Properties

Label 144.3.w.a.5.3
Level $144$
Weight $3$
Character 144.5
Analytic conductor $3.924$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 144.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.92371580679\)
Analytic rank: \(0\)
Dimension: \(184\)
Relative dimension: \(46\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 5.3
Character \(\chi\) \(=\) 144.5
Dual form 144.3.w.a.29.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.98351 + 0.256277i) q^{2} +(-1.40595 - 2.65015i) q^{3} +(3.86864 - 1.01666i) q^{4} +(1.00259 + 3.74171i) q^{5} +(3.46789 + 4.89630i) q^{6} +(4.65369 - 2.68681i) q^{7} +(-7.41296 + 3.00800i) q^{8} +(-5.04662 + 7.45195i) q^{9} +O(q^{10})\) \(q+(-1.98351 + 0.256277i) q^{2} +(-1.40595 - 2.65015i) q^{3} +(3.86864 - 1.01666i) q^{4} +(1.00259 + 3.74171i) q^{5} +(3.46789 + 4.89630i) q^{6} +(4.65369 - 2.68681i) q^{7} +(-7.41296 + 3.00800i) q^{8} +(-5.04662 + 7.45195i) q^{9} +(-2.94756 - 7.16478i) q^{10} +(12.4933 + 3.34758i) q^{11} +(-8.13341 - 8.82313i) q^{12} +(-3.07587 - 11.4793i) q^{13} +(-8.54209 + 6.52195i) q^{14} +(8.50651 - 7.91765i) q^{15} +(13.9328 - 7.86617i) q^{16} -11.8846i q^{17} +(8.10028 - 16.0744i) q^{18} +(20.1387 - 20.1387i) q^{19} +(7.68268 + 13.4560i) q^{20} +(-13.6633 - 8.55548i) q^{21} +(-25.6386 - 3.43821i) q^{22} +(4.74003 - 8.20998i) q^{23} +(18.3939 + 15.4164i) q^{24} +(8.65545 - 4.99723i) q^{25} +(9.04291 + 21.9811i) q^{26} +(26.8441 + 2.89727i) q^{27} +(15.2719 - 15.1255i) q^{28} +(5.39392 - 20.1304i) q^{29} +(-14.8437 + 17.8848i) q^{30} +(-19.3613 + 33.5347i) q^{31} +(-25.6200 + 19.1733i) q^{32} +(-8.69337 - 37.8157i) q^{33} +(3.04574 + 23.5732i) q^{34} +(14.7190 + 14.7190i) q^{35} +(-11.9475 + 33.9596i) q^{36} +(9.65467 + 9.65467i) q^{37} +(-34.7843 + 45.1065i) q^{38} +(-26.0974 + 24.2908i) q^{39} +(-18.6872 - 24.7213i) q^{40} +(-11.7420 + 20.3377i) q^{41} +(29.2939 + 13.4683i) q^{42} +(19.5292 - 72.8841i) q^{43} +(51.7356 + 0.249158i) q^{44} +(-32.9427 - 11.4118i) q^{45} +(-7.29789 + 17.4994i) q^{46} +(-18.4560 + 10.6556i) q^{47} +(-40.4354 - 25.8647i) q^{48} +(-10.0621 + 17.4281i) q^{49} +(-15.8875 + 12.1303i) q^{50} +(-31.4959 + 16.7091i) q^{51} +(-23.5700 - 41.2822i) q^{52} +(-21.4244 + 21.4244i) q^{53} +(-53.9881 + 1.13275i) q^{54} +50.1026i q^{55} +(-26.4157 + 33.9155i) q^{56} +(-81.6846 - 25.0567i) q^{57} +(-5.53996 + 41.3112i) q^{58} +(-6.02423 - 22.4827i) q^{59} +(24.8591 - 39.2788i) q^{60} +(58.9293 + 15.7901i) q^{61} +(29.8091 - 71.4783i) q^{62} +(-3.46345 + 48.2384i) q^{63} +(45.9039 - 44.5963i) q^{64} +(39.8684 - 23.0180i) q^{65} +(26.9347 + 72.7801i) q^{66} +(24.1615 + 90.1720i) q^{67} +(-12.0825 - 45.9771i) q^{68} +(-28.4219 - 1.01902i) q^{69} +(-32.9674 - 25.4232i) q^{70} +124.525 q^{71} +(14.9950 - 70.4212i) q^{72} +86.4217i q^{73} +(-21.6244 - 16.6759i) q^{74} +(-25.4125 - 15.9124i) q^{75} +(57.4353 - 98.3836i) q^{76} +(67.1344 - 17.9886i) q^{77} +(45.5394 - 54.8693i) q^{78} +(46.4211 + 80.4037i) q^{79} +(43.4018 + 44.2460i) q^{80} +(-30.0632 - 75.2144i) q^{81} +(18.0783 - 43.3493i) q^{82} +(20.2421 - 75.5446i) q^{83} +(-61.5564 - 19.2072i) q^{84} +(44.4685 - 11.9153i) q^{85} +(-20.0580 + 149.571i) q^{86} +(-60.9322 + 14.0075i) q^{87} +(-102.682 + 12.7644i) q^{88} -164.215 q^{89} +(68.2668 + 14.1929i) q^{90} +(-45.1569 - 45.1569i) q^{91} +(9.99077 - 36.5805i) q^{92} +(116.093 + 4.16230i) q^{93} +(33.8770 - 25.8654i) q^{94} +(95.5439 + 55.1623i) q^{95} +(86.8326 + 40.9403i) q^{96} +(15.8533 + 27.4588i) q^{97} +(15.4919 - 37.1475i) q^{98} +(-87.9951 + 76.2057i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} + O(q^{10}) \) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} - 8q^{10} - 6q^{11} - 64q^{12} - 2q^{13} - 6q^{14} - 8q^{15} - 2q^{16} + 54q^{18} - 8q^{19} + 120q^{20} - 22q^{21} - 2q^{22} - 160q^{24} + 44q^{27} - 72q^{28} - 6q^{29} - 90q^{30} - 4q^{31} - 6q^{32} - 8q^{33} + 6q^{34} - 202q^{36} - 8q^{37} - 6q^{38} - 2q^{40} + 44q^{42} - 2q^{43} + 46q^{45} - 160q^{46} - 12q^{47} - 118q^{48} + 472q^{49} + 228q^{50} - 48q^{51} - 2q^{52} + 206q^{54} - 300q^{56} - 92q^{58} - 438q^{59} - 90q^{60} - 2q^{61} - 204q^{63} + 244q^{64} - 12q^{65} - 508q^{66} - 2q^{67} - 144q^{68} + 14q^{69} + 96q^{70} + 6q^{72} + 246q^{74} + 152q^{75} - 158q^{76} - 6q^{77} + 304q^{78} - 4q^{79} - 8q^{81} - 388q^{82} - 726q^{83} + 542q^{84} + 48q^{85} + 894q^{86} + 22q^{88} - 528q^{90} - 204q^{91} - 348q^{92} + 62q^{93} - 18q^{94} - 12q^{95} + 262q^{96} - 4q^{97} + 286q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.98351 + 0.256277i −0.991756 + 0.128138i
\(3\) −1.40595 2.65015i −0.468649 0.883384i
\(4\) 3.86864 1.01666i 0.967161 0.254164i
\(5\) 1.00259 + 3.74171i 0.200517 + 0.748341i 0.990769 + 0.135559i \(0.0432831\pi\)
−0.790252 + 0.612782i \(0.790050\pi\)
\(6\) 3.46789 + 4.89630i 0.577981 + 0.816050i
\(7\) 4.65369 2.68681i 0.664813 0.383830i −0.129295 0.991606i \(-0.541272\pi\)
0.794108 + 0.607776i \(0.207938\pi\)
\(8\) −7.41296 + 3.00800i −0.926620 + 0.375999i
\(9\) −5.04662 + 7.45195i −0.560736 + 0.827995i
\(10\) −2.94756 7.16478i −0.294756 0.716478i
\(11\) 12.4933 + 3.34758i 1.13576 + 0.304325i 0.777244 0.629200i \(-0.216617\pi\)
0.358513 + 0.933525i \(0.383284\pi\)
\(12\) −8.13341 8.82313i −0.677784 0.735261i
\(13\) −3.07587 11.4793i −0.236605 0.883024i −0.977419 0.211312i \(-0.932226\pi\)
0.740813 0.671711i \(-0.234440\pi\)
\(14\) −8.54209 + 6.52195i −0.610149 + 0.465854i
\(15\) 8.50651 7.91765i 0.567101 0.527843i
\(16\) 13.9328 7.86617i 0.870801 0.491635i
\(17\) 11.8846i 0.699092i −0.936919 0.349546i \(-0.886336\pi\)
0.936919 0.349546i \(-0.113664\pi\)
\(18\) 8.10028 16.0744i 0.450015 0.893021i
\(19\) 20.1387 20.1387i 1.05993 1.05993i 0.0618460 0.998086i \(-0.480301\pi\)
0.998086 0.0618460i \(-0.0196988\pi\)
\(20\) 7.68268 + 13.4560i 0.384134 + 0.672802i
\(21\) −13.6633 8.55548i −0.650633 0.407404i
\(22\) −25.6386 3.43821i −1.16539 0.156282i
\(23\) 4.74003 8.20998i 0.206088 0.356955i −0.744391 0.667744i \(-0.767260\pi\)
0.950479 + 0.310789i \(0.100593\pi\)
\(24\) 18.3939 + 15.4164i 0.766412 + 0.642350i
\(25\) 8.65545 4.99723i 0.346218 0.199889i
\(26\) 9.04291 + 21.9811i 0.347804 + 0.845426i
\(27\) 26.8441 + 2.89727i 0.994226 + 0.107306i
\(28\) 15.2719 15.1255i 0.545425 0.540197i
\(29\) 5.39392 20.1304i 0.185997 0.694151i −0.808418 0.588609i \(-0.799676\pi\)
