# Properties

 Label 144.3.w.a.5.18 Level $144$ Weight $3$ Character 144.5 Analytic conductor $3.924$ Analytic rank $0$ Dimension $184$ CM no Inner twists $4$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$144 = 2^{4} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 144.w (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.92371580679$$ Analytic rank: $$0$$ Dimension: $$184$$ Relative dimension: $$46$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 5.18 Character $$\chi$$ $$=$$ 144.5 Dual form 144.3.w.a.29.18

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.762335 - 1.84901i) q^{2} +(-2.07303 + 2.16854i) q^{3} +(-2.83769 + 2.81913i) q^{4} +(-0.115759 - 0.432017i) q^{5} +(5.58999 + 2.17990i) q^{6} +(7.23679 - 4.17816i) q^{7} +(7.37588 + 3.09780i) q^{8} +(-0.405106 - 8.99088i) q^{9} +O(q^{10})$$ $$q+(-0.762335 - 1.84901i) q^{2} +(-2.07303 + 2.16854i) q^{3} +(-2.83769 + 2.81913i) q^{4} +(-0.115759 - 0.432017i) q^{5} +(5.58999 + 2.17990i) q^{6} +(7.23679 - 4.17816i) q^{7} +(7.37588 + 3.09780i) q^{8} +(-0.405106 - 8.99088i) q^{9} +(-0.710557 + 0.543380i) q^{10} +(-20.2288 - 5.42030i) q^{11} +(-0.230778 - 11.9978i) q^{12} +(-1.29383 - 4.82865i) q^{13} +(-13.2423 - 10.1958i) q^{14} +(1.17682 + 0.644556i) q^{15} +(0.104984 - 15.9997i) q^{16} -25.9977i q^{17} +(-16.3154 + 7.60310i) q^{18} +(1.80229 - 1.80229i) q^{19} +(1.54640 + 0.899592i) q^{20} +(-5.94157 + 24.3547i) q^{21} +(5.39895 + 41.5354i) q^{22} +(-1.78994 + 3.10027i) q^{23} +(-22.0081 + 9.57304i) q^{24} +(21.4774 - 12.4000i) q^{25} +(-7.94191 + 6.07337i) q^{26} +(20.3368 + 17.7599i) q^{27} +(-8.75698 + 32.2578i) q^{28} +(13.2056 - 49.2839i) q^{29} +(0.294665 - 2.66731i) q^{30} +(-14.2968 + 24.7628i) q^{31} +(-29.6636 + 12.0030i) q^{32} +(53.6891 - 32.6305i) q^{33} +(-48.0700 + 19.8189i) q^{34} +(-2.64276 - 2.64276i) q^{35} +(26.4960 + 24.3713i) q^{36} +(-22.5902 - 22.5902i) q^{37} +(-4.70639 - 1.95850i) q^{38} +(13.1533 + 7.20421i) q^{39} +(0.484481 - 3.54510i) q^{40} +(-16.3853 + 28.3801i) q^{41} +(49.5616 - 7.58040i) q^{42} +(-4.06313 + 15.1638i) q^{43} +(72.6837 - 41.6466i) q^{44} +(-3.83732 + 1.21578i) q^{45} +(7.09697 + 0.946180i) q^{46} +(33.7785 - 19.5020i) q^{47} +(34.4782 + 33.3954i) q^{48} +(10.4141 - 18.0377i) q^{49} +(-39.3007 - 30.2590i) q^{50} +(56.3769 + 53.8939i) q^{51} +(17.2841 + 10.0547i) q^{52} +(-57.3208 + 57.3208i) q^{53} +(17.3347 - 51.1420i) q^{54} +9.36664i q^{55} +(66.3208 - 8.39948i) q^{56} +(0.172134 + 7.64451i) q^{57} +(-101.194 + 13.1536i) q^{58} +(-11.5988 - 43.2875i) q^{59} +(-5.15653 + 1.48855i) q^{60} +(70.8572 + 18.9861i) q^{61} +(56.6857 + 7.55743i) q^{62} +(-40.4970 - 63.3725i) q^{63} +(44.8072 + 45.6980i) q^{64} +(-1.93629 + 1.11792i) q^{65} +(-101.263 - 74.3964i) q^{66} +(12.2935 + 45.8800i) q^{67} +(73.2909 + 73.7734i) q^{68} +(-3.01245 - 10.3085i) q^{69} +(-2.87182 + 6.90115i) q^{70} -26.4797 q^{71} +(24.8640 - 67.5706i) q^{72} -38.6468i q^{73} +(-24.5483 + 58.9909i) q^{74} +(-17.6334 + 72.2800i) q^{75} +(-0.0334482 + 10.1952i) q^{76} +(-169.039 + 45.2938i) q^{77} +(3.29348 - 29.8126i) q^{78} +(-29.8313 - 51.6693i) q^{79} +(-6.92427 + 1.80674i) q^{80} +(-80.6718 + 7.28451i) q^{81} +(64.9662 + 8.66140i) q^{82} +(-12.5178 + 46.7170i) q^{83} +(-51.7988 - 85.8612i) q^{84} +(-11.2314 + 3.00945i) q^{85} +(31.1356 - 4.04713i) q^{86} +(79.4985 + 130.804i) q^{87} +(-132.414 - 