i −0.309728 0.950825i \(-0.600238\pi\)
0.950825 + 0.309728i \(0.100238\pi\)
\(308\) −311.901 + 433.945i −1.01267 + 1.40891i
\(309\) 140.268 + 126.093i 0.453942 + 0.408068i
\(310\) −0.0827238 + 0.00672337i −0.000266851 + 2.16883e-5i
\(311\) 112.262 194.444i 0.360971 0.625221i −0.627150 0.778899i \(-0.715779\pi\)
0.988121 + 0.153678i \(0.0491119\pi\)
\(312\) 254.117 + 135.197i 0.814476 + 0.433324i
\(313\) 141.527 81.7105i 0.452162 0.261056i −0.256581 0.966523i \(-0.582596\pi\)
0.708743 + 0.705467i \(0.249263\pi\)
\(314\) 11.4968 + 16.6366i 0.0366139 + 0.0529829i
\(315\) −168.260 436.225i −0.534159 1.38484i
\(316\) −181.746 68.7013i −0.575144 0.217409i
\(317\) 142.441 531.599i 0.449342 1.67697i −0.254869 0.966976i \(-0.582032\pi\)
0.704211 0.709991i \(-0.251301\pi\)
\(318\) −267.304 + 350.795i −0.840580 + 1.10313i
\(319\) 104.264 180.591i 0.326847 0.566116i
\(320\) 187.196 173.825i 0.584987 0.543204i
\(321\) 78.4439 51.0322i 0.244374 0.158979i
\(322\) −8.57410 24.0172i −0.0266276 0.0745875i
\(323\) −265.339 265.339i −0.821482 0.821482i
\(324\) 320.423 + 48.0129i 0.988959 + 0.148188i
\(325\) −76.9025 76.9025i −0.236623 0.236623i
\(326\) 214.607 452.910i 0.658304 1.38929i
\(327\) −249.691 + 162.438i −0.763580 + 0.496752i
\(328\) 102.502 + 185.380i 0.312506 + 0.565183i
\(329\) 232.579 402.839i 0.706928 1.22444i
\(330\) −32.9080 243.624i −0.0997212 0.738256i
\(331\) 116.213 433.714i 0.351097 1.31031i −0.534228 0.845341i \(-0.679398\pi\)
0.885325 0.464972i \(-0.153936\pi\)
\(332\) 105.254 + 233.187i 0.317029 + 0.702370i
\(333\) 65.9606 + 171.007i 0.198080 + 0.513536i
\(334\) −1.93779 + 10.6066i −0.00580176 + 0.0317564i
\(335\) 266.994 154.149i 0.796998 0.460147i
\(336\) 72.1542 + 620.549i 0.214745 + 1.84687i
\(337\) 95.4576 165.337i 0.283257 0.490615i −0.688928 0.724830i \(-0.741918\pi\)
0.972185 + 0.234214i \(0.0752518\pi\)
\(338\) −32.5784 + 38.3425i −0.0963859 + 0.113439i
\(339\) −361.694 325.143i −1.06694 0.959122i
\(340\) −293.009 + 407.659i −0.861790 + 1.19900i
\(341\) 0.0754641 0.0754641i 0.000221302 0.000221302i
\(342\) 162.757 140.186i 0.475898 0.409901i
\(343\) 929.228i 2.70912i
\(344\) 5.09847 + 5.29079i 0.0148211 + 0.0153802i
\(345\) 10.4570 + 5.31745i 0.0303100 + 0.0154129i
\(346\) −40.5554 498.989i −0.117212 1.44217i
\(347\) 33.0054 + 123.178i 0.0951165 + 0.354980i 0.997037 0.0769222i \(-0.0245093\pi\)
−0.901921 + 0.431902i \(0.857843\pi\)
\(348\) −52.0943 238.142i −0.149696 0.684316i
\(349\) 139.684 + 37.4282i 0.400241 + 0.107244i 0.453324 0.891346i \(-0.350238\pi\)
−0.0530831 + 0.998590i \(0.516905\pi\)
\(350\) 42.4219 232.200i 0.121206 0.663429i
\(351\) 115.315 302.595i 0.328533 0.862095i
\(352\) −38.7084 + 326.193i −0.109967 + 0.926684i
\(353\) −345.333 + 199.378i −0.978279 + 0.564810i −0.901750 0.432258i \(-0.857717\pi\)
−0.0765289 + 0.997067i \(0.524384\pi\)
\(354\) 10.6728 + 25.5232i 0.0301491 + 0.0720994i
\(355\) −22.9024 85.4730i −0.0645138 0.240769i
\(356\) 119.612 97.8771i 0.335990 0.274936i
\(357\) −380.340 1167.36i −1.06538 3.26991i
\(358\) −372.078 176.306i −1.03932 0.492474i
\(359\) 442.419 1.23237 0.616183 0.787603i \(-0.288678\pi\)
0.616183 + 0.787603i \(0.288678\pi\)
\(360\) −220.255 184.606i −0.611819 0.512794i
\(361\) 218.586i 0.605502i
\(362\) 54.5726 + 25.8587i 0.150753 + 0.0714329i
\(363\) −34.8690 31.3453i −0.0960579 0.0863506i
\(364\) 621.294 + 62.0900i 1.70685 + 0.170577i
\(365\) 536.980 143.883i 1.47118 0.394201i