0.994415 0.105542i \(-0.0336577\pi\)
\(30\) −14.8437 + 17.8848i −0.494789 + 0.596160i
\(31\) −19.3613 + 33.5347i −0.624557 + 1.08176i 0.364069 + 0.931372i \(0.381387\pi\)
−0.988626 + 0.150393i \(0.951946\pi\)
\(32\) −25.6200 + 19.1733i −0.800625 + 0.599166i
\(33\) −8.69337 37.8157i −0.263435 1.14593i
\(34\) 3.04574 + 23.5732i 0.0895805 + 0.693329i
\(35\) 14.7190 + 14.7190i 0.420542 + 0.420542i
\(36\) −11.9475 + 33.9596i −0.331875 + 0.943323i
\(37\) 9.65467 + 9.65467i 0.260937 + 0.260937i 0.825435 0.564498i \(-0.190930\pi\)
−0.564498 + 0.825435i \(0.690930\pi\)
\(38\) −34.7843 + 45.1065i −0.915376 + 1.18701i
\(39\) −26.0974 + 24.2908i −0.669164 + 0.622842i
\(40\) −18.6872 24.7213i −0.467179 0.618033i
\(41\) −11.7420 + 20.3377i −0.286390 + 0.496042i −0.972945 0.231036i \(-0.925789\pi\)
0.686555 + 0.727077i \(0.259122\pi\)
\(42\) 29.2939 + 13.4683i 0.697474 + 0.320674i
\(43\) 19.5292 72.8841i 0.454168 1.69498i −0.236353 0.971667i \(-0.575952\pi\)
0.690521 0.723312i \(-0.257381\pi\)
\(44\) 51.7356 + 0.249158i 1.17581 + 0.00566269i
\(45\) −32.9427 11.4118i −0.732060 0.253594i
\(46\) −7.29789 + 17.4994i −0.158650 + 0.380421i
\(47\) −18.4560 + 10.6556i −0.392682 + 0.226715i −0.683321 0.730118i \(-0.739465\pi\)
0.290640 + 0.956833i \(0.406132\pi\)
\(48\) −40.4354 25.8647i −0.842403 0.538848i
\(49\) −10.0621 + 17.4281i −0.205349 + 0.355675i
\(50\) −15.8875 + 12.1303i −0.317750 + 0.242605i
\(51\) −31.4959 + 16.7091i −0.617567 + 0.327629i
\(52\) −23.5700 41.2822i −0.453269 0.793889i
\(53\) −21.4244 + 21.4244i −0.404234 + 0.404234i −0.879722 0.475488i \(-0.842271\pi\)
0.475488 + 0.879722i \(0.342271\pi\)
\(54\) −53.9881 + 1.13275i −0.999780 + 0.0209768i
\(55\) 50.1026i 0.910956i
\(56\) −26.4157 + 33.9155i −0.471709 + 0.605634i
\(57\) −81.6846 25.0567i −1.43306 0.439591i
\(58\) −5.53996 + 41.3112i −0.0955165 + 0.712262i
\(59\) −6.02423 22.4827i −0.102106 0.381063i 0.895895 0.444266i \(-0.146535\pi\)
−0.998001 + 0.0632023i \(0.979869\pi\)
\(60\) 24.8591 39.2788i 0.414319 0.654646i
\(61\) 58.9293 + 15.7901i 0.966054 + 0.258853i 0.707161 0.707053i \(-0.249976\pi\)
0.258893 + 0.965906i \(0.416642\pi\)
\(62\) 29.8091 71.4783i 0.480793 1.15288i
\(63\) −3.46345 + 48.2384i −0.0549754 + 0.765689i
\(64\) 45.9039 44.5963i 0.717249 0.696817i
\(65\) 39.8684 23.0180i 0.613359 0.354123i
\(66\) 26.9347 + 72.7801i 0.408102 + 1.10273i
\(67\) 24.1615 + 90.1720i 0.360620 + 1.34585i 0.873263 + 0.487249i \(0.162000\pi\)
−0.512643 + 0.858602i \(0.671334\pi\)
\(68\) −12.0825 45.9771i −0.177684 0.676134i
\(69\) −28.4219 1.01902i −0.411912 0.0147683i
\(70\) −32.9674 25.4232i −0.470963 0.363188i
\(71\) 124.525 1.75387 0.876935 0.480609i \(-0.159584\pi\)
0.876935 + 0.480609i \(0.159584\pi\)
\(72\) 14.9950 70.4212i 0.208263 0.978073i
\(73\) 86.4217i 1.18386i 0.805990 + 0.591930i \(0.201634\pi\)
−0.805990 + 0.591930i \(0.798366\pi\)
\(74\) −21.6244 16.6759i −0.292222 0.225350i
\(75\) −25.4125 15.9124i −0.338834 0.212166i
\(76\) 57.4353 98.3836i 0.755728 1.29452i
\(77\) 67.1344 17.9886i 0.871875 0.233618i
\(78\) 45.5394 54.8693i 0.583838 0.703453i
\(79\) 46.4211 + 80.4037i 0.587609 + 1.01777i 0.994545 + 0.104311i \(0.0332639\pi\)
−0.406936 + 0.913457i \(0.633403\pi\)
\(80\) 43.4018 + 44.2460i 0.542522 + 0.553075i
\(81\) −30.0632 75.2144i −0.371150 0.928573i
\(82\) 18.0783 43.3493i 0.220467 0.528650i
\(83\) 20.2421 75.5446i 0.243881 0.910176i −0.730062 0.683381i \(-0.760509\pi\)
0.973943 0.226795i \(-0.0728247\pi\)
\(84\) −61.5564 19.2072i −0.732815 0.228657i
\(85\) 44.4685 11.9153i 0.523159 0.140180i
\(86\) −20.0580 + 149.571i −0.233232 + 1.73920i
\(87\) −60.9322 + 14.0075i −0.700370 + 0.161006i
\(88\) −102.682 + 12.7644i −1.16684 + 0.145050i
\(89\) −164.215 −1.84511 −0.922556 0.385863i \(-0.873904\pi\)
−0.922556 + 0.385863i \(0.873904\pi\)
\(90\) 68.2668 + 14.1929i 0.758520 + 0.157699i
\(91\) −45.1569 45.1569i −0.496229 0.496229i
\(92\) 9.99077 36.5805i 0.108595 0.397614i
\(93\) 116.093 + 4.16230i 1.24831 + 0.0447559i
\(94\) 33.8770 25.8654i 0.360394 0.275164i
\(95\) 95.5439 + 55.1623i 1.00573 + 0.580656i
\(96\) 86.8326 + 40.9403i 0.904506 + 0.426461i
\(97\) 15.8533 + 27.4588i 0.163437 + 0.283080i 0.936099 0.351737i \(-0.114409\pi\)
−0.772662 + 0.634817i \(0.781075\pi\)
\(98\) 15.4919 37.1475i 0.158081 0.379056i
\(99\) −87.9951 + 76.2057i −0.888839 + 0.769755i
\(100\) 28.4044 28.1321i 0.284044 0.281321i
\(101\) −120.067 32.1718i −1.18878 0.318532i −0.390376 0.920656i \(-0.627655\pi\)
−0.798403 + 0.602123i \(0.794322\pi\)
\(102\) 58.1904 41.2143i 0.570494 0.404062i
\(103\) −163.306 94.2846i −1.58549 0.915384i −0.994037 0.109046i \(-0.965220\pi\)
−0.591455 0.806338i \(-0.701446\pi\)
\(104\) 57.3310 + 75.8434i 0.551260 + 0.729264i
\(105\) 18.3134 59.7017i 0.174414 0.568587i
\(106\) 37.0050 47.9862i 0.349104 0.452700i
\(107\) 96.3954 96.3954i 0.900891 0.900891i −0.0946220 0.995513i \(-0.530164\pi\)
0.995513 + 0.0946220i \(0.0301642\pi\)
\(108\) 106.796 16.0827i 0.988850 0.148914i
\(109\) −111.267 + 111.267i −1.02079 + 1.02079i −0.0210151 + 0.999779i \(0.506690\pi\)
−0.999779 + 0.0210151i \(0.993310\pi\)
\(110\) −12.8401 99.3791i −0.116729 0.903447i
\(111\) 12.0124 39.1603i 0.108220 0.352796i
\(112\) 43.7041 74.0415i 0.390215 0.661085i
\(113\) −53.6807 30.9926i −0.475051 0.274271i 0.243301 0.969951i \(-0.421770\pi\)
−0.718352 + 0.695680i \(0.755103\pi\)
\(114\) 168.444 + 28.7664i 1.47758 + 0.252337i
\(115\) 35.4716 + 9.50459i 0.308449 + 0.0826486i
\(116\) 0.401466 83.3611i 0.00346092 0.718630i
\(117\) 101.066 + 35.0105i 0.863812 + 0.299235i
\(118\) 17.7109 + 43.0509i 0.150093 + 0.364838i
\(119\) −31.9316 55.3071i −0.268332 0.464765i
\(120\) −39.2421 + 84.2808i −0.327018 + 0.702340i
\(121\) 40.0879 + 23.1447i 0.331305 + 0.191279i
\(122\) −120.934 16.2176i −0.991259 0.132931i
\(123\) 70.4067 + 2.52430i 0.572412 + 0.0205228i
\(124\) −40.8086 + 149.418i −0.329101 + 1.20498i
\(125\) 95.8540 + 95.8540i 0.766832 + 0.766832i
\(126\) −5.49259 96.5691i −0.0435920 0.766421i
\(127\) −56.7743 −0.447041 −0.223521 0.974699i \(-0.571755\pi\)
−0.223521 + 0.974699i \(0.571755\pi\)
\(128\) −79.6220 + 100.221i −0.622047 + 0.782980i
\(129\) −220.611 + 50.7158i −1.71016 + 0.393145i
\(130\) −73.1804 + 55.8739i −0.562926 + 0.429799i