102.644i) q^{88} +79.3499 q^{89} +(5.17332 + 6.16841i) q^{90} +(-29.5381 - 29.5381i) q^{91} +(-3.66077 - 13.8437i) q^{92} +(-24.0614 - 82.3372i) q^{93} +(-61.8100 - 47.5898i) q^{94} +(-0.987248 - 0.569988i) q^{95} +(35.4646 - 89.2091i) q^{96} +(-16.3804 - 28.3718i) q^{97} +(-41.2910 - 5.50499i) q^{98} +(-40.5384 + 184.071i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} + O(q^{10})$$ $$184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} - 8q^{10} - 6q^{11} - 64q^{12} - 2q^{13} - 6q^{14} - 8q^{15} - 2q^{16} + 54q^{18} - 8q^{19} + 120q^{20} - 22q^{21} - 2q^{22} - 160q^{24} + 44q^{27} - 72q^{28} - 6q^{29} - 90q^{30} - 4q^{31} - 6q^{32} - 8q^{33} + 6q^{34} - 202q^{36} - 8q^{37} - 6q^{38} - 2q^{40} + 44q^{42} - 2q^{43} + 46q^{45} - 160q^{46} - 12q^{47} - 118q^{48} + 472q^{49} + 228q^{50} - 48q^{51} - 2q^{52} + 206q^{54} - 300q^{56} - 92q^{58} - 438q^{59} - 90q^{60} - 2q^{61} - 204q^{63} + 244q^{64} - 12q^{65} - 508q^{66} - 2q^{67} - 144q^{68} + 14q^{69} + 96q^{70} + 6q^{72} + 246q^{74} + 152q^{75} - 158q^{76} - 6q^{77} + 304q^{78} - 4q^{79} - 8q^{81} - 388q^{82} - 726q^{83} + 542q^{84} + 48q^{85} + 894q^{86} + 22q^{88} - 528q^{90} - 204q^{91} - 348q^{92} + 62q^{93} - 18q^{94} - 12q^{95} + 262q^{96} - 4q^{97} + 286q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/144\mathbb{Z}\right)^\times$$.

 $$n$$ $$37$$ $$65$$ $$127$$ $$\chi(n)$$ $$e\left(\frac{1}{4}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.762335 1.84901i −0.381167 0.924506i
$$3$$ −2.07303 + 2.16854i −0.691009 + 0.722846i
$$4$$ −2.83769 + 2.81913i −0.709423 + 0.704783i
$$5$$ −0.115759 0.432017i −0.0231517 0.0864034i 0.953383 0.301762i $$-0.0975747\pi$$
−0.976535 + 0.215358i $$0.930908\pi$$
$$6$$ 5.58999 + 2.17990i 0.931665 + 0.363317i
$$7$$ 7.23679 4.17816i 1.03383 0.596880i 0.115748 0.993279i $$-0.463073\pi$$
0.918079 + 0.396398i $$0.129740\pi$$
$$8$$ 7.37588 + 3.09780i 0.921985 + 0.387225i
$$9$$ −0.405106 8.99088i −0.0450117 0.998986i
$$10$$ −0.710557 + 0.543380i −0.0710557 + 0.0543380i
$$11$$ −20.2288 5.42030i −1.83899 0.492755i −0.840211 0.542259i $$-0.817569\pi$$
−0.998774 + 0.0495046i $$0.984236\pi$$
$$12$$ −0.230778 11.9978i −0.0192315 0.999815i
$$13$$ −1.29383 4.82865i −0.0995257 0.371435i 0.898141 0.439708i $$-0.144918\pi$$
−0.997667 + 0.0682726i $$0.978251\pi$$
$$14$$ −13.2423 10.1958i −0.945881 0.728268i
$$15$$ 1.17682 + 0.644556i 0.0784543 + 0.0429704i
$$16$$ 0.104984 15.9997i 0.00656149 0.999978i
$$17$$ 25.9977i 1.52928i −0.644460 0.764638i $$-0.722918\pi$$
0.644460 0.764638i $$-0.277082\pi$$
$$18$$ −16.3154 + 7.60310i −0.906412 + 0.422395i
$$19$$ 1.80229 1.80229i 0.0948571 0.0948571i −0.658086 0.752943i $$-0.728634\pi$$
0.752943 + 0.658086i $$0.228634\pi$$
$$20$$ 1.54640 + 0.899592i 0.0773200 + 0.0449796i
$$21$$ −5.94157 + 24.3547i −0.282932 + 1.15975i
$$22$$ 5.39895 + 41.5354i 0.245407 + 1.88797i
$$23$$ −1.78994 + 3.10027i −0.0778236 + 0.134794i −0.902311 0.431086i $$-0.858130\pi$$
0.824487 + 0.565881i $$0.191464\pi$$
$$24$$ −22.0081 + 9.57304i −0.917005 + 0.398877i
$$25$$ 21.4774 12.4000i 0.859096 0.495999i
$$26$$ −7.94191 + 6.07337i −0.305458 + 0.233591i
$$27$$ 20.3368 + 17.7599i 0.753217 + 0.657773i
$$28$$ −8.75698 + 32.2578i −0.312749 + 1.15206i
$$29$$ 13.2056 49.2839i 0.455365 1.69945i −0.231647 0.972800i $$-0.574411\pi$$
0.687012 0.726646i $$-0.258922\pi$$
$$30$$ 0.294665 2.66731i 0.00982218 0.0889104i