\(366\) −608.020 77.9672i −1.66126 0.213025i
\(367\) −170.581 295.456i −0.464799 0.805056i 0.534393 0.845236i \(-0.320540\pi\)
−0.999192 + 0.0401801i \(0.987207\pi\)
\(368\) −11.7555 10.3690i −0.0319443 0.0281766i
\(369\) 192.570 140.386i 0.521871 0.380450i
\(370\) 29.2182 159.929i 0.0789682 0.432239i
\(371\) −247.609 + 924.088i −0.667409 + 2.49080i
\(372\) 0.00579159 0.124626i 1.55688e−5 0.000335015i
\(373\) −146.401 + 39.2280i −0.392495 + 0.105169i −0.449669 0.893195i \(-0.648458\pi\)
0.0571733 + 0.998364i \(0.481791\pi\)
\(374\) −52.2947 643.429i −0.139825 1.72040i
\(375\) 222.460 + 341.953i 0.593226 + 0.911875i
\(376\) 5.29177 285.868i 0.0140739 0.760288i
\(377\) −243.640 −0.646261
\(378\) 682.577 167.471i 1.80576 0.443046i
\(379\) −297.857 297.857i −0.785903 0.785903i 0.194916 0.980820i \(-0.437556\pi\)
−0.980820 + 0.194916i \(0.937556\pi\)
\(380\) −188.033 + 30.7680i −0.494823 + 0.0809684i
\(381\) 184.388 + 39.0372i 0.483957 + 0.102460i
\(382\) −25.2172 + 29.6789i −0.0660136 + 0.0776933i
\(383\) 30.0600 + 17.3551i 0.0784855 + 0.0453136i 0.538729 0.842479i \(-0.318905\pi\)
−0.460244 + 0.887793i \(0.652238\pi\)
\(384\) 223.381 + 312.341i 0.581722 + 0.813387i
\(385\) −266.635 461.825i −0.692558 1.19955i
\(386\) −68.6507 + 375.765i −0.177851 + 0.973486i
\(387\) 5.19159 6.43230i 0.0134150 0.0166209i
\(388\) 290.669 + 109.875i 0.749148 + 0.283184i
\(389\) 417.137 + 111.771i 1.07233 + 0.287330i 0.751451 0.659789i \(-0.229355\pi\)
0.320881 + 0.947120i \(0.396021\pi\)
\(390\) −227.286 + 175.621i −0.582784 + 0.450309i
\(391\) 26.6784 + 15.4028i 0.0682312 + 0.0393933i
\(392\) 466.062 + 842.895i 1.18893 + 2.15024i
\(393\) −347.169 + 18.4755i −0.883382 + 0.0470114i
\(394\) 72.4693 152.940i 0.183932 0.388173i
\(395\) 137.096 137.096i 0.347080 0.347080i
\(396\) 369.533 2.48659i 0.933164 0.00627926i
\(397\) 127.964 127.964i 0.322328 0.322328i −0.527331 0.849660i \(-0.676807\pi\)
0.849660 + 0.527331i \(0.176807\pi\)
\(398\) 2.16023 + 6.05109i 0.00542771 + 0.0152037i
\(399\) 211.206 415.344i 0.529338 1.04096i
\(400\) −46.2436 137.521i −0.115609 0.343803i
\(401\) −222.441 128.427i −0.554717 0.320266i 0.196306 0.980543i \(-0.437106\pi\)
−0.751022 + 0.660277i \(0.770439\pi\)
\(402\) 178.788 + 427.558i 0.444746 + 1.06358i
\(403\) −0.120443 0.0322727i −0.000298867 8.00811e-5i
\(404\) 180.116 81.2990i 0.445831 0.201235i
\(405\) −175.211 + 271.719i −0.432620 + 0.670910i
\(406\) −300.625 435.025i −0.740456 1.07149i
\(407\) 104.525 + 181.043i 0.256819 + 0.444823i
\(408\) −551.795 514.813i −1.35244 1.26180i
\(409\) −396.564 228.956i −0.969594 0.559795i −0.0704814 0.997513i \(-0.522454\pi\)
−0.899112 + 0.437718i \(0.855787\pi\)
\(410\) −210.686 + 17.1235i −0.513868 + 0.0417646i
\(411\) 79.7450 + 244.757i 0.194027 + 0.595516i
\(412\) 248.182 40.6103i 0.602384 0.0985686i
\(413\) 42.4339 + 42.4339i 0.102745 + 0.102745i
\(414\) −9.92754 + 14.5745i −0.0239796 + 0.0352042i
\(415\) −255.296 −0.615172
\(416\) 352.670 151.391i 0.847764 0.363921i
\(417\) −91.3524 + 4.86155i −0.219070 + 0.0116584i
\(418\) 158.638 186.706i 0.379517 0.446665i
\(419\) −99.1914 + 26.5783i −0.236734 + 0.0634326i −0.375235 0.926930i \(-0.622438\pi\)
0.138502 + 0.990362i \(0.455771\pi\)
\(420\) −594.020 189.127i −1.41433 0.450303i
\(421\) −94.7342 + 353.553i −0.225022 + 0.839793i 0.757374 + 0.652982i \(0.226482\pi\)
−0.982396 + 0.186812i \(0.940185\pi\)