\(131\) 53.4982 14.3348i 0.408383 0.109426i −0.0487784 0.998810i \(-0.515533\pi\)
0.457161 + 0.889384i \(0.348866\pi\)
\(132\) −72.0772 137.457i −0.546039 1.04134i
\(133\) 39.6104 147.828i 0.297823 1.11149i
\(134\) −71.0337 172.665i −0.530102 1.28855i
\(135\) 16.0728 + 103.348i 0.119058 + 0.765537i
\(136\) 35.7487 + 88.0998i 0.262858 + 0.647792i
\(137\) −52.5810 91.0730i −0.383803 0.664766i 0.607799 0.794091i \(-0.292052\pi\)
−0.991602 + 0.129324i \(0.958719\pi\)
\(138\) 56.6364 5.26265i 0.410409 0.0381352i
\(139\) −97.9157 + 26.2364i −0.704429 + 0.188751i −0.593214 0.805045i \(-0.702141\pi\)
−0.111216 + 0.993796i \(0.535474\pi\)
\(140\) 71.9067 + 41.9784i 0.513619 + 0.299845i
\(141\) 54.1872 + 33.9301i 0.384306 + 0.240639i
\(142\) −246.996 + 31.9128i −1.73941 + 0.224738i
\(143\) 153.711i 1.07491i
\(144\) −11.6954 + 143.524i −0.0812179 + 0.996696i
\(145\) 80.7299 0.556758
\(146\) −22.1479 171.419i −0.151698 1.17410i
\(147\) 60.3339 + 2.16316i 0.410435 + 0.0147154i
\(148\) 47.1660 + 27.5350i 0.318689 + 0.186047i
\(149\) 54.4787 + 203.317i 0.365629 + 1.36454i 0.866566 + 0.499062i \(0.166322\pi\)
−0.500938 + 0.865483i \(0.667011\pi\)
\(150\) 54.4840 + 25.0499i 0.363227 + 0.166999i
\(151\) −126.469 + 73.0167i −0.837541 + 0.483554i −0.856428 0.516267i \(-0.827321\pi\)
0.0188867 + 0.999822i \(0.493988\pi\)
\(152\) −88.7102 + 209.865i −0.583620 + 1.38069i
\(153\) 88.5632 + 59.9769i 0.578844 + 0.392006i
\(154\) −128.552 + 52.8856i −0.834752 + 0.343413i
\(155\) −144.888 38.8227i −0.934764 0.250469i
\(156\) −76.2661 + 120.505i −0.488886 + 0.772466i
\(157\) 27.0148 + 100.820i 0.172069 + 0.642168i 0.997032 + 0.0769830i \(0.0245287\pi\)
−0.824964 + 0.565185i \(0.808805\pi\)
\(158\) −112.682 147.585i −0.713180 0.934083i
\(159\) 86.8995 + 26.6564i 0.546538 + 0.167650i
\(160\) −97.4272 76.6396i −0.608920 0.478998i
\(161\) 50.9423i 0.316412i
\(162\) 78.9064 + 141.484i 0.487077 + 0.873359i
\(163\) 33.4075 33.4075i 0.204954 0.204954i −0.597165 0.802119i \(-0.703706\pi\)
0.802119 + 0.597165i \(0.203706\pi\)
\(164\) −24.7491 + 90.6169i −0.150909 + 0.552542i
\(165\) 132.780 70.4416i 0.804725 0.426919i
\(166\) −20.7902 + 155.031i −0.125242 + 0.933923i
\(167\) −83.3490 + 144.365i −0.499096 + 0.864459i −0.999999 0.00104367i \(-0.999668\pi\)
0.500904 + 0.865503i \(0.333001\pi\)
\(168\) 127.020 + 22.3223i 0.756073 + 0.132871i
\(169\) 24.0448 13.8823i 0.142277 0.0821437i
\(170\) −85.1503 + 35.0304i −0.500884 + 0.206061i
\(171\) 48.4402 + 251.705i 0.283276 + 1.47196i
\(172\) 1.45355 301.817i 0.00845087 1.75475i
\(173\) −18.3433 + 68.4582i −0.106031 + 0.395712i −0.998460 0.0554750i \(-0.982333\pi\)
0.892429 + 0.451187i \(0.148999\pi\)
\(174\) 117.270 43.3997i 0.673965 0.249423i
\(175\) 26.8532 46.5111i 0.153447 0.265778i
\(176\) 200.400 51.6334i 1.13864 0.293372i
\(177\) −51.1129 + 47.5747i −0.288774 + 0.268783i
\(178\) 325.722 42.0845i 1.82990 0.236430i
\(179\) −145.221 145.221i −0.811290 0.811290i 0.173538 0.984827i \(-0.444480\pi\)
−0.984827 + 0.173538i \(0.944480\pi\)
\(180\) −139.045 10.6566i −0.772475 0.0592033i
\(181\) 84.5981 + 84.5981i 0.467393 + 0.467393i 0.901069 0.433676i \(-0.142784\pi\)
−0.433676 + 0.901069i \(0.642784\pi\)
\(182\) 101.142 + 77.9965i 0.555725 + 0.428552i
\(183\) −41.0054 178.372i −0.224073 0.974708i
\(184\) −10.4421 + 75.1182i −0.0567505 + 0.408251i
\(185\) −26.4453 + 45.8046i −0.142948 + 0.247592i
\(186\) −231.339 + 21.4960i −1.24376 + 0.115570i
\(187\) 39.7845 148.478i 0.212751 0.793998i
\(188\) −60.5668 + 59.9862i −0.322164 + 0.319075i
\(189\) 132.709 58.6420i 0.702162 0.310275i
\(190\) −203.649 84.9294i −1.07184 0.446997i
\(191\) −9.02196 + 5.20883i −0.0472354 + 0.0272714i −0.523432 0.852068i \(-0.675348\pi\)
0.476196 + 0.879339i \(0.342015\pi\)
\(192\) −182.726 58.9524i −0.951695 0.307044i
\(193\) 81.1839 140.615i 0.420642 0.728573i −0.575361 0.817900i \(-0.695138\pi\)
0.996002 + 0.0893270i \(0.0284716\pi\)
\(194\) −38.4824 50.4020i −0.198363 0.259804i
\(195\) −117.054 73.2952i −0.600277 0.375873i
\(196\) −21.2083 + 77.6528i −0.108206 + 0.396188i
\(197\) −158.587 + 158.587i −0.805013 + 0.805013i −0.983874 0.178862i \(-0.942759\pi\)
0.178862 + 0.983874i \(0.442759\pi\)
\(198\) 155.010 173.706i 0.782877 0.877304i
\(199\) 88.5298i 0.444874i 0.974947 + 0.222437i \(0.0714011\pi\)
−0.974947 + 0.222437i \(0.928599\pi\)
\(200\) −49.1309 + 63.0798i −0.245654 + 0.315399i
\(201\) 205.000 190.809i 1.01990 0.949298i
\(202\) 246.399 + 33.0428i 1.21980 + 0.163578i
\(203\) −28.9849 108.173i −0.142783 0.532872i
\(204\) −104.859 + 96.6620i −0.514015 + 0.473833i
\(205\) −87.8701 23.5447i −0.428635 0.114852i
\(206\) 348.082 + 145.163i 1.68972 + 0.704675i
\(207\) 37.2592 + 76.7551i 0.179996 + 0.370798i
\(208\) −133.154 135.744i −0.640162 0.652614i
\(209\) 319.015 184.184i 1.52639 0.881261i
\(210\) −21.0248 + 123.112i −0.100118 + 0.586249i
\(211\) −75.6516 282.335i −0.358538 1.33808i −0.875973 0.482360i \(-0.839780\pi\)
0.517435 0.855723i \(-0.326887\pi\)
\(212\) −61.1021 + 104.665i −0.288218 + 0.493701i
\(213\) −175.075 330.010i −0.821950 1.54934i
\(214\) −166.498 + 215.905i −0.778026 + 1.00890i
\(215\) 292.291 1.35949
\(216\) −207.709 + 59.2696i −0.961617 + 0.274396i
\(217\) 208.080i 0.958895i
\(218\) 192.184 249.214i 0.881576 1.14318i
\(219\) 229.031 121.504i 1.04580 0.554815i
\(220\) 50.9371 + 193.829i 0.231532 + 0.881042i
\(221\) −136.427 + 36.5554i −0.617315 + 0.165409i
\(222\) −13.7909 + 80.7535i −0.0621210 + 0.363754i
\(223\) −39.5000 68.4160i −0.177130 0.306798i 0.763766 0.645493i \(-0.223348\pi\)
−0.940896 + 0.338695i \(0.890015\pi\)
\(224\) −67.7126 + 158.063i −0.302288 + 0.705637i
\(225\) −6.44170 + 89.7191i −0.0286298 + 0.398752i
\(226\) 114.419 + 47.7170i 0.506279 + 0.211137i
\(227\) −39.7756 + 148.445i −0.175223 + 0.653941i 0.821290 + 0.570510i \(0.193255\pi\)
−0.996514 + 0.0834312i \(0.973412\pi\)
\(228\) −341.483 13.8902i −1.49773 0.0609219i
\(229\) 142.591 38.2072i 0.622669 0.166844i 0.0663280 0.997798i \(-0.478872\pi\)
0.556341 + 0.830954i \(0.312205\pi\)
\(230\) −72.7942 9.76192i −0.316497 0.0424431i
\(231\) −142.060 152.625i −0.614978 0.660716i
\(232\) 20.5672 + 165.451i 0.0886517 + 0.713149i
\(233\) 232.917 0.999644 0.499822 0.866128i \(-0.333399\pi\)
0.499822 + 0.866128i \(0.333399\pi\)
\(234\) −209.438 43.5429i −0.895034 0.186081i