$$31$$ −14.2968 + 24.7628i −0.461188 + 0.798800i −0.999020 0.0442511i $$-0.985910\pi$$
0.537833 + 0.843052i $$0.319243\pi$$
$$32$$ −29.6636 + 12.0030i −0.926987 + 0.375093i
$$33$$ 53.6891 32.6305i 1.62694 0.988804i
$$34$$ −48.0700 + 19.8189i −1.41382 + 0.582910i
$$35$$ −2.64276 2.64276i −0.0755073 0.0755073i
$$36$$ 26.4960 + 24.3713i 0.736001 + 0.676980i
$$37$$ −22.5902 22.5902i −0.610546 0.610546i 0.332542 0.943088i $$-0.392094\pi$$
−0.943088 + 0.332542i $$0.892094\pi$$
$$38$$ −4.70639 1.95850i −0.123852 0.0515396i
$$39$$ 13.1533 + 7.20421i 0.337263 + 0.184723i
$$40$$ 0.484481 3.54510i 0.0121120 0.0886275i
$$41$$ −16.3853 + 28.3801i −0.399640 + 0.692197i −0.993681 0.112237i $$-0.964198\pi$$
0.594041 + 0.804435i $$0.297532\pi$$
$$42$$ 49.5616 7.58040i 1.18004 0.180486i
$$43$$ −4.06313 + 15.1638i −0.0944915 + 0.352647i −0.996942 0.0781468i $$-0.975100\pi$$
0.902450 + 0.430794i $$0.141766\pi$$
$$44$$ 72.6837 41.6466i 1.65190 0.946514i
$$45$$ −3.83732 + 1.21578i −0.0852737 + 0.0270174i
$$46$$ 7.09697 + 0.946180i 0.154282 + 0.0205691i
$$47$$ 33.7785 19.5020i 0.718691 0.414937i −0.0955796 0.995422i $$-0.530470\pi$$
0.814271 + 0.580485i $$0.197137\pi$$
$$48$$ 34.4782 + 33.3954i 0.718296 + 0.695738i
$$49$$ 10.4141 18.0377i 0.212532 0.368117i
$$50$$ −39.3007 30.2590i −0.786014 0.605181i
$$51$$ 56.3769 + 53.8939i 1.10543 + 1.05674i
$$52$$ 17.2841 + 10.0547i 0.332387 + 0.193360i
$$53$$ −57.3208 + 57.3208i −1.08152 + 1.08152i −0.0851571 + 0.996368i $$0.527139\pi$$
−0.996368 + 0.0851571i $$0.972861\pi$$
$$54$$ 17.3347 51.1420i 0.321013 0.947075i
$$55$$ 9.36664i 0.170303i
$$56$$ 66.3208 8.39948i 1.18430 0.149991i
$$57$$ 0.172134 + 7.64451i 0.00301989 + 0.134114i
$$58$$ −101.194 + 13.1536i −1.74472 + 0.226786i
$$59$$ −11.5988 43.2875i −0.196591 0.733686i −0.991849 0.127416i $$-0.959332\pi$$
0.795259 0.606270i $$-0.207335\pi$$
$$60$$ −5.15653 + 1.48855i −0.0859421 + 0.0248091i
$$61$$ 70.8572 + 18.9861i 1.16159 + 0.311248i 0.787602 0.616184i $$-0.211322\pi$$
0.373991 + 0.927432i $$0.377989\pi$$
$$62$$ 56.6857 + 7.55743i 0.914286 + 0.121894i
$$63$$ −40.4970 63.3725i −0.642810 1.00591i
$$64$$ 44.8072 + 45.6980i 0.700113 + 0.714032i
$$65$$ −1.93629 + 1.11792i −0.0297890 + 0.0171987i
$$66$$ −101.263 74.3964i −1.53429 1.12722i
$$67$$ 12.2935 + 45.8800i 0.183485 + 0.684775i 0.994950 + 0.100374i $$0.0320040\pi$$
−0.811465 + 0.584401i $$0.801329\pi$$
$$68$$ 73.2909 + 73.7734i 1.07781 + 1.08490i
$$69$$ −3.01245 10.3085i −0.0436587 0.149399i
$$70$$ −2.87182 + 6.90115i −0.0410261 + 0.0985879i
$$71$$ −26.4797 −0.372953 −0.186477 0.982459i $$-0.559707\pi$$
−0.186477 + 0.982459i $$0.559707\pi$$
$$72$$ 24.8640 67.5706i 0.345333 0.938480i
$$73$$ 38.6468i 0.529408i −0.964330 0.264704i $$-0.914726\pi$$
0.964330 0.264704i $$-0.0852742\pi$$
$$74$$ −24.5483 + 58.9909i −0.331733 + 0.797174i
$$75$$ −17.6334 + 72.2800i −0.235113 + 0.963734i
$$76$$ −0.0334482 + 10.1952i −0.000440109 + 0.134148i
$$77$$ −169.039 + 45.2938i −2.19531 + 0.588231i
$$78$$ 3.29348 29.8126i 0.0422241 0.382213i
$$79$$ −29.8313 51.6693i −0.377611 0.654042i 0.613103 0.790003i $$-0.289921\pi$$
−0.990714 + 0.135961i $$0.956588\pi$$
$$80$$ −6.92427 + 1.80674i −0.0865534 + 0.0225843i
$$81$$ −80.6718 + 7.28451i −0.995948 + 0.0899322i
$$82$$ 64.9662 + 8.66140i 0.792271 + 0.105627i
$$83$$ −12.5178 + 46.7170i −0.150817 + 0.562855i 0.848611 + 0.529018i $$0.177439\pi$$