\(422\) 244.177 + 353.341i 0.578619 + 0.837301i
\(423\) −319.840 + 34.1389i −0.756123 + 0.0807066i
\(424\) 141.658 + 570.725i 0.334099 + 1.34605i
\(425\) 142.568 + 246.934i 0.335453 + 0.581022i
\(426\) 131.818 17.8056i 0.309432 0.0417971i
\(427\) −1284.41 + 344.156i −3.00798 + 0.805986i
\(428\) 12.4080 124.159i 0.0289906 0.290090i
\(429\) 76.4983 361.331i 0.178318 0.842263i
\(430\) −6.90511 + 2.46512i −0.0160584 + 0.00573283i
\(431\) 768.661i 1.78344i −0.452592 0.891718i \(-0.649501\pi\)
0.452592 0.891718i \(-0.350499\pi\)
\(432\) 317.356 293.102i 0.734621 0.678478i
\(433\) 639.351 1.47656 0.738281 0.674494i \(-0.235638\pi\)
0.738281 + 0.674494i \(0.235638\pi\)
\(434\) −0.0909901 0.254875i −0.000209655 0.000587270i
\(435\) 237.980 + 50.3833i 0.547080 + 0.115824i
\(436\) −39.4952 + 395.202i −0.0905853 + 0.906427i
\(437\) 3.02595 + 11.2930i 0.00692437 + 0.0258421i
\(438\) 111.863 + 828.141i 0.255394 + 1.89073i
\(439\) 715.329 412.995i 1.62945 0.940763i 0.645193 0.764020i \(-0.276777\pi\)
0.984257 0.176744i \(-0.0565564\pi\)
\(440\) −280.786 169.117i −0.638150 0.384357i
\(441\) 875.589 638.316i 1.98546 1.44743i
\(442\) −620.501 + 428.799i −1.40385 + 0.970133i
\(443\) −667.043 178.734i −1.50574 0.403462i −0.590722 0.806875i \(-0.701157\pi\)
−0.915018 + 0.403413i \(0.867824\pi\)
\(444\) 232.866 + 74.1410i 0.524472 + 0.166984i
\(445\) 39.9165 + 148.970i 0.0897000 + 0.334765i
\(446\) −466.586 396.444i −1.04616 0.888887i
\(447\) 15.0257 + 282.345i 0.0336145 + 0.631644i
\(448\) 705.468 + 442.899i 1.57470 + 0.988614i
\(449\) 521.360i 1.16116i 0.814204 + 0.580579i \(0.197174\pi\)
−0.814204 + 0.580579i \(0.802826\pi\)
\(450\) −147.029 + 70.8837i −0.326731 + 0.157519i
\(451\) 192.196 192.196i 0.426156 0.426156i
\(452\) −639.961 + 104.717i −1.41584 + 0.231676i
\(453\) 437.576 142.568i 0.965952 0.314719i
\(454\) 33.3065 + 409.800i 0.0733623 + 0.902643i
\(455\) −311.531 + 539.587i −0.684682 + 1.18590i
\(456\) −9.92447 286.237i −0.0217642 0.627714i
\(457\) −84.6854 + 48.8932i −0.185307 + 0.106987i −0.589784 0.807561i \(-0.700787\pi\)
0.404477 + 0.914548i \(0.367454\pi\)
\(458\) 577.782 399.278i 1.26153 0.871786i
\(459\) −497.360 + 688.056i −1.08357 + 1.49903i
\(460\) 14.2567 6.43505i 0.0309928 0.0139892i
\(461\) 74.8169 279.220i 0.162293 0.605684i −0.836078 0.548611i \(-0.815157\pi\)
0.998370 0.0570726i \(-0.0181767\pi\)
\(462\) 739.554 309.253i 1.60077 0.669378i
\(463\) 328.603 569.156i 0.709725 1.22928i −0.255235 0.966879i \(-0.582153\pi\)
0.964959 0.262400i \(-0.0845140\pi\)
\(464\) −291.099 144.591i −0.627368 0.311619i
\(465\) 0.110971 + 0.0564299i 0.000238648 + 0.000121355i
\(466\) 46.6634 16.6588i 0.100136 0.0357485i
\(467\) 129.997 + 129.997i 0.278366 + 0.278366i 0.832456 0.554091i \(-0.186934\pi\)
−0.554091 + 0.832456i \(0.686934\pi\)
\(468\) −218.393 372.458i −0.466652 0.795850i
\(469\) 710.841 + 710.841i 1.51565 + 1.51565i
\(470\) 257.829 + 122.170i 0.548572 + 0.259936i
\(471\) −1.61201 30.2910i −0.00342253 0.0643121i
\(472\) 35.4467 + 10.2047i 0.0750990 + 0.0216201i
\(473\) 4.71395 8.16479i 0.00996606 0.0172617i
\(474\) 178.198 + 230.621i 0.375944 + 0.486542i
\(475\) −28.0081 + 104.528i −0.0589644 + 0.220058i
\(476\) −1531.26 578.828i −3.21693 1.21603i
\(477\) 617.224 238.075i 1.29397 0.499108i
\(478\) −583.112 106.532i −1.21990 0.222870i
\(479\) −520.692 + 300.622i −1.08704 + 0.627603i −0.932787 0.360429i \(-0.882630\pi\)
−0.154253 + 0.988031i \(0.549297\pi\)