\(235\) −58.3739 58.3739i −0.248400 0.248400i
\(236\) −46.1628 80.8531i −0.195605 0.342598i
\(237\) 147.816 236.066i 0.623698 0.996061i
\(238\) 77.5106 + 101.519i 0.325675 + 0.426550i
\(239\) −71.3891 41.2165i −0.298699 0.172454i 0.343159 0.939277i \(-0.388503\pi\)
−0.641858 + 0.766823i \(0.721836\pi\)
\(240\) 56.2381 177.229i 0.234325 0.738454i
\(241\) 177.458 + 307.367i 0.736342 + 1.27538i 0.954132 + 0.299387i \(0.0967820\pi\)
−0.217790 + 0.975996i \(0.569885\pi\)
\(242\) −85.4462 35.6343i −0.353084 0.147249i
\(243\) −157.062 + 185.420i −0.646347 + 0.763043i
\(244\) 244.030 + 1.17524i 1.00012 + 0.00481658i
\(245\) −75.2989 20.1763i −0.307342 0.0823522i
\(246\) −140.299 + 13.0366i −0.570323 + 0.0529944i
\(247\) −293.122 169.234i −1.18673 0.685159i
\(248\) 42.6521 306.830i 0.171984 1.23722i
\(249\) −228.664 + 52.5671i −0.918330 + 0.211113i
\(250\) −214.693 165.562i −0.858771 0.662250i
\(251\) −88.3235 + 88.3235i −0.351886 + 0.351886i −0.860811 0.508925i \(-0.830043\pi\)
0.508925 + 0.860811i \(0.330043\pi\)
\(252\) 35.6431 + 190.138i 0.141441 + 0.754517i
\(253\) 86.7023 86.7023i 0.342697 0.342697i
\(254\) 112.612 14.5499i 0.443356 0.0572832i
\(255\) −94.0978 101.096i −0.369011 0.396455i
\(256\) 132.247 219.196i 0.516589 0.856233i
\(257\) −224.014 129.334i −0.871649 0.503247i −0.00375325 0.999993i \(-0.501195\pi\)
−0.867896 + 0.496746i \(0.834528\pi\)
\(258\) 424.588 157.133i 1.64569 0.609042i
\(259\) 70.8701 + 18.9896i 0.273630 + 0.0733189i
\(260\) 130.835 129.581i 0.503212 0.498388i
\(261\) 122.790 + 141.786i 0.470458 + 0.543240i
\(262\) −102.441 + 42.1436i −0.390995 + 0.160853i
\(263\) 217.325 + 376.418i 0.826331 + 1.43125i 0.900898 + 0.434031i \(0.142909\pi\)
−0.0745671 + 0.997216i \(0.523757\pi\)
\(264\) 178.193 + 254.177i 0.674974 + 0.962791i
\(265\) −101.644 58.6840i −0.383561 0.221449i
\(266\) −40.6829 + 303.370i −0.152943 + 1.14049i
\(267\) 230.878 + 435.195i 0.864710 + 1.62994i
\(268\) 185.146 + 324.279i 0.690844 + 1.21000i
\(269\) 6.46656 + 6.46656i 0.0240393 + 0.0240393i 0.719024 0.694985i \(-0.244589\pi\)
−0.694985 + 0.719024i \(0.744589\pi\)
\(270\) −58.3662 200.872i −0.216171 0.743970i
\(271\) −162.021 −0.597863 −0.298932 0.954275i \(-0.596630\pi\)
−0.298932 + 0.954275i \(0.596630\pi\)
\(272\) −93.4859 165.585i −0.343698 0.608770i
\(273\) −56.1844 + 183.161i −0.205804 + 0.670919i
\(274\) 127.635 + 167.169i 0.465821 + 0.610106i
\(275\) 124.864 33.4572i 0.454051 0.121663i
\(276\) −110.990 + 24.9531i −0.402139 + 0.0904099i
\(277\) 67.8658 253.279i 0.245003 0.914364i −0.728379 0.685175i \(-0.759726\pi\)
0.973382 0.229189i \(-0.0736075\pi\)
\(278\) 187.493 77.1338i 0.674436 0.277460i
\(279\) −152.190 313.516i −0.545484 1.12371i
\(280\) −153.386 64.8366i −0.547807 0.231559i
\(281\) 128.998 + 223.431i 0.459067 + 0.795127i 0.998912 0.0466376i \(-0.0148506\pi\)
−0.539845 + 0.841764i \(0.681517\pi\)
\(282\) −116.176 53.4139i −0.411973 0.189411i
\(283\) −65.1839 + 17.4660i −0.230332 + 0.0617172i −0.372139 0.928177i \(-0.621375\pi\)
0.141807 + 0.989894i \(0.454709\pi\)
\(284\) 481.742 126.599i 1.69628 0.445771i
\(285\) 11.8588 330.761i 0.0416099 1.16057i
\(286\) 39.3927 + 304.889i 0.137737 + 1.06604i
\(287\) 126.194i 0.439700i
\(288\) −13.5840 287.679i −0.0471667 0.998887i
\(289\) 147.757 0.511271
\(290\) −160.129 + 20.6892i −0.552168 + 0.0713421i
\(291\) 50.4811 80.6194i 0.173474 0.277043i
\(292\) 87.8612 + 334.335i 0.300895 + 1.14498i
\(293\) −113.090 422.058i −0.385973 1.44047i −0.836628 0.547772i \(-0.815476\pi\)
0.450655 0.892698i \(-0.351191\pi\)
\(294\) −120.227 + 11.1715i −0.408937 + 0.0379984i
\(295\) 78.0840 45.0818i 0.264691 0.152820i
\(296\) −100.611 42.5285i −0.339902 0.143677i
\(297\) 325.673 + 126.059i 1.09654 + 0.424442i
\(298\) −160.165 389.321i −0.537465 1.30644i
\(299\) −108.825 29.1595i −0.363962 0.0975232i
\(300\) −114.489 35.7237i −0.381632 0.119079i
\(301\) −104.943 391.652i −0.348647 1.30117i
\(302\) 232.140 177.241i 0.768675 0.586889i
\(303\) 83.5473 + 363.427i 0.275734 + 1.19943i
\(304\) 122.174 439.003i 0.401890 1.44409i
\(305\) 236.327i 0.774843i
\(306\) −191.037 96.2682i −0.624304 0.314602i
\(307\) 281.005 281.005i 0.915324 0.915324i −0.0813605 0.996685i \(-0.525927\pi\)
0.996685 + 0.0813605i \(0.0259265\pi\)
\(308\) 241.431 137.844i 0.783866 0.447546i
\(309\) −20.2694 + 565.344i −0.0655966 + 1.82959i
\(310\) 297.337 + 39.8738i 0.959152 + 0.128625i
\(311\) 93.6716 162.244i 0.301195 0.521685i −0.675212 0.737624i \(-0.735948\pi\)
0.976407 + 0.215939i \(0.0692812\pi\)
\(312\) 120.392 258.568i 0.385873 0.828743i
\(313\) 147.960 85.4249i 0.472716 0.272923i −0.244660 0.969609i \(-0.578676\pi\)
0.717376 + 0.696686i \(0.245343\pi\)
\(314\) −79.4221 193.055i −0.252937 0.614826i
\(315\) −183.966 + 35.4040i −0.584020 + 0.112394i
\(316\) 261.330 + 263.859i 0.826992 + 0.834997i
\(317\) −148.256 + 553.300i −0.467685 + 1.74543i 0.180144 + 0.983640i \(0.442344\pi\)
−0.647829 + 0.761786i \(0.724323\pi\)
\(318\) −179.198 30.6029i −0.563515 0.0962355i
\(319\) 134.776 233.439i 0.422495 0.731783i
\(320\) 212.889 + 127.047i 0.665278 + 0.397023i
\(321\) −390.989 119.936i −1.21804 0.373631i
\(322\) 13.0553 + 101.045i 0.0405445 + 0.313803i
\(323\) −239.340 239.340i −0.740990 0.740990i
\(324\) −192.771 260.414i −0.594972 0.803746i
\(325\) −83.9877 83.9877i −0.258424 0.258424i
\(326\) −57.7027 + 74.8258i −0.177002 + 0.229527i
\(327\) 451.308 + 138.438i 1.38015 + 0.423359i
\(328\) 25.8671 186.082i 0.0788631 0.567325i
\(329\) −57.2591 + 99.1757i −0.174040 + 0.301446i
\(330\) −245.317 + 173.750i −0.743386 + 0.526516i
\(331\) −17.5294 + 65.4206i −0.0529589 + 0.197645i −0.987337 0.158638i \(-0.949290\pi\)
0.934378 + 0.356284i \(0.115956\pi\)
\(332\) 1.50661 312.835i 0.00453798 0.942273i
\(333\) −120.670 + 23.2227i −0.362371 + 0.0697377i
\(334\) 128.326 307.710i 0.384211 0.921286i
\(335\) −313.173 + 180.811i −0.934845 + 0.539733i
\(336\) −257.667 11.7241i −0.766866 0.0348932i
\(337\) −165.268 + 286.252i −0.490409 + 0.849413i −0.999939 0.0110397i \(-0.996486\pi\)
0.509530 + 0.860453i \(0.329819\pi\)
\(338\) −44.1355 + 33.6978i −0.130578 + 0.0996977i
\(339\) −6.66281 + 185.836i −0.0196543 + 0.548189i
\(340\) 159.919 91.3053i 0.470351 0.268545i
\(341\) −354.147 + 354.147i −1.03855 + 1.03855i