−0.999427 + 0.0338373i $$0.989227\pi$$
$$84$$ −51.7988 85.8612i −0.616652 1.02216i
$$85$$ −11.2314 + 3.00945i −0.132135 + 0.0354053i
$$86$$ 31.1356 4.04713i 0.362041 0.0470596i
$$87$$ 79.4985 + 130.804i 0.913776 + 1.50349i
$$88$$ −132.414 102.644i −1.50471 1.16641i
$$89$$ 79.3499 0.891572 0.445786 0.895140i $$-0.352924\pi$$
0.445786 + 0.895140i $$0.352924\pi$$
$$90$$ 5.17332 + 6.16841i 0.0574813 + 0.0685379i
$$91$$ −29.5381 29.5381i −0.324595 0.324595i
$$92$$ −3.66077 13.8437i −0.0397910 0.150475i
$$93$$ −24.0614 82.3372i −0.258724 0.885346i
$$94$$ −61.8100 47.5898i −0.657553 0.506274i
$$95$$ −0.987248 0.569988i −0.0103921 0.00599987i
$$96$$ 35.4646 89.2091i 0.369423 0.929262i
$$97$$ −16.3804 28.3718i −0.168871 0.292492i 0.769152 0.639065i $$-0.220679\pi$$
−0.938023 + 0.346573i $$0.887345\pi$$
$$98$$ −41.2910 5.50499i −0.421337 0.0561733i
$$99$$ −40.5384 + 184.071i −0.409479 + 1.85930i
$$100$$ −25.9890 + 95.7349i −0.259890 + 0.957349i
$$101$$ −6.84865 1.83509i −0.0678084 0.0181692i 0.224755 0.974415i $$-0.427842\pi$$
−0.292564 + 0.956246i $$0.594508\pi$$
$$102$$ 56.6725 145.327i 0.555612 1.42477i
$$103$$ −129.386 74.7010i −1.25617 0.725252i −0.283845 0.958870i $$-0.591610\pi$$
−0.972328 + 0.233618i $$0.924943\pi$$
$$104$$ 5.41505 39.6236i 0.0520678 0.380996i
$$105$$ 11.2094 0.252406i 0.106756 0.00240387i
$$106$$ 149.685 + 62.2892i 1.41212 + 0.587634i
$$107$$ −35.2400 + 35.2400i −0.329346 + 0.329346i −0.852338 0.522992i $$-0.824816\pi$$
0.522992 + 0.852338i $$0.324816\pi$$
$$108$$ −107.777 + 6.93527i −0.997936 + 0.0642155i
$$109$$ 81.1059 81.1059i 0.744091 0.744091i −0.229271 0.973363i $$-0.573634\pi$$
0.973363 + 0.229271i $$0.0736343\pi$$
$$110$$ 17.3190 7.14052i 0.157446 0.0649138i
$$111$$ 95.8178 2.15756i 0.863224 0.0194375i
$$112$$ −66.0894 116.225i −0.590084 1.03772i
$$113$$ 53.3280 + 30.7889i 0.471929 + 0.272468i 0.717047 0.697025i $$-0.245493\pi$$
−0.245118 + 0.969493i $$0.578827\pi$$
$$114$$ 14.0036 6.14596i 0.122838 0.0539119i
$$115$$ 1.54657 + 0.414402i 0.0134484 + 0.00360350i
$$116$$ 101.465 + 177.081i 0.874695 + 1.52656i
$$117$$ −42.8897 + 13.5888i −0.366579 + 0.116144i
$$118$$ −71.1969 + 54.4460i −0.603363 + 0.461406i
$$119$$ −108.623 188.140i −0.912795 1.58101i
$$120$$ 6.68334 + 8.39971i 0.0556945 + 0.0699976i
$$121$$ 275.037 + 158.793i 2.27303 + 1.31234i
$$122$$ −18.9113 145.490i −0.155011 1.19254i
$$123$$ −27.5762 94.3648i −0.224197 0.767193i
$$124$$ −29.2397 110.574i −0.235804 0.891725i
$$125$$ −15.7496 15.7496i −0.125997 0.125997i
$$126$$ −86.3042 + 123.191i −0.684954 + 0.977703i
$$127$$ −67.0975 −0.528327 −0.264163 0.964478i $$-0.585096\pi$$
−0.264163 + 0.964478i $$0.585096\pi$$
$$128$$ 50.3381 117.686i 0.393267 0.919424i
$$129$$ −24.4603 40.2461i −0.189615 0.311985i
$$130$$ 3.54314 + 2.72799i 0.0272549 + 0.0209846i
$$131$$ 125.972 33.7541i 0.961619 0.257665i 0.256333 0.966588i $$-0.417486\pi$$
0.705285 + 0.708923i $$0.250819\pi$$
$$132$$ −60.3632 + 243.952i −0.457297 + 1.84812i
$$133$$ 5.51252 20.5730i 0.0414475 0.154684i
$$134$$ 75.4608 57.7067i 0.563141 0.430647i
$$135$$ 5.31839 10.8417i 0.0393955 0.0803090i
$$136$$ 80.5357 191.756i 0.592174 1.40997i
$$137$$ −22.0318 38.1602i −0.160816 0.278542i 0.774345 0.632763i $$-0.218079\pi$$
−0.935162 + 0.354221i $$0.884746\pi$$
$$138$$ −16.7641 + 13.4286i −0.121479 + 0.0973086i
$$139$$ 206.983 55.4608i 1.48908 0.398999i 0.579656 0.814861i $$-0.303187\pi$$