\(480\) −375.783 + 74.9441i −0.782881 + 0.156134i
\(481\) 122.125 211.527i 0.253898 0.439765i
\(482\) 177.635 + 150.931i 0.368538 + 0.313135i
\(483\) −7.92296 + 37.4231i −0.0164036 + 0.0774806i
\(484\) −61.6953 + 10.0953i −0.127470 + 0.0208580i
\(485\) −219.261 + 219.261i −0.452085 + 0.452085i
\(486\) −371.631 313.188i −0.764672 0.644420i
\(487\) 251.573i 0.516578i −0.966068 0.258289i \(-0.916841\pi\)
0.966068 0.258289i \(-0.0831586\pi\)
\(488\) −588.538 + 567.145i −1.20602 + 1.16218i
\(489\) −630.160 + 409.954i −1.28867 + 0.838352i
\(490\) −957.957 + 77.8580i −1.95501 + 0.158894i
\(491\) 19.7247 + 73.6136i 0.0401725 + 0.149926i 0.983099 0.183076i \(-0.0586053\pi\)
−0.942926 + 0.333001i \(0.891939\pi\)
\(492\) 14.7504 317.404i 0.0299804 0.645130i
\(493\) 617.004 + 165.326i 1.25153 + 0.335347i
\(494\) −281.592 51.4457i −0.570025 0.104141i
\(495\) −149.442 + 337.117i −0.301903 + 0.681044i
\(496\) −0.124752 0.110038i −0.000251516 0.000221850i
\(497\) 249.880 144.268i 0.502777 0.290278i
\(498\) 48.8105 380.644i 0.0980130 0.764345i
\(499\) 152.067 + 567.522i 0.304744 + 1.13732i 0.933166 + 0.359446i \(0.117034\pi\)
−0.628422 + 0.777873i \(0.716299\pi\)
\(500\) 541.232 + 54.0889i 1.08246 + 0.108178i
\(501\) 10.8123 12.0278i 0.0215815 0.0240077i
\(502\) 30.3811 64.1167i 0.0605201 0.127723i
\(503\) −587.693 −1.16838 −0.584188 0.811619i \(-0.698587\pi\)
−0.584188 + 0.811619i \(0.698587\pi\)
\(504\) 395.558 849.518i 0.784838 1.68555i
\(505\) 197.194i 0.390482i
\(506\) −8.61248 + 18.1759i −0.0170207 + 0.0359208i
\(507\) 71.7584 23.3798i 0.141535 0.0461140i
\(508\) 194.485 159.145i 0.382845 0.313277i
\(509\) −563.237 + 150.919i −1.10656 + 0.296501i −0.765432 0.643517i \(-0.777474\pi\)
−0.341125 + 0.940018i \(0.610808\pi\)
\(510\) 694.758 290.520i 1.36227 0.569648i
\(511\) 906.360 + 1569.86i 1.77370 + 3.07213i
\(512\) 511.211 + 28.4154i 0.998459 + 0.0554988i
\(513\) −318.121 + 51.1756i −0.620118 + 0.0997576i
\(514\) 310.238 + 56.6791i 0.603576 + 0.110271i
\(515\) −64.9501 + 242.397i −0.126117 + 0.470674i
\(516\) −2.35526 10.7668i −0.00456447 0.0208658i
\(517\) −354.368 + 94.9527i −0.685432 + 0.183661i
\(518\) 528.374 42.9436i 1.02003 0.0829028i
\(519\) −340.385 + 669.378i −0.655847 + 1.28975i
\(520\) −7.08810 + 382.909i −0.0136310 + 0.736363i
\(521\) −863.519 −1.65743 −0.828713 0.559674i \(-0.810926\pi\)
−0.828713 + 0.559674i \(0.810926\pi\)
\(522\) −120.621 + 345.192i −0.231074 + 0.661288i
\(523\) 289.128 + 289.128i 0.552826 + 0.552826i 0.927255 0.374430i \(-0.122161\pi\)
−0.374430 + 0.927255i \(0.622161\pi\)
\(524\) −270.545 + 376.406i −0.516307 + 0.718332i
\(525\) −236.703 + 263.313i −0.450864 + 0.501549i
\(526\) 388.322 + 329.945i 0.738254 + 0.627271i
\(527\) 0.283116 + 0.163457i 0.000537223 + 0.000310166i
\(528\) 305.836 386.315i 0.579234 0.731658i
\(529\) 264.020 + 457.296i 0.499093 + 0.864454i
\(530\) −577.237 105.459i −1.08913 0.198979i
\(531\) 6.42539 40.9967i 0.0121006 0.0772067i
\(532\) −255.596 566.267i −0.480444 1.06441i
\(533\) −306.752 82.1940i −0.575520 0.154210i
\(534\) −229.745 + 31.0332i −0.430234 + 0.0581146i
\(535\) 107.830 + 62.2558i 0.201552 + 0.116366i
\(536\) 593.794 + 170.947i 1.10783 + 0.318930i
\(537\) 336.789 + 517.693i 0.627167 + 0.964047i
\(538\) 630.216 + 298.622i 1.17141 + 0.555059i
\(539\) 873.889 873.889i 1.62131 1.62131i
\(540\) 136.297 + 408.967i 0.252403 + 0.757346i