\(342\) −160.588 486.846i −0.469555 1.42353i
\(343\) 371.447i 1.08294i
\(344\) 74.4657 + 599.031i 0.216470 + 1.74137i
\(345\) −24.6826 107.368i −0.0715438 0.311212i
\(346\) 18.8400 140.489i 0.0544508 0.406037i
\(347\) 152.939 + 570.776i 0.440747 + 1.64489i 0.726928 + 0.686713i \(0.240947\pi\)
−0.286182 + 0.958175i \(0.592386\pi\)
\(348\) −221.484 + 116.137i −0.636448 + 0.333728i
\(349\) −481.904 129.126i −1.38081 0.369988i −0.509396 0.860532i \(-0.670131\pi\)
−0.871416 + 0.490544i \(0.836798\pi\)
\(350\) −41.3439 + 99.1372i −0.118125 + 0.283249i
\(351\) −49.3103 317.063i −0.140485 0.903314i
\(352\) −384.263 + 153.773i −1.09166 + 0.436856i
\(353\) 100.398 57.9648i 0.284413 0.164206i −0.351006 0.936373i \(-0.614160\pi\)
0.635420 + 0.772167i \(0.280827\pi\)
\(354\) 89.1909 107.464i 0.251952 0.303571i
\(355\) 124.847 + 465.935i 0.351682 + 1.31249i
\(356\) −635.289 + 166.950i −1.78452 + 0.468961i
\(357\) −101.678 + 162.382i −0.284813 + 0.454853i
\(358\) 325.264 + 250.831i 0.908559 + 0.700644i
\(359\) 598.738 1.66780 0.833898 0.551919i \(-0.186104\pi\)
0.833898 + 0.551919i \(0.186104\pi\)
\(360\) 278.529 14.4967i 0.773693 0.0402685i
\(361\) 450.135i 1.24691i
\(362\) −189.482 146.121i −0.523431 0.403649i
\(363\) 4.97567 138.779i 0.0137071 0.382312i
\(364\) −220.605 128.787i −0.606057 0.353810i
\(365\) −323.365 + 86.6453i −0.885931 + 0.237384i
\(366\) 127.047 + 343.294i 0.347124 + 0.937961i
\(367\) −30.0248 52.0045i −0.0818115 0.141702i 0.822217 0.569175i \(-0.192737\pi\)
−0.904028 + 0.427473i \(0.859404\pi\)
\(368\) 1.46096 151.674i 0.00396999 0.412158i
\(369\) −92.2983 190.137i −0.250131 0.515278i
\(370\) 40.7159 97.6313i 0.110043 0.263868i
\(371\) −42.1393 + 157.266i −0.113583 + 0.423897i
\(372\) 453.354 101.924i 1.21869 0.273990i
\(373\) −599.280 + 160.577i −1.60665 + 0.430500i −0.947042 0.321111i \(-0.895944\pi\)
−0.659607 + 0.751611i \(0.729277\pi\)
\(374\) −40.8616 + 304.703i −0.109256 + 0.814715i
\(375\) 119.262 388.793i 0.318032 1.03678i
\(376\) 104.762 134.505i 0.278622 0.357727i
\(377\) −247.674 −0.656960
\(378\) −248.201 + 150.327i −0.656615 + 0.397691i
\(379\) −128.337 128.337i −0.338620 0.338620i 0.517228 0.855848i \(-0.326964\pi\)
−0.855848 + 0.517228i \(0.826964\pi\)
\(380\) 425.707 + 116.268i 1.12028 + 0.305968i
\(381\) 79.8216 + 150.460i 0.209506 + 0.394909i
\(382\) 16.5603 12.6439i 0.0433515 0.0330992i
\(383\) −56.1996 32.4468i −0.146735 0.0847176i 0.424835 0.905271i \(-0.360332\pi\)
−0.571570 + 0.820553i \(0.693665\pi\)
\(384\) 377.547 + 70.1045i 0.983194 + 0.182564i
\(385\) 134.616 + 233.162i 0.349652 + 0.605616i
\(386\) −124.993 + 299.716i −0.323816 + 0.776467i
\(387\) 444.572 + 513.350i 1.14877 + 1.32648i
\(388\) 89.2471 + 90.1109i 0.230018 + 0.232245i
\(389\) 399.684 + 107.095i 1.02747 + 0.275309i 0.732910 0.680326i \(-0.238162\pi\)
0.294556 + 0.955634i \(0.404828\pi\)
\(390\) 250.962 + 115.384i 0.643493 + 0.295855i
\(391\) −97.5720 56.3332i −0.249545 0.144075i
\(392\) 22.1664 159.460i 0.0565469 0.406787i
\(393\) −113.205 121.624i −0.288054 0.309477i
\(394\) 273.918 355.203i 0.695223 0.901529i
\(395\) −254.306 + 254.306i −0.643812 + 0.643812i
\(396\) −262.947 + 384.274i −0.664007 + 0.970388i
\(397\) −396.576 + 396.576i −0.998931 + 0.998931i −0.999999 0.00106822i \(-0.999660\pi\)
0.00106822 + 0.999999i \(0.499660\pi\)
\(398\) −22.6882 175.600i −0.0570054 0.441206i
\(399\) −447.457 + 102.865i −1.12145 + 0.257807i
\(400\) 81.2858 137.711i 0.203214 0.344277i
\(401\) 75.9357 + 43.8415i 0.189366 + 0.109330i 0.591686 0.806169i \(-0.298463\pi\)
−0.402320 + 0.915499i \(0.631796\pi\)
\(402\) −357.720 + 431.008i −0.889850 + 1.07216i
\(403\) 444.508 + 119.106i 1.10300 + 0.295547i
\(404\) −497.203 2.39453i −1.23070 0.00592704i
\(405\) 251.289 187.897i 0.620467 0.463942i
\(406\) 85.2141 + 207.134i 0.209887 + 0.510183i
\(407\) 88.2992 + 152.939i 0.216951 + 0.375771i
\(408\) 183.217 218.603i 0.449061 0.535792i
\(409\) 54.0849 + 31.2259i 0.132237 + 0.0763470i 0.564659 0.825324i \(-0.309008\pi\)
−0.432422 + 0.901671i \(0.642341\pi\)
\(410\) 180.325 + 24.1822i 0.439818 + 0.0589809i
\(411\) −167.431 + 267.392i −0.407375 + 0.650588i
\(412\) −727.626 198.728i −1.76608 0.482349i
\(413\) −88.4417 88.4417i −0.214145 0.214145i
\(414\) −93.5747 142.696i −0.226026 0.344677i
\(415\) 302.960 0.730025
\(416\) 298.900 + 235.125i 0.718510 + 0.565205i
\(417\) 207.195 + 222.605i 0.496870 + 0.533824i
\(418\) −585.569 + 447.087i −1.40088 + 1.06959i
\(419\) −267.062 + 71.5590i −0.637379 + 0.170785i −0.563016 0.826446i \(-0.690359\pi\)
−0.0743629 + 0.997231i \(0.523692\pi\)
\(420\) 10.1521 249.583i 0.0241716 0.594245i
\(421\) 158.502 591.536i 0.376488 1.40507i −0.474670 0.880164i \(-0.657433\pi\)
0.851158 0.524909i \(-0.175901\pi\)
\(422\) 222.412 + 540.628i 0.527042 + 1.28111i
\(423\) 13.7357 191.308i 0.0324720 0.452266i
\(424\) 94.3737 223.263i 0.222580 0.526563i
\(425\) −59.3898 102.866i −0.139741 0.242038i
\(426\) 431.838 + 609.711i 1.01370 + 1.43125i
\(427\) 316.664 84.8498i 0.741601 0.198711i
\(428\) 274.918 470.920i 0.642333 1.10028i
\(429\) −407.359 + 216.110i −0.949554 + 0.503753i
\(430\) −579.762 + 74.9074i −1.34828 + 0.174203i
\(431\) 512.341i 1.18873i −0.804196 0.594364i \(-0.797404\pi\)
0.804196 0.594364i \(-0.202596\pi\)
\(432\) 396.804 170.793i 0.918529 0.395354i
\(433\) 92.4308 0.213466 0.106733 0.994288i \(-0.465961\pi\)
0.106733 + 0.994288i \(0.465961\pi\)
\(434\) −53.3261 412.730i −0.122871 0.950990i
\(435\) −113.502 213.947i −0.260924 0.491831i
\(436\) −317.331 + 543.571i −0.727823 + 1.24672i
\(437\) −69.8802 260.796i −0.159909 0.596788i
\(438\) −423.147 + 299.701i −0.966088 + 0.684249i
\(439\) 162.735 93.9551i 0.370695 0.214021i −0.303067 0.952969i \(-0.598011\pi\)
0.673762 + 0.738949i \(0.264677\pi\)
\(440\) −150.708 371.409i −0.342519 0.844110i
\(441\) −79.0936 162.935i −0.179350 0.369468i
\(442\) 261.235 107.471i 0.591030 0.243147i
\(443\) −617.132 165.360i −1.39307 0.373273i −0.517222 0.855852i \(-0.673034\pi\)
−0.875853 + 0.482578i \(0.839700\pi\)
\(444\) 6.65909 163.710i 0.0149979 0.368716i
\(445\) −164.640 614.444i −0.369977 1.38077i
\(446\) 95.8822 + 125.581i 0.214982 + 0.281572i
\(447\) 462.228 430.230i 1.03407 0.962484i
\(448\) 93.8009 330.872i 0.209377 0.738555i
\(449\) 182.865i 0.407271i −0.979047 0.203635i \(-0.934724\pi\)