0.909428 + 0.415862i $$0.136520\pi$$
$$140$$ 14.9496 + 0.0490464i 0.106783 + 0.000350331i
$$141$$ −27.7329 + 113.678i −0.196687 + 0.806228i
$$142$$ 20.1864 + 48.9613i 0.142158 + 0.344798i
$$143$$ 104.691i 0.732105i
$$144$$ −143.893 + 5.53766i −0.999260 + 0.0384559i
$$145$$ −22.8202 −0.157380
$$146$$ −71.4584 + 29.4618i −0.489441 + 0.201793i
$$147$$ 17.5268 + 59.9761i 0.119230 + 0.408000i
$$148$$ 127.789 + 0.419247i 0.863438 + 0.00283275i
$$149$$ 66.3271 + 247.536i 0.445148 + 1.66132i 0.715545 + 0.698566i $$0.246178\pi$$
−0.270397 + 0.962749i $$0.587155\pi$$
$$150$$ 147.089 22.4972i 0.980595 0.149981i
$$151$$ −110.925 + 64.0428i −0.734605 + 0.424125i −0.820105 0.572214i $$-0.806085\pi$$
0.0854993 + 0.996338i $$0.472751\pi$$
$$152$$ 18.8766 7.71032i 0.124188 0.0507258i
$$153$$ −233.742 + 10.5318i −1.52773 + 0.0688354i
$$154$$ 212.613 + 278.026i 1.38060 + 1.80536i
$$155$$ 12.3529 + 3.30996i 0.0796963 + 0.0213546i
$$156$$ −57.6345 + 16.6375i −0.369452 + 0.106651i
$$157$$ −24.9659 93.1741i −0.159019 0.593466i −0.998728 0.0504291i $$-0.983941\pi$$
0.839709 0.543037i $$-0.182726\pi$$
$$158$$ −72.7958 + 94.5477i −0.460733 + 0.598403i
$$159$$ −5.47463 243.130i −0.0344316 1.52912i
$$160$$ 8.61930 + 11.4257i 0.0538706 + 0.0714108i
$$161$$ 29.9147i 0.185805i
$$162$$ 74.9681 + 143.610i 0.462766 + 0.886481i
$$163$$ 84.5646 84.5646i 0.518801 0.518801i −0.398407 0.917209i $$-0.630437\pi$$
0.917209 + 0.398407i $$0.130437\pi$$
$$164$$ −33.5109 126.726i −0.204335 0.772720i
$$165$$ −20.3119 19.4173i −0.123103 0.117681i
$$166$$ 95.9230 12.4685i 0.577849 0.0751112i
$$167$$ 19.4639 33.7125i 0.116551 0.201872i −0.801848 0.597528i $$-0.796150\pi$$
0.918399 + 0.395657i $$0.129483\pi$$
$$168$$ −119.270 + 161.232i −0.709943 + 0.959712i
$$169$$ 124.716 72.0050i 0.737967 0.426065i
$$170$$ 14.1266 + 18.4729i 0.0830978 + 0.108664i
$$171$$ −16.9342 15.4740i −0.0990307 0.0904913i
$$172$$ −31.2189 54.4848i −0.181505 0.316772i
$$173$$ −55.3918 + 206.725i −0.320184 + 1.19494i 0.598882 + 0.800838i $$0.295612\pi$$
−0.919065 + 0.394105i $$0.871055\pi$$
$$174$$ 181.253 246.710i 1.04169 1.41787i
$$175$$ 103.618 179.472i 0.592104 1.02555i
$$176$$ −88.8466 + 323.085i −0.504810 + 1.83571i
$$177$$ 117.915 + 64.5837i 0.666188 + 0.364879i
$$178$$ −60.4912 146.719i −0.339838 0.824264i
$$179$$ 29.8384 + 29.8384i 0.166695 + 0.166695i 0.785525 0.618830i $$-0.212393\pi$$
−0.618830 + 0.785525i $$0.712393\pi$$
$$180$$ 7.46166 14.2679i 0.0414537 0.0792662i
$$181$$ −165.386 165.386i −0.913733 0.913733i 0.0828310 0.996564i $$-0.473604\pi$$
−0.996564 + 0.0828310i $$0.973604\pi$$
$$182$$ −32.0984 + 77.1342i −0.176365 + 0.423815i
$$183$$ −188.061 + 114.298i −1.02766 + 0.624577i
$$184$$ −22.8064 + 17.3223i −0.123948 + 0.0941431i
$$185$$ −7.14434 + 12.3744i −0.0386180 + 0.0668884i
$$186$$ −133.900 + 107.258i −0.719891 + 0.576657i
$$187$$ −140.915 + 525.903i −0.753558 + 2.81232i
$$188$$ −40.8741 + 150.567i −0.217416 + 0.800887i
$$189$$ 221.377 + 43.5537i 1.17131 + 0.230443i
$$190$$ −0.301301 + 2.25995i −0.00158579 + 0.0118945i
$$191$$ 174.438 100.712i 0.913290 0.527288i 0.0318019 0.999494i $$-0.489875\pi$$
0.881488 + 0.472206i $$0.156542\pi$$
$$192$$ −191.985 + 2.43280i −0.999920 + 0.0126708i
$$193$$ −39.0114 + 67.5697i −0.202132 + 0.350102i −0.949215 0.314628i $$-0.898120\pi$$
0.747083 + 0.664730i $$0.231454\pi$$
$$194$$ −39.9723 + 51.9164i −0.206043 + 0.267610i