\(541\) −418.596 + 418.596i −0.773745 + 0.773745i −0.978759 0.205014i \(-0.934276\pi\)
0.205014 + 0.978759i \(0.434276\pi\)
\(542\) 727.664 259.775i 1.34255 0.479290i
\(543\) −49.3967 75.9299i −0.0909699 0.139834i
\(544\) −995.844 + 144.080i −1.83059 + 0.264853i
\(545\) −343.228 198.163i −0.629777 0.363602i
\(546\) −744.956 567.653i −1.36439 1.03966i
\(547\) −1020.31 273.392i −1.86529 0.499802i −0.865289 0.501273i \(-0.832865\pi\)
−0.999999 + 0.00147058i \(0.999532\pi\)
\(548\) 321.055 + 121.361i 0.585867 + 0.221462i
\(549\) 715.518 + 577.504i 1.30331 + 1.05192i
\(550\) −153.155 + 105.838i −0.278463 + 0.192433i
\(551\) 121.213 + 209.948i 0.219988 + 0.381031i
\(552\) 6.86883 + 22.4869i 0.0124435 + 0.0407372i
\(553\) 547.505 + 316.102i 0.990062 + 0.571613i
\(554\) −26.6029 327.319i −0.0480196 0.590829i
\(555\) −163.030 + 181.358i −0.293748 + 0.326771i
\(556\) −71.1898 + 99.0456i −0.128039 + 0.178140i
\(557\) −373.884 373.884i −0.671246 0.671246i 0.286757 0.958003i \(-0.407423\pi\)
−0.958003 + 0.286757i \(0.907423\pi\)
\(558\) −0.105353 + 0.154668i −0.000188805 + 0.000277183i
\(559\) −11.0153 −0.0197055
\(560\) −692.438 + 459.811i −1.23650 + 0.821091i
\(561\) −438.914 + 863.140i −0.782378 + 1.53857i
\(562\) −129.071 109.667i −0.229663 0.195138i
\(563\) −97.5763 + 26.1455i −0.173315 + 0.0464396i −0.344433 0.938811i \(-0.611929\pi\)
0.171118 + 0.985251i \(0.445262\pi\)
\(564\) −231.449 + 361.062i −0.410370 + 0.640181i
\(565\) 167.480 625.044i 0.296425 1.10627i
\(566\) −172.701 + 119.345i −0.305125 + 0.210857i
\(567\) −1003.68 322.535i −1.77016 0.568845i
\(568\) 91.5043 151.925i 0.161099 0.267474i
\(569\) −293.077 507.624i −0.515074 0.892134i −0.999847 0.0174942i \(-0.994431\pi\)
0.484773 0.874640i \(-0.338902\pi\)
\(570\) 264.411 + 108.482i 0.463880 + 0.190319i
\(571\) 669.610 179.421i 1.17270 0.314223i 0.380671 0.924711i \(-0.375693\pi\)
0.792026 + 0.610488i \(0.209026\pi\)
\(572\) −311.864 381.118i −0.545217 0.666291i
\(573\) 55.5443 18.0970i 0.0969359 0.0315829i
\(574\) −231.739 649.131i −0.403726 1.13089i
\(575\) 8.88383i 0.0154501i
\(576\) −39.8944 574.617i −0.0692611 0.997599i
\(577\) 587.109 1.01752 0.508760 0.860909i \(-0.330104\pi\)
0.508760 + 0.860909i \(0.330104\pi\)
\(578\) 1318.00 470.524i 2.28027 0.814055i
\(579\) 383.053 426.115i 0.661577 0.735950i
\(580\) 251.012 205.400i 0.432780 0.354138i
\(581\) −215.455 804.089i −0.370835 1.38397i
\(582\) −284.995 368.837i −0.489682 0.633740i
\(583\) 653.446 377.267i 1.12083 0.647114i
\(584\) 954.463 + 574.872i 1.63435 + 0.984370i
\(585\) 428.413 45.7276i 0.732329 0.0781669i
\(586\) −22.1939 32.1161i −0.0378736 0.0548056i
\(587\) 1070.88 + 286.942i 1.82433 + 0.488828i 0.997307 0.0733412i \(-0.0233662\pi\)
0.827023 + 0.562169i \(0.190033\pi\)
\(588\) 67.0677 1443.19i 0.114061 2.45440i
\(589\) 0.0321120 + 0.119844i 5.45195e−5 + 0.000203469i
\(590\) −23.8332 + 28.0500i −0.0403953 + 0.0475424i
\(591\) −212.794 + 138.435i −0.360058 + 0.234238i
\(592\) 271.447 180.253i 0.458525 0.304482i
\(593\) 903.880i 1.52425i −0.647430 0.762125i \(-0.724156\pi\)
0.647430 0.762125i \(-0.275844\pi\)
\(594\) −474.065 287.270i −0.798089 0.483620i
\(595\) 1155.08 1155.08i 1.94131 1.94131i
\(596\) 306.122 + 220.028i 0.513628 + 0.369174i
\(597\) 1.99617 9.42870i 0.00334368 0.0157935i
\(598\) 23.4225 1.90367i 0.0391681 0.00318339i
\(599\) 271.858 470.872i 0.453853 0.786097i −0.544768 0.838587i \(-0.683382\pi\)
0.998621 + 0.0524898i \(0.0167157\pi\)