0.979047 0.203635i \(-0.0652757\pi\)
\(450\) −10.2157 179.610i −0.0227016 0.399133i
\(451\) −214.778 + 214.778i −0.476227 + 0.476227i
\(452\) −239.180 65.3244i −0.529160 0.144523i
\(453\) 371.314 + 232.504i 0.819677 + 0.513253i
\(454\) 40.8525 304.636i 0.0899836 0.671003i
\(455\) 123.690 214.237i 0.271846 0.470851i
\(456\) 680.895 59.9627i 1.49319 0.131497i
\(457\) −408.786 + 236.013i −0.894500 + 0.516440i −0.875412 0.483378i \(-0.839410\pi\)
−0.0190880 + 0.999818i \(0.506076\pi\)
\(458\) −273.040 + 112.327i −0.596157 + 0.245256i
\(459\) 34.4328 319.030i 0.0750170 0.695055i
\(460\) 146.890 + 0.707421i 0.319326 + 0.00153787i
\(461\) 199.024 742.769i 0.431723 1.61121i −0.317066 0.948403i \(-0.602698\pi\)
0.748789 0.662808i \(-0.230636\pi\)
\(462\) 320.892 + 266.328i 0.694572 + 0.576467i
\(463\) −64.8072 + 112.249i −0.139972 + 0.242439i −0.927486 0.373858i \(-0.878035\pi\)
0.787514 + 0.616297i \(0.211368\pi\)
\(464\) −83.1965 322.902i −0.179303 0.695910i
\(465\) 100.819 + 438.559i 0.216816 + 0.943138i
\(466\) −461.994 + 59.6912i −0.991403 + 0.128093i
\(467\) −64.6941 64.6941i −0.138531 0.138531i 0.634440 0.772972i \(-0.281231\pi\)
−0.772972 + 0.634440i \(0.781231\pi\)
\(468\) 426.582 + 32.6937i 0.911500 + 0.0698583i
\(469\) 354.715 + 354.715i 0.756323 + 0.756323i
\(470\) 130.745 + 100.826i 0.278181 + 0.214522i
\(471\) 229.208 213.342i 0.486642 0.452954i
\(472\) 112.285 + 148.543i 0.237893 + 0.314709i
\(473\) 487.970 845.189i 1.03165 1.78687i
\(474\) −232.697 + 506.122i −0.490923 + 1.06777i
\(475\) 73.6719 274.947i 0.155099 0.578836i
\(476\) −179.760 181.500i −0.377647 0.381302i
\(477\) −51.5327 267.775i −0.108035 0.561372i
\(478\) 152.164 + 63.4581i 0.318335 + 0.132757i
\(479\) 355.298 205.131i 0.741750 0.428249i −0.0809554 0.996718i \(-0.525797\pi\)
0.822705 + 0.568468i \(0.192464\pi\)
\(480\) −66.1293 + 365.948i −0.137769 + 0.762392i
\(481\) 81.1324 140.525i 0.168674 0.292153i
\(482\) −430.762 564.188i −0.893698 1.17051i
\(483\) −135.005 + 71.6221i −0.279513 + 0.148286i
\(484\) 178.616 + 48.7832i 0.369041 + 0.100792i
\(485\) −86.8484 + 86.8484i −0.179069 + 0.179069i
\(486\) 264.017 408.033i 0.543244 0.839575i
\(487\) 869.101i 1.78460i 0.451442 + 0.892301i \(0.350910\pi\)
−0.451442 + 0.892301i \(0.649090\pi\)
\(488\) −484.337 + 60.2080i −0.992494 + 0.123377i
\(489\) −135.504 41.5658i −0.277105 0.0850017i
\(490\) 154.527 + 20.7225i 0.315361 + 0.0422909i
\(491\) 104.814 + 391.173i 0.213471 + 0.796686i 0.986699 + 0.162558i \(0.0519744\pi\)
−0.773228 + 0.634129i \(0.781359\pi\)
\(492\) 274.945 61.8138i 0.558831 0.125638i
\(493\) −239.241 64.1044i −0.485275 0.130029i
\(494\) 624.783 + 260.558i 1.26474 + 0.527445i
\(495\) −373.362 252.849i −0.754267 0.510806i
\(496\) −5.96746 + 619.532i −0.0120312 + 1.24906i
\(497\) 579.500 334.574i 1.16600 0.673188i
\(498\) 440.087 162.869i 0.883708 0.327046i
\(499\) 59.9492 + 223.734i 0.120139 + 0.448364i 0.999620 0.0275699i \(-0.00877689\pi\)
−0.879481 + 0.475934i \(0.842110\pi\)
\(500\) 468.276 + 273.374i 0.936551 + 0.546749i
\(501\) 499.773 + 17.9184i 0.997551 + 0.0357653i
\(502\) 152.556 197.826i 0.303895 0.394076i
\(503\) −543.851 −1.08121 −0.540607 0.841275i \(-0.681805\pi\)
−0.540607 + 0.841275i \(0.681805\pi\)
\(504\) −119.426 368.007i −0.236957 0.730173i
\(505\) 481.509i 0.953484i
\(506\) −149.755 + 194.195i −0.295959 + 0.383784i
\(507\) −70.5959 44.2047i −0.139242 0.0871887i
\(508\) −219.639 + 57.7199i −0.432361 + 0.113622i
\(509\) 665.031 178.195i 1.30655 0.350088i 0.462624 0.886555i \(-0.346908\pi\)
0.843921 + 0.536467i \(0.180241\pi\)
\(510\) 212.553 + 176.410i 0.416770 + 0.345903i
\(511\) 232.199 + 402.180i 0.454401 + 0.787045i
\(512\) −206.138 + 468.669i −0.402614 + 0.915370i
\(513\) 598.953 482.258i 1.16755 0.940074i
\(514\) 477.480 + 199.127i 0.928949 + 0.387407i
\(515\) 189.057 705.570i 0.367101 1.37004i
\(516\) −801.906 + 420.487i −1.55408 + 0.814897i
\(517\) −266.248 + 71.3409i −0.514986 + 0.137990i
\(518\) −145.438 19.5037i −0.280769 0.0376520i
\(519\) 207.215 47.6361i 0.399257 0.0917843i
\(520\) −226.304 + 290.555i −0.435201 + 0.558760i
\(521\) −51.1580 −0.0981920 −0.0490960 0.998794i \(-0.515634\pi\)
−0.0490960 + 0.998794i \(0.515634\pi\)
\(522\) −279.891 249.766i −0.536190 0.478478i
\(523\) 628.440 + 628.440i 1.20161 + 1.20161i 0.973678 + 0.227929i \(0.0731955\pi\)
0.227929 + 0.973678i \(0.426804\pi\)
\(524\) 192.392 109.846i 0.367160 0.209629i
\(525\) −161.016 5.77292i −0.306697 0.0109960i
\(526\) −527.534 690.934i −1.00292 1.31356i
\(527\) 398.545 + 230.100i 0.756253 + 0.436623i
\(528\) −418.588 458.496i −0.792781 0.868364i
\(529\) 219.564 + 380.296i 0.415055 + 0.718897i
\(530\) 216.651 + 90.3515i 0.408775 + 0.170475i
\(531\) 197.942 + 68.5696i 0.372773 + 0.129133i
\(532\) 2.94818 612.165i 0.00554170 1.15069i
\(533\) 269.580 + 72.2336i 0.505778 + 0.135523i
\(534\) −569.479 804.046i −1.06644 1.50570i
\(535\) 457.328 + 264.038i 0.854819 + 0.493530i
\(536\) −450.345 595.764i −0.840197 1.11150i
\(537\) −180.685 + 589.030i −0.336470 + 1.09689i
\(538\) −14.4837 11.1693i −0.0269214 0.0207607i
\(539\) −184.051 + 184.051i −0.341468 + 0.341468i
\(540\) 167.249 + 383.474i 0.309720 + 0.710137i
\(541\) 138.038 138.038i 0.255154 0.255154i −0.567926 0.823080i \(-0.692254\pi\)
0.823080 + 0.567926i \(0.192254\pi\)
\(542\) 321.371 41.5222i 0.592935 0.0766093i
\(543\) 105.257 343.138i 0.193844 0.631931i
\(544\) 227.866 + 304.482i 0.418872 + 0.559710i
\(545\) −527.881 304.772i −0.968590 0.559215i
\(546\) 64.5026 377.700i 0.118137 0.691759i
\(547\) −655.476 175.634i −1.19831 0.321086i −0.396145 0.918188i \(-0.629652\pi\)
−0.802165 + 0.597102i \(0.796319\pi\)
\(548\) −296.007 298.872i −0.540159 0.545387i
\(549\) −415.061 + 359.452i −0.756030 + 0.654739i
\(550\) −239.095 + 98.3625i −0.434718 + 0.178841i
\(551\) −296.773 514.026i −0.538608 0.932897i
\(552\) 213.756 77.9391i 0.387239 0.141194i
\(553\) 432.059 + 249.449i 0.781300 + 0.451084i
\(554\) −69.7033 + 519.774i −0.125818 + 0.938220i
\(555\) 158.570 + 5.68523i 0.285712 + 0.0102437i
\(556\) −352.128 + 201.046i −0.633323 + 0.361594i
\(557\) 523.493 + 523.493i 0.939844 + 0.939844i 0.998291 0.0584463i \(-0.0186146\pi\)
−0.0584463 + 0.998291i \(0.518615\pi\)
\(558\) 382.218 + 582.861i 0.684978 + 1.04455i