$$195$$ 1.58974 6.51638i 0.00815250 0.0334173i
$$196$$ 21.2988 + 80.5442i 0.108667 + 0.410940i
$$197$$ 37.5571 37.5571i 0.190645 0.190645i −0.605330 0.795975i $$-0.706959\pi$$
0.795975 + 0.605330i $$0.206959\pi$$
$$198$$ 371.253 65.3675i 1.87502 0.330139i
$$199$$ 31.6063i 0.158826i −0.996842 0.0794129i $$-0.974695\pi$$
0.996842 0.0794129i $$-0.0253045\pi$$
$$200$$ 196.827 24.9280i 0.984137 0.124640i
$$201$$ −124.977 68.4516i −0.621777 0.340555i
$$202$$ 1.82786 + 14.0622i 0.00904881 + 0.0696148i
$$203$$ −110.350 411.833i −0.543597 2.02873i
$$204$$ −311.915 + 5.99970i −1.52899 + 0.0294103i
$$205$$ 14.1574 + 3.79347i 0.0690605 + 0.0185047i
$$206$$ −39.4876 + 296.183i −0.191688 + 1.43778i
$$207$$ 28.5993 + 14.8372i 0.138161 + 0.0716774i
$$208$$ −77.3926 + 20.1940i −0.372080 + 0.0970864i
$$209$$ −46.2271 + 26.6892i −0.221182 + 0.127700i
$$210$$ −9.01204 20.5339i −0.0429145 0.0977807i
$$211$$ −78.8088 294.118i −0.373501 1.39393i −0.855522 0.517766i $$-0.826764\pi$$
0.482021 0.876160i $$-0.339903\pi$$
$$212$$ 1.06380 324.254i 0.00501795 1.52950i
$$213$$ 54.8931 57.4222i 0.257714 0.269588i
$$214$$ 92.0238 + 38.2945i 0.430018 + 0.178946i
$$215$$ 7.02137 0.0326575
$$216$$ 94.9856 + 193.994i 0.439748 + 0.898121i
$$217$$ 238.938i 1.10110i
$$218$$ −211.796 88.1360i −0.971540 0.404293i
$$219$$ 83.8070 + 80.1159i 0.382680 + 0.365826i
$$220$$ −26.4058 26.5796i −0.120026 0.120817i
$$221$$ −125.534 + 33.6367i −0.568026 + 0.152202i
$$222$$ −77.0346 175.524i −0.347003 0.790647i
$$223$$ −8.67499 15.0255i −0.0389013 0.0673790i 0.845919 0.533311i $$-0.179052\pi$$
−0.884821 + 0.465932i $$0.845719\pi$$
$$224$$ −164.519 + 210.802i −0.734459 + 0.941082i
$$225$$ −120.187 188.077i −0.534166 0.835899i
$$226$$ 16.2753 122.076i 0.0720147 0.540157i
$$227$$ 94.8028 353.809i 0.417633 1.55863i −0.361868 0.932229i $$-0.617861\pi$$
0.779502 0.626400i $$-0.215472\pi$$
$$228$$ −22.0394 21.2075i −0.0966638 0.0930154i
$$229$$ 71.2003 19.0781i 0.310918 0.0833103i −0.0999859 0.994989i $$-0.531880\pi$$
0.410904 + 0.911679i $$0.365213\pi$$
$$230$$ −0.412770 3.17554i −0.00179465 0.0138067i
$$231$$ 252.201 460.462i 1.09178 1.99334i
$$232$$ 250.075 322.604i 1.07791 1.39054i
$$233$$ 353.927 1.51900 0.759500 0.650507i $$-0.225444\pi$$
0.759500 + 0.650507i $$0.225444\pi$$
$$234$$ 57.8222 + 68.9443i 0.247103 + 0.294634i
$$235$$ −12.3353 12.3353i −0.0524908 0.0524908i
$$236$$ 154.947 + 90.1378i 0.656555 + 0.381940i
$$237$$ 173.888 + 42.4217i 0.733704 + 0.178995i
$$238$$ −265.066 + 344.270i −1.11372 + 1.44651i
$$239$$ 233.969 + 135.082i 0.978949 + 0.565197i 0.901953 0.431835i $$-0.142134\pi$$
0.0769965 + 0.997031i $$0.475467\pi$$
$$240$$ 10.4362 18.7610i 0.0434843 0.0781707i
$$241$$ 132.967 + 230.305i 0.551729 + 0.955622i 0.998150 + 0.0607993i $$0.0193650\pi$$
−0.446421 + 0.894823i $$0.647302\pi$$
$$242$$ 83.9394 629.600i 0.346857 2.60165i
$$243$$ 151.438 190.041i 0.623202 0.782061i
$$244$$ −254.595 + 145.879i −1.04342 + 0.597865i
$$245$$ −8.99812 2.41104i −0.0367270 0.00984098i
$$246$$ −153.459 + 122.926i −0.623818 + 0.499700i
$$247$$ −11.0345 6.37076i −0.0446740 0.0257925i
$$248$$ −182.162 + 138.359i −0.734524 + 0.557899i
$$249$$ −75.3578 123.991i −0.302642 0.497955i
$$250$$ −17.1148 + 41.1278i −0.0684591 + 0.164511i
$$251$$ 174.607 174.607i 0.695647 0.695647i −0.267821 0.963469i $$-0.586304\pi$$
0.963469 + 0.267821i $$0.0863037\pi$$