\(600\) −49.0092 + 212.042i −0.0816819 + 0.353403i
\(601\) −836.777 + 483.114i −1.39231 + 0.803850i −0.993570 0.113215i \(-0.963885\pi\)
−0.398738 + 0.917065i \(0.630552\pi\)
\(602\) −13.5917 19.6681i −0.0225776 0.0326713i
\(603\) 107.636 686.767i 0.178502 1.13892i
\(604\) 216.970 573.982i 0.359221 0.950301i
\(605\) 16.1459 60.2572i 0.0266874 0.0995986i
\(606\) −294.013 37.7017i −0.485171 0.0622140i
\(607\) 382.190 661.973i 0.629638 1.09056i −0.357987 0.933727i \(-0.616537\pi\)
0.987624 0.156838i \(-0.0501300\pi\)
\(608\) −305.912 228.581i −0.503145 0.375956i
\(609\) 42.1520 + 792.069i 0.0692150 + 1.30061i
\(610\) −274.215 768.113i −0.449533 1.25920i
\(611\) 303.096 + 303.096i 0.496065 + 0.496065i
\(612\) 300.331 + 1091.42i 0.490737 + 1.78337i
\(613\) −512.693 512.693i −0.836367 0.836367i 0.152012 0.988379i \(-0.451425\pi\)
−0.988379 + 0.152012i \(0.951425\pi\)
\(614\) −238.372 + 503.064i −0.388228 + 0.819323i
\(615\) 282.628 + 143.719i 0.459558 + 0.233689i
\(616\) 295.689 1027.10i 0.480015 1.66737i
\(617\) 250.839 434.465i 0.406546 0.704158i −0.587954 0.808894i \(-0.700067\pi\)
0.994500 + 0.104736i \(0.0333998\pi\)
\(618\) −348.993 143.184i −0.564714 0.231689i
\(619\) −82.7976 + 309.005i −0.133760 + 0.499200i −1.00000 0.000428546i \(-0.999864\pi\)
0.866240 + 0.499629i \(0.166530\pi\)
\(620\) 0.151295 0.0682901i 0.000244024 0.000110145i
\(621\) 24.1387 10.8174i 0.0388706 0.0174193i
\(622\) −80.7033 + 441.737i −0.129748 + 0.710188i
\(623\) −435.515 + 251.444i −0.699060 + 0.403603i
\(624\) −569.557 83.7771i −0.912752 0.134258i
\(625\) −158.036 + 273.726i −0.252857 + 0.437962i
\(626\) −211.631 + 249.074i −0.338068 + 0.397883i
\(627\) −349.422 + 113.846i −0.557292 + 0.181573i
\(628\) −32.8420 23.6054i −0.0522961 0.0375883i
\(629\) −452.809 + 452.809i −0.719887 + 0.719887i
\(630\) 610.261 + 708.517i 0.968668 + 1.12463i
\(631\) 1089.35i 1.72639i −0.504871 0.863195i \(-0.668460\pi\)
0.504871 0.863195i \(-0.331540\pi\)
\(632\) 388.527 + 7.19212i 0.614759 + 0.0113799i
\(633\) −34.2371 643.343i −0.0540871 1.01634i
\(634\) 89.1656 + 1097.09i 0.140640 + 1.73042i
\(635\) 64.9028 + 242.220i 0.102209 + 0.381450i
\(636\) 267.600 840.491i 0.420755 1.32153i
\(637\) −1394.76 373.724i −2.18957 0.586694i
\(638\) −74.9538 + 410.266i −0.117482 + 0.643051i
\(639\) −182.404 80.8587i −0.285452 0.126539i
\(640\) −235.711 + 453.289i −0.368298 + 0.708263i
\(641\) −113.444 + 65.4969i −0.176980 + 0.102179i −0.585873 0.810403i \(-0.699248\pi\)
0.408893 + 0.912582i \(0.365915\pi\)
\(642\) −113.439 + 148.871i −0.176696 + 0.231886i
\(643\) −14.1463 52.7948i −0.0220005 0.0821070i 0.954053 0.299639i \(-0.0968661\pi\)
−0.976053 + 0.217532i \(0.930199\pi\)
\(644\) 32.2998 + 39.4725i 0.0501550 + 0.0612927i
\(645\) 10.7594 + 2.27791i 0.0166813 + 0.00353164i
\(646\) 678.207 + 321.362i 1.04986 + 0.497464i
\(647\) −140.238 −0.216750 −0.108375 0.994110i \(-0.534565\pi\)
−0.108375 + 0.994110i \(0.534565\pi\)
\(648\) −635.824 + 125.027i −0.981210 + 0.192943i
\(649\) 47.3301i 0.0729277i
\(650\) 196.563 + 93.1395i 0.302405 + 0.143292i
\(651\) −0.0840800 + 0.397142i −0.000129155 + 0.000610049i
\(652\) −99.6764 + 997.397i −0.152878 + 1.52975i
\(653\) −827.733 + 221.790i −1.26759 + 0.339649i −0.829105 0.559092i \(-0.811150\pi\)
−0.438480 + 0.898741i \(0.644483\pi\)
\(654\) 361.081 473.863i 0.552112 0.724561i
\(655\) −231.281 400.590i −0.353100 0.611588i