\(559\) −896.728 −1.60417
\(560\) 320.859 + 89.2949i 0.572962 + 0.159455i
\(561\) −449.424 + 103.317i −0.801111 + 0.184166i
\(562\) −313.129 410.118i −0.557168 0.729748i
\(563\) 535.008 143.355i 0.950281 0.254627i 0.249800 0.968298i \(-0.419635\pi\)
0.700482 + 0.713670i \(0.252969\pi\)
\(564\) 244.126 + 76.1738i 0.432848 + 0.135060i
\(565\) 62.1455 231.930i 0.109992 0.410496i
\(566\) 124.817 51.3491i 0.220525 0.0907228i
\(567\) −341.992 269.250i −0.603160 0.474869i
\(568\) −923.097 + 374.570i −1.62517 + 0.659454i
\(569\) 281.315 + 487.252i 0.494402 + 0.856330i 0.999979 0.00645162i \(-0.00205363\pi\)
−0.505577 + 0.862782i \(0.668720\pi\)
\(570\) 61.2443 + 659.108i 0.107446 + 1.15633i
\(571\) 93.7407 25.1177i 0.164169 0.0439890i −0.175798 0.984426i \(-0.556251\pi\)
0.339967 + 0.940437i \(0.389584\pi\)
\(572\) −156.272 594.655i −0.273202 1.03961i
\(573\) 26.4886 + 16.5862i 0.0462279 + 0.0289463i
\(574\) −32.3406 250.307i −0.0563425 0.436075i
\(575\) 94.7480i 0.164779i
\(576\) 100.670 + 567.135i 0.174774 + 0.984609i
\(577\) −606.259 −1.05071 −0.525354 0.850884i \(-0.676067\pi\)
−0.525354 + 0.850884i \(0.676067\pi\)
\(578\) −293.078 + 37.8668i −0.507056 + 0.0655134i
\(579\) −486.790 17.4530i −0.840743 0.0301433i
\(580\) 312.315 82.0746i 0.538474 0.141508i
\(581\) −108.773 405.948i −0.187218 0.698706i
\(582\) −79.4689 + 172.847i −0.136545 + 0.296988i
\(583\) −339.382 + 195.942i −0.582130 + 0.336093i
\(584\) −259.956 640.641i −0.445130 1.09699i
\(585\) −29.6715 + 413.260i −0.0507205 + 0.706428i
\(586\) 332.479 + 808.175i 0.567371 + 1.37914i
\(587\) 237.410 + 63.6138i 0.404446 + 0.108371i 0.455307 0.890335i \(-0.349530\pi\)
−0.0508604 + 0.998706i \(0.516196\pi\)
\(588\) 235.610 52.9704i 0.400696 0.0900856i
\(589\) 285.435 + 1065.26i 0.484609 + 1.80858i
\(590\) −143.327 + 109.431i −0.242927 + 0.185477i
\(591\) 643.247 + 197.315i 1.08840 + 0.333867i
\(592\) 210.462 + 58.5715i 0.355510 + 0.0989384i
\(593\) 849.686i 1.43286i −0.697659 0.716430i \(-0.745775\pi\)
0.697659 0.716430i \(-0.254225\pi\)
\(594\) −678.283 166.578i −1.14189 0.280434i
\(595\) 174.929 174.929i 0.293998 0.293998i
\(596\) 417.462 + 731.176i 0.700440 + 1.22681i
\(597\) 234.618 124.468i 0.392994 0.208490i
\(598\) 223.328 + 29.9489i 0.373458 + 0.0500818i
\(599\) −172.533 + 298.836i −0.288035 + 0.498891i −0.973341 0.229364i \(-0.926335\pi\)
0.685306 + 0.728256i \(0.259669\pi\)
\(600\) 236.246 + 41.5174i 0.393744 + 0.0691957i
\(601\) −114.395 + 66.0458i −0.190341 + 0.109893i −0.592142 0.805834i \(-0.701718\pi\)
0.401801 + 0.915727i \(0.368384\pi\)
\(602\) 308.526 + 749.951i 0.512502 + 1.24577i
\(603\) −793.892 275.014i −1.31657 0.456076i
\(604\) −415.029 + 411.051i −0.687135 + 0.680548i
\(605\) −46.4092 + 173.202i −0.0767095 + 0.286284i
\(606\) −258.855 699.450i −0.427154 1.15421i
\(607\) 399.074 691.216i 0.657453 1.13874i −0.323820 0.946119i \(-0.604967\pi\)
0.981273 0.192623i \(-0.0616993\pi\)
\(608\) −129.828 + 902.079i −0.213533 + 1.48368i
\(609\) −245.924 + 228.900i −0.403816 + 0.375862i
\(610\) −60.5652 468.758i −0.0992871 0.768455i
\(611\) 179.087 + 179.087i 0.293105 + 0.293105i
\(612\) 403.595 + 141.991i 0.659470 + 0.232011i
\(613\) −92.1791 92.1791i −0.150374 0.150374i 0.627911 0.778285i \(-0.283910\pi\)
−0.778285 + 0.627911i \(0.783910\pi\)
\(614\) −485.361 + 629.391i −0.790490 + 1.02507i
\(615\) 61.1436 + 265.972i 0.0994205 + 0.432475i
\(616\) −443.555 + 335.289i −0.720056 + 0.544300i
\(617\) 39.3936 68.2317i 0.0638470 0.110586i −0.832335 0.554273i \(-0.812996\pi\)
0.896182 + 0.443687i \(0.146330\pi\)
\(618\) −104.680 1126.56i −0.169385 1.82292i
\(619\) 128.392 479.166i 0.207418 0.774096i −0.781280 0.624180i \(-0.785433\pi\)
0.988699 0.149916i \(-0.0479003\pi\)
\(620\) −599.991 2.88955i −0.967727 0.00466057i
\(621\) 151.028 206.656i 0.243202 0.332780i
\(622\) −144.219 + 345.819i −0.231864 + 0.555979i
\(623\) −764.206 + 441.214i −1.22665 + 0.708209i
\(624\) −172.535 + 543.726i −0.276498 + 0.871356i
\(625\) −137.625 + 238.373i −0.220200 + 0.381397i
\(626\) −271.588 + 207.360i −0.433847 + 0.331246i
\(627\) −936.633 586.487i −1.49383 0.935386i
\(628\) 207.010 + 362.574i 0.329634 + 0.577347i
\(629\) 114.742 114.742i 0.182419 0.182419i
\(630\) 355.826 117.371i 0.564804 0.186303i
\(631\) 806.396i 1.27797i −0.769221 0.638983i \(-0.779355\pi\)
0.769221 0.638983i \(-0.220645\pi\)
\(632\) −585.972 456.395i −0.927170 0.722144i
\(633\) −641.870 + 597.437i −1.01401 + 0.943818i
\(634\) 152.270 1135.47i 0.240174 1.79097i
\(635\) −56.9212 212.433i −0.0896396 0.334540i
\(636\) 363.284 + 14.7770i 0.571201 + 0.0232343i
\(637\) 231.012 + 61.8995i 0.362656 + 0.0971734i
\(638\) −207.505 + 497.569i −0.325243 + 0.779889i
\(639\) −628.430 + 927.953i −0.983458 + 1.45220i
\(640\) −454.827 197.441i −0.710667 0.308502i
\(641\) −103.969 + 60.0266i −0.162198 + 0.0936453i −0.578902 0.815397i \(-0.696519\pi\)
0.416704 + 0.909042i \(0.363185\pi\)
\(642\) 806.269 + 137.692i 1.25587 + 0.214474i
\(643\) 210.532 + 785.714i 0.327421 + 1.22195i 0.911856 + 0.410511i \(0.134649\pi\)
−0.584435 + 0.811440i \(0.698684\pi\)
\(644\) −51.7908 197.077i −0.0804205 0.306021i
\(645\) −410.945 774.615i −0.637125 1.20095i
\(646\) 536.070 + 413.396i 0.829830 + 0.639932i
\(647\) −825.493 −1.27588 −0.637939 0.770087i \(-0.720213\pi\)
−0.637939 + 0.770087i \(0.720213\pi\)
\(648\) 449.102 + 467.131i 0.693058 + 0.720882i
\(649\) 301.051i 0.463869i
\(650\) 188.115 + 145.067i 0.289407 + 0.223179i
\(651\) 551.444 292.550i 0.847073 0.449385i
\(652\) 95.2778 163.206i 0.146132 0.250316i
\(653\) −45.5134 + 12.1953i −0.0696989 + 0.0186758i −0.293500 0.955959i \(-0.594820\pi\)
0.223801 + 0.974635i \(0.428153\pi\)
\(654\) −930.655 158.935i −1.42302 0.243019i
\(655\) 107.273 + 185.803i 0.163776 + 0.283668i
\(656\) −3.61907 + 375.726i −0.00551688 + 0.572753i
\(657\) −644.011 436.138i −0.980229 0.663832i
\(658\) 88.1578 211.391i 0.133978 0.321262i
\(659\) 144.063 537.650i 0.218608 0.815857i −0.766257 0.642534i \(-0.777883\pi\)
0.984865 0.173323i \(-0.0554503\pi\)
\(660\) 442.062 407.505i 0.669791 0.617432i
\(661\) −908.098 + 243.324i −1.37382 + 0.368115i −0.868874 0.495033i \(-0.835156\pi\)
−0.504950 + 0.863148i \(0.668489\pi\)
\(662\) 18.0040 134.255i 0.0271964 0.202802i
\(663\) 288.686 + 310.156i 0.435424 + 0.467807i