$$252$$ 293.574 + 65.6651i 1.16497 + 0.260576i
$$253$$ 53.0128 53.0128i 0.209537 0.209537i
$$254$$ 51.1508 + 124.064i 0.201381 + 0.488441i
$$255$$ 16.7570 30.5945i 0.0657136 0.119978i
$$256$$ −255.978 3.35941i −0.999914 0.0131227i
$$257$$ −73.8786 42.6539i −0.287466 0.165968i 0.349333 0.936999i $$-0.386408\pi$$
−0.636798 + 0.771030i $$0.719742\pi$$
$$258$$ −55.7686 + 75.9084i −0.216157 + 0.294219i
$$259$$ −257.866 69.0950i −0.995622 0.266776i
$$260$$ 2.34303 8.63095i 0.00901166 0.0331960i
$$261$$ −448.456 98.7647i −1.71822 0.378409i
$$262$$ −158.445 207.192i −0.604751 0.790809i
$$263$$ 221.662 + 383.929i 0.842819 + 1.45981i 0.887501 + 0.460805i $$0.152439\pi$$
−0.0446820 + 0.999001i $$0.514227\pi$$
$$264$$ 497.087 74.3608i 1.88291 0.281670i
$$265$$ 31.3989 + 18.1282i 0.118487 + 0.0684082i
$$266$$ −42.2421 + 5.49080i −0.158805 + 0.0206421i
$$267$$ −164.495 + 172.073i −0.616085 + 0.644469i
$$268$$ −164.227 95.5362i −0.612787 0.356478i
$$269$$ −131.331 131.331i −0.488220 0.488220i 0.419524 0.907744i $$-0.362197\pi$$
−0.907744 + 0.419524i $$0.862197\pi$$
$$270$$ −24.1009 1.56876i −0.0892624 0.00581021i
$$271$$ −417.793 −1.54167 −0.770835 0.637034i $$-0.780161\pi$$
−0.770835 + 0.637034i $$0.780161\pi$$
$$272$$ −415.954 2.72934i −1.52924 0.0100343i
$$273$$ 125.288 2.82114i 0.458930 0.0103339i
$$274$$ −53.7631 + 69.8280i −0.196216 + 0.254847i
$$275$$ −501.674 + 134.423i −1.82427 + 0.488812i
$$276$$ 37.6094 + 20.7599i 0.136266 + 0.0752169i
$$277$$ −77.3307 + 288.602i −0.279172 + 1.04189i 0.673821 + 0.738895i $$0.264652\pi$$
−0.952993 + 0.302991i $$0.902015\pi$$
$$278$$ −260.338 340.434i −0.936467 1.22458i
$$279$$ 228.431 + 118.509i 0.818750 + 0.424765i
$$280$$ −11.3059 27.6794i −0.0403783 0.0988550i
$$281$$ 52.8235 + 91.4929i 0.187984 + 0.325598i 0.944578 0.328287i $$-0.106471\pi$$
−0.756594 + 0.653885i $$0.773138\pi$$
$$282$$ 231.334 35.3823i 0.820333 0.125469i
$$283$$ 220.459 59.0719i 0.779009 0.208735i 0.152661 0.988279i $$-0.451216\pi$$
0.626348 + 0.779544i $$0.284549\pi$$
$$284$$ 75.1412 74.6498i 0.264582 0.262851i
$$285$$ 3.28263 0.959282i 0.0115180 0.00336590i
$$286$$ 193.575 79.8096i 0.676836 0.279055i
$$287$$ 273.841i 0.954150i
$$288$$ 119.934 + 261.839i 0.416438 + 0.909164i
$$289$$ −386.880 −1.33868
$$290$$ 17.3966 + 42.1947i 0.0599883 + 0.145499i
$$291$$ 95.4823 + 23.2939i 0.328118 + 0.0800477i
$$292$$ 108.950 + 109.668i 0.373118 + 0.375574i
$$293$$ 65.6267 + 244.922i 0.223982 + 0.835912i 0.982810 + 0.184621i $$0.0591058\pi$$
−0.758828 + 0.651291i $$0.774228\pi$$
$$294$$ 97.5352 78.1291i 0.331752 0.265745i
$$295$$ −17.3583 + 10.0218i −0.0588415 + 0.0339722i
$$296$$ −96.6427 236.603i −0.326495 0.799333i
$$297$$ −315.127 469.493i −1.06103 1.58078i
$$298$$ 407.134 311.345i 1.36622 1.04478i
$$299$$ 17.2860 + 4.63178i 0.0578128 + 0.0154909i
$$300$$ −153.729 254.819i −0.512429 0.849398i
$$301$$ 33.9529 + 126.714i 0.112800 + 0.420976i
$$302$$ 202.978 + 156.280i 0.672113 + 0.517485i
$$303$$ 18.1769 11.0474i 0.0599898 0.0364599i
$$304$$ −28.6467 29.0252i −0.0942327 0.0954775i
$$305$$ 32.8093i 0.107571i
$$306$$ 197.663 + 424.163i 0.645958 + 1.38615i
$$307$$ −99.3313 + 99.3313i −0.323555 + 0.323555i −0.850129 0.526574i $$-0.823476\pi$$
0.526574 + 0.850129i $$0.323476\pi$$
$$308$$ 351.991 605.072i 1.14283 1.96452i
$$309$$ 430.212 125.721i 1.39227 0.406863i
$$310$$ −3.29692 25.3640i −0.0106352 0.0818194i