\(656\) −317.725 280.250i −0.484337 0.427211i
\(657\) 507.992 1145.94i 0.773199 1.74421i
\(658\) −167.197 + 915.170i −0.254099 + 1.39084i
\(659\) 56.2796 210.038i 0.0854015 0.318723i −0.909988 0.414634i \(-0.863910\pi\)
0.995390 + 0.0959109i \(0.0305764\pi\)
\(660\) 225.805 + 436.755i 0.342129 + 0.661750i
\(661\) 663.025 177.657i 1.00306 0.268770i 0.280335 0.959902i \(-0.409554\pi\)
0.722728 + 0.691132i \(0.242888\pi\)
\(662\) 72.7473 + 895.075i 0.109890 + 1.35208i
\(663\) 1129.77 60.1237i 1.70403 0.0906844i
\(664\) −355.055 368.448i −0.534721 0.554891i
\(665\) 619.958 0.932268
\(666\) −239.232 277.750i −0.359208 0.417042i
\(667\) −14.0728 14.0728i −0.0210986 0.0210986i
\(668\) −3.48229 21.2814i −0.00521301 0.0318584i
\(669\) 284.506 + 873.221i 0.425271 + 1.30526i
\(670\) −399.248 + 469.887i −0.595892 + 0.701323i
\(671\) 908.238 + 524.371i 1.35356 + 0.781477i
\(672\) −553.185 1120.33i −0.823191 1.66716i
\(673\) 112.971 + 195.671i 0.167861 + 0.290744i 0.937668 0.347533i \(-0.112981\pi\)
−0.769806 + 0.638277i \(0.779647\pi\)
\(674\) −68.6228 + 375.613i −0.101814 + 0.557290i
\(675\) 243.556 + 25.0024i 0.360824 + 0.0370405i
\(676\) 35.5810 94.1276i 0.0526346 0.139242i
\(677\) 175.329 + 46.9794i 0.258980 + 0.0693934i 0.385973 0.922510i \(-0.373866\pi\)
−0.126993 + 0.991904i \(0.540533\pi\)
\(678\) 899.913 + 369.214i 1.32730 + 0.544563i
\(679\) −875.635 505.548i −1.28960 0.744548i
\(680\) 277.779 964.883i 0.408498 1.41895i
\(681\) 279.544 549.734i 0.410491 0.807245i
\(682\) −0.0913974 + 0.192886i −0.000134014 + 0.000282825i
\(683\) −328.101 + 328.101i −0.480383 + 0.480383i −0.905254 0.424871i \(-0.860319\pi\)
0.424871 + 0.905254i \(0.360319\pi\)
\(684\) −212.299 + 373.494i −0.310378 + 0.546043i
\(685\) −242.182 + 242.182i −0.353551 + 0.353551i
\(686\) −624.843 1750.27i −0.910849 2.55141i
\(687\) −1051.99 + 55.9845i −1.53129 + 0.0814913i
\(688\) −13.1610 6.53719i −0.0191294 0.00950173i
\(689\) −763.473 440.791i −1.10809 0.639755i
\(690\) −23.2720 2.98420i −0.0337276 0.00432493i
\(691\) −201.061 53.8742i −0.290972 0.0779656i 0.110381 0.993889i \(-0.464793\pi\)
−0.401352 + 0.915924i \(0.631460\pi\)
\(692\) 411.925 + 912.611i 0.595268 + 1.31880i
\(693\) −1187.91 186.181i −1.71416 0.268659i
\(694\) −144.997 209.820i −0.208929 0.302335i
\(695\) −60.8580 105.409i −0.0875655 0.151668i
\(696\) 258.258 + 413.527i 0.371060 + 0.594148i
\(697\) 721.058 + 416.303i 1.03452 + 0.597278i
\(698\) −288.272 + 23.4293i −0.412998 + 0.0335664i
\(699\) −72.7102 15.3937i −0.104020 0.0220224i
\(700\) 76.2342 + 465.891i 0.108906 + 0.665559i
\(701\) 567.235 + 567.235i 0.809179 + 0.809179i 0.984510 0.175330i \(-0.0560993\pi\)
−0.175330 + 0.984510i \(0.556099\pi\)
\(702\) −13.7294 + 647.501i −0.0195575 + 0.922366i
\(703\) −243.034 −0.345709
\(704\) −146.432 640.435i −0.208001 0.909709i
\(705\) −233.375 358.732i −0.331029 0.508840i
\(706\) 516.390 607.755i 0.731430 0.860842i
\(707\) −621.087 + 166.420i −0.878482 + 0.235389i
\(708\) −37.2656 40.8980i −0.0526350 0.0577655i
\(709\) −155.433 + 580.083i −0.219228 + 0.818171i 0.765407 + 0.643547i \(0.222538\pi\)
−0.984635 + 0.174624i \(0.944129\pi\)
\(710\) 100.613 + 145.594i 0.141709 + 0.205062i
\(711\) −46.3986 434.699i −0.0652583 0.611391i
\(712\) −159.482 + 264.790i −0.223992 + 0.371895i
\(713\) −0.00509277 0.00882093i −7.14273e−6 1.23716e-5i
\(714\) 1501.37 + 1943.05i 2.10275 + 2.72136i
\(715\) 474.662 127.185i 0.663862 0.177881i