\(664\) 77.1839 + 620.897i 0.116241 + 0.935086i
\(665\) 592.842 0.891492
\(666\) 233.398 76.9873i 0.350448 0.115597i
\(667\) −139.703 139.703i −0.209449 0.209449i
\(668\) −175.678 + 643.233i −0.262991 + 0.962924i
\(669\) −125.778 + 200.870i −0.188009 + 0.300255i
\(670\) 574.845 438.899i 0.857978 0.655073i
\(671\) 683.365 + 394.541i 1.01843 + 0.587989i
\(672\) 514.091 42.7792i 0.765016 0.0636595i
\(673\) 642.305 + 1112.50i 0.954390 + 1.65305i 0.735757 + 0.677246i \(0.236827\pi\)
0.218633 + 0.975807i \(0.429840\pi\)
\(674\) 254.451 610.139i 0.377524 0.905251i
\(675\) 246.826 109.069i 0.365668 0.161583i
\(676\) 78.9073 78.1509i 0.116727 0.115608i
\(677\) 81.0177 + 21.7086i 0.119672 + 0.0320659i 0.318158 0.948038i \(-0.396936\pi\)
−0.198486 + 0.980104i \(0.563602\pi\)
\(678\) −34.4097 370.316i −0.0507518 0.546188i
\(679\) 147.553 + 85.1898i 0.217309 + 0.125464i
\(680\) −293.802 + 222.089i −0.432062 + 0.326601i
\(681\) 449.324 103.294i 0.659800 0.151680i
\(682\) 611.695 793.214i 0.896913 1.16307i
\(683\) 422.773 422.773i 0.618994 0.618994i −0.326280 0.945273i \(-0.605795\pi\)
0.945273 + 0.326280i \(0.105795\pi\)
\(684\) 443.296 + 924.510i 0.648093 + 1.35162i
\(685\) 288.051 288.051i 0.420513 0.420513i
\(686\) −95.1933 736.770i −0.138766 1.07401i
\(687\) −301.731 324.171i −0.439200 0.471865i
\(688\) −301.221 1169.10i −0.437822 1.69928i
\(689\) 311.836 + 180.039i 0.452592 + 0.261304i
\(690\) 76.4742 + 206.641i 0.110832 + 0.299479i
\(691\) −504.924 135.294i −0.730715 0.195795i −0.125768 0.992060i \(-0.540139\pi\)
−0.604948 + 0.796265i \(0.706806\pi\)
\(692\) −1.36528 + 283.489i −0.00197295 + 0.409667i
\(693\) −204.752 + 591.064i −0.295457 + 0.852906i
\(694\) −449.633 1092.95i −0.647887 1.57485i
\(695\) −196.338 340.067i −0.282501 0.489306i
\(696\) 409.553 287.121i 0.588438 0.412530i
\(697\) 241.705 + 139.548i 0.346779 + 0.200213i
\(698\) 988.954 + 132.622i 1.41684 + 0.190002i
\(699\) −327.469 617.266i −0.468482 0.883070i
\(700\) 56.5996 207.235i 0.0808566 0.296050i
\(701\) 387.399 + 387.399i 0.552638 + 0.552638i 0.927201 0.374563i \(-0.122207\pi\)
−0.374563 + 0.927201i \(0.622207\pi\)
\(702\) 179.064 + 616.262i 0.255076 + 0.877866i
\(703\) 388.865 0.553151
\(704\) 722.782 403.489i 1.02668 0.573138i
\(705\) −72.6292 + 236.770i −0.103020 + 0.335845i
\(706\) −184.286 + 140.704i −0.261028 + 0.199297i
\(707\) −645.192 + 172.879i −0.912578 + 0.244524i
\(708\) −149.371 + 236.014i −0.210976 + 0.333353i
\(709\) 42.2947 157.846i 0.0596540 0.222632i −0.929663 0.368410i \(-0.879902\pi\)
0.989317 + 0.145779i \(0.0465688\pi\)
\(710\) −367.044 892.193i −0.516963 1.25661i
\(711\) −833.434 59.8394i −1.17220 0.0841623i
\(712\) 1217.32 493.958i 1.70972 0.693761i
\(713\) 183.546 + 317.911i 0.257428 + 0.445878i
\(714\) 160.065 348.145i 0.224181 0.487598i
\(715\) 575.143 154.109i 0.804396 0.215537i
\(716\) −709.448 414.168i −0.990849 0.578447i
\(717\) −8.86075 + 247.140i −0.0123581 + 0.344686i
\(718\) −1187.61 + 153.443i −1.65405 + 0.213709i
\(719\) 480.946i 0.668909i 0.942412 + 0.334455i \(0.108552\pi\)
−0.942412 + 0.334455i \(0.891448\pi\)
\(720\) −548.751 + 100.135i −0.762155 + 0.139076i
\(721\) −1013.30 −1.40541
\(722\) 115.359 + 892.848i 0.159777 + 1.23663i
\(723\) 565.073 902.434i 0.781567 1.24818i
\(724\) 413.287 + 241.273i 0.570838 + 0.333249i
\(725\) −53.9093 201.192i −0.0743576 0.277506i
\(726\) 25.6966 + 276.546i 0.0353948 + 0.380917i
\(727\) −45.9366 + 26.5215i −0.0631865 + 0.0364807i −0.531260 0.847209i \(-0.678281\pi\)
0.468074 + 0.883689i \(0.344948\pi\)
\(728\) 470.578 + 198.914i 0.646398 + 0.273234i
\(729\) 712.212 + 155.549i 0.976971 + 0.213374i
\(730\) 619.193 254.733i 0.848209 0.348949i
\(731\) −866.196 232.096i −1.18495 0.317505i
\(732\) −339.978 648.368i −0.464451 0.885749i
\(733\) 165.745 + 618.567i 0.226118 + 0.843884i 0.981953 + 0.189123i \(0.0605644\pi\)
−0.755835 + 0.654762i \(0.772769\pi\)
\(734\) 72.8822 + 95.4570i 0.0992945 + 0.130050i
\(735\) 52.3961 + 227.920i 0.0712872 + 0.310096i
\(736\) 35.9727 + 301.222i 0.0488760 + 0.409269i
\(737\) 1207.43i 1.63831i
\(738\) 231.803 + 353.486i 0.314096 + 0.478978i
\(739\) 726.916 726.916i 0.983648 0.983648i −0.0162206 0.999868i \(-0.505163\pi\)
0.999868 + 0.0162206i \(0.00516340\pi\)
\(740\) −55.7399 + 204.087i −0.0753242 + 0.275794i
\(741\) −36.3821 + 1014.75i −0.0490986 + 1.36944i
\(742\) 43.2801 322.738i 0.0583290 0.434957i
\(743\) −440.165 + 762.388i −0.592415 + 1.02609i 0.401491 + 0.915863i \(0.368492\pi\)
−0.993906 + 0.110230i \(0.964841\pi\)
\(744\) −873.113 + 318.352i −1.17354 + 0.427893i
\(745\) −706.134 + 407.686i −0.947830 + 0.547230i
\(746\) 1147.53 472.087i 1.53824 0.632825i
\(747\) 460.801 + 532.089i 0.616868 + 0.712301i
\(748\) 2.96114 614.855i 0.00395874 0.821998i
\(749\) 189.598 707.590i 0.253135 0.944713i
\(750\) −136.919 + 801.741i −0.182559 + 1.06899i
\(751\) −428.427 + 742.057i −0.570475 + 0.988092i 0.426042 + 0.904703i \(0.359908\pi\)
−0.996517 + 0.0833883i \(0.973426\pi\)
\(752\) −173.326 + 293.641i −0.230487 + 0.390480i
\(753\) 358.249 + 109.893i 0.475762 + 0.145940i
\(754\) 491.264 63.4731i 0.651544 0.0841818i
\(755\) −400.003 400.003i −0.529805 0.529805i
\(756\) 453.783 361.784i 0.600243 0.478550i
\(757\) −119.448 119.448i −0.157791 0.157791i 0.623796 0.781587i \(-0.285590\pi\)
−0.781587 + 0.623796i \(0.785590\pi\)
\(758\) 287.448 + 221.668i 0.379219 + 0.292439i
\(759\) −351.673 107.875i −0.463338 0.142128i
\(760\) −874.191 121.520i −1.15025 0.159895i
\(761\) −132.802 + 230.020i −0.174510 + 0.302260i −0.939992 0.341198i \(-0.889167\pi\)
0.765482 + 0.643458i \(0.222501\pi\)
\(762\) −196.887 277.984i −0.258382 0.364808i
\(763\) −218.848 + 816.752i −0.286826 + 1.07045i
\(764\) −29.6072 + 29.3233i −0.0387528 + 0.0383813i
\(765\) −135.624 + 391.510i −0.177286 + 0.511777i
\(766\) 119.788 + 49.9561i 0.156381 + 0.0652168i
\(767\) −239.556 + 138.308i −0.312329 + 0.180323i
\(768\) −766.834 42.2966i −0.998482 0.0550737i
\(769\) 750.091 1299.20i 0.975411 1.68946i 0.296838 0.954928i \(-0.404068\pi\)
0.678573 0.734533i \(-0.262599\pi\)
\(770\) −326.767 427.981i −0.424373 0.555819i
\(771\) −27.8044 + 775.508i −0.0360628 + 1.00585i
\(772\) 171.115 626.524i 0.221651 0.811559i
\(773\) 572.185 572.185i 0.740213 0.740213i −0.232406 0.972619i \(-0.574660\pi\)
0.972619