\(716\) 819.389 + 81.8869i 1.14440 + 0.114367i
\(717\) 661.244 + 594.421i 0.922238 + 0.829039i
\(718\) −833.327 + 297.497i −1.16062 + 0.414341i
\(719\) 701.525i 0.975695i −0.872929 0.487848i \(-0.837782\pi\)
0.872929 0.487848i \(-0.162218\pi\)
\(720\) 539.000 + 199.612i 0.748611 + 0.277239i
\(721\) −818.275 −1.13492
\(722\) −146.984 411.722i −0.203579 0.570253i
\(723\) −108.315 332.446i −0.149813 0.459814i
\(724\) −120.179 12.0103i −0.165994 0.0165888i
\(725\) −47.6774 177.934i −0.0657619 0.245427i
\(726\) 86.7558 + 35.5939i 0.119498 + 0.0490275i
\(727\) −528.028 + 304.857i −0.726311 + 0.419336i −0.817071 0.576537i \(-0.804404\pi\)
0.0907599 + 0.995873i \(0.471070\pi\)
\(728\) −1212.00 + 300.827i −1.66484 + 0.413224i
\(729\) 228.630 + 692.221i 0.313621 + 0.949548i
\(730\) −914.688 + 632.098i −1.25300 + 0.865887i
\(731\) 27.8957 + 7.47463i 0.0381610 + 0.0102252i
\(732\) 1197.68 261.996i 1.63617 0.357917i
\(733\) 16.2532 + 60.6578i 0.0221736 + 0.0827528i 0.976126 0.217205i \(-0.0696940\pi\)
−0.953952 + 0.299958i \(0.903027\pi\)
\(734\) 519.976 + 441.807i 0.708414 + 0.601917i
\(735\) 1285.07 + 653.469i 1.74839 + 0.889073i
\(736\) 29.1147 + 11.6259i 0.0395581 + 0.0157961i
\(737\) 792.861i 1.07579i
\(738\) −268.319 + 393.918i −0.363576 + 0.533764i
\(739\) 519.501 519.501i 0.702979 0.702979i −0.262070 0.965049i \(-0.584405\pi\)
0.965049 + 0.262070i \(0.0844052\pi\)
\(740\) 52.5065 + 320.884i 0.0709548 + 0.433627i
\(741\) 319.323 + 287.053i 0.430936 + 0.387387i
\(742\) −154.998 1907.08i −0.208893 2.57019i
\(743\) 137.024 237.333i 0.184421 0.319426i −0.758961 0.651137i \(-0.774292\pi\)
0.943381 + 0.331711i \(0.107626\pi\)
\(744\) 0.0728934 + 0.238636i 9.79750e−5 + 0.000320747i
\(745\) −325.790 + 188.095i −0.437303 + 0.252477i
\(746\) 249.378 172.333i 0.334287 0.231010i
\(747\) −361.540 + 447.942i −0.483989 + 0.599654i
\(748\) 531.163 + 1176.78i 0.710111 + 1.57323i
\(749\) −105.080 + 392.166i −0.140294 + 0.523586i
\(750\) −648.959 494.503i −0.865278 0.659338i
\(751\) −509.952 + 883.262i −0.679030 + 1.17611i 0.296243 + 0.955113i \(0.404266\pi\)
−0.975273 + 0.221002i \(0.929067\pi\)
\(752\) 182.260 + 542.011i 0.242366 + 0.720759i
\(753\) −89.2092 + 58.0356i −0.118472 + 0.0770725i
\(754\) 458.913 163.832i 0.608639 0.217283i
\(755\) 432.973 + 432.973i 0.573474 + 0.573474i
\(756\) −1173.07 + 774.430i −1.55168 + 1.02438i
\(757\) 230.914 + 230.914i 0.305038 + 0.305038i 0.842981 0.537943i \(-0.180799\pi\)
−0.537943 + 0.842981i \(0.680799\pi\)
\(758\) 761.324 + 360.746i 1.00439 + 0.475919i
\(759\) 25.2892 16.4520i 0.0333191 0.0216759i
\(760\) 333.484 184.393i 0.438794 0.242622i
\(761\) −409.995 + 710.131i −0.538758 + 0.933156i 0.460214 + 0.887808i \(0.347773\pi\)
−0.998971 + 0.0453474i \(0.985561\pi\)
\(762\) −373.557 + 50.4589i −0.490232 + 0.0662190i
\(763\) 334.476 1248.28i 0.438369 1.63602i
\(764\) 27.5413 72.8590i 0.0360488 0.0953652i
\(765\) −1115.96 174.903i −1.45877 0.228632i
\(766\) −68.2902 12.4763i −0.0891517 0.0162876i
\(767\) −47.8907 + 27.6497i −0.0624390 + 0.0360492i
\(768\) −630.782 438.107i −0.821331 0.570451i
\(769\) 563.574 976.139i 0.732866 1.26936i −0.222787 0.974867i \(-0.571515\pi\)
0.955653 0.294494i \(-0.0951513\pi\)
\(770\) 812.771 + 690.586i 1.05555 + 0.896865i
\(771\) −351.807 316.255i −0.456300 0.410188i
\(772\) −123.368 753.943i −0.159804 0.976611i
\(773\) −556.412 + 556.412i −0.719809 + 0.719809i −0.968566 0.248757i