$$311$$ 198.297 343.460i 0.637610 1.10437i −0.348346 0.937366i $$-0.613256\pi$$
0.985956 0.167007i $$-0.0534102\pi$$
$$312$$ 74.6997 + 93.8836i 0.239422 + 0.300909i
$$313$$ −482.430 + 278.531i −1.54131 + 0.889875i −0.542552 + 0.840022i $$0.682542\pi$$
−0.998757 + 0.0498529i $$0.984125\pi$$
$$314$$ −153.248 + 117.192i −0.488050 + 0.373223i
$$315$$ −22.6901 + 24.8313i −0.0720321 + 0.0788295i
$$316$$ 230.315 + 62.5232i 0.728844 + 0.197858i
$$317$$ −67.7601 + 252.884i −0.213754 + 0.797742i 0.772847 + 0.634592i $$0.218832\pi$$
−0.986601 + 0.163150i $$0.947835\pi$$
$$318$$ −445.377 + 195.469i −1.40056 + 0.614683i
$$319$$ −534.268 + 925.379i −1.67482 + 2.90087i
$$320$$ 14.5555 24.6474i 0.0454859 0.0770232i
$$321$$ −3.36572 149.473i −0.0104851 0.465647i
$$322$$ 55.3126 22.8050i 0.171778 0.0708230i
$$323$$ −46.8553 46.8553i −0.145063 0.145063i
$$324$$ 208.386 248.096i 0.643165 0.765727i
$$325$$ −87.6634 87.6634i −0.269734 0.269734i
$$326$$ −220.827 91.8944i −0.677385 0.281885i
$$327$$ 7.74631 + 344.016i 0.0236890 + 1.05204i
$$328$$ −208.772 + 158.570i −0.636499 + 0.483445i
$$329$$ 162.965 282.264i 0.495335 0.857945i
$$330$$ −20.4184 + 52.3595i −0.0618739 + 0.158665i
$$331$$ 70.2883 262.320i 0.212351 0.792506i −0.774731 0.632291i $$-0.782115\pi$$
0.987082 0.160215i $$-0.0512187\pi$$
$$332$$ −96.1797 167.858i −0.289698 0.505595i
$$333$$ −193.954 + 212.257i −0.582445 + 0.637409i
$$334$$ −77.1729 10.2888i −0.231057 0.0308049i
$$335$$ 18.3978 10.6220i 0.0549189 0.0317074i
$$336$$ 389.043 + 97.6199i 1.15787 + 0.290536i
$$337$$ 210.750 365.030i 0.625372 1.08318i −0.363097 0.931751i $$-0.618281\pi$$
0.988469 0.151425i $$-0.0483861\pi$$
$$338$$ −228.214 175.710i −0.675189 0.519853i
$$339$$ −177.317 + 51.8174i −0.523060 + 0.152854i
$$340$$ 23.3873 40.2028i 0.0687862 0.118244i
$$341$$ 423.430 423.430i 1.24173 1.24173i
$$342$$ −15.7021 + 43.1080i −0.0459125 + 0.126047i
$$343$$ 235.413i 0.686335i
$$344$$ −76.9437 + 99.2598i −0.223674 + 0.288546i
$$345$$ −4.10473 + 2.49473i −0.0118978 + 0.00723109i
$$346$$ 424.464 55.1736i 1.22678 0.159461i
$$347$$ −46.8058 174.682i −0.134887 0.503406i −0.999998 0.00182548i $$-0.999419\pi$$
0.865111 0.501580i $$-0.167248\pi$$
$$348$$ −594.345 147.064i −1.70789 0.422598i
$$349$$ 57.7638 + 15.4778i 0.165512 + 0.0443489i 0.340624 0.940200i $$-0.389362\pi$$
−0.175111 + 0.984549i $$0.556029\pi$$
$$350$$ −410.838 54.7736i −1.17382 0.156496i
$$351$$ 59.4437 121.178i 0.169355 0.345236i
$$352$$ 665.120 82.0207i 1.88954 0.233013i
$$353$$ −7.41642 + 4.28187i −0.0210097 + 0.0121299i −0.510468 0.859897i $$-0.670528\pi$$
0.489458 + 0.872027i $$0.337195\pi$$
$$354$$ 29.5251 267.261i 0.0834041 0.754975i
$$355$$ 3.06525 + 11.4397i 0.00863451 + 0.0322244i
$$356$$ −225.171 + 223.698i −0.632502 + 0.628365i
$$357$$ 633.166 + 154.467i 1.77357 + 0.432681i
$$358$$ 32.4247 77.9185i 0.0905719 0.217649i
$$359$$ −242.593 −0.675746 −0.337873 0.941192i $$-0.609707\pi$$
−0.337873 + 0.941192i $$0.609707\pi$$
$$360$$ −32.0698 2.91977i −0.0890829 0.00811048i
$$361$$ 354.504i 0.982004i
$$362$$ −179.721 + 431.879i −0.496466 + 1.19304i
$$363$$ −914.508 + 267.246i −2.51931 + 0.736216i
$$364$$ 167.092 + 0.548192i 0.459044 + 0.00150602i
$$365$$ −16.6961 + 4.47370i −0.0457426 + 0.0122567i
$$366$$ 354.703 + 260.594i 0.969135 + 0.712006i
$$367$$ 110.239 + 190.940i 0.300379 + 0.520272i 0.976222 0.216774i $$-0.0695534\pi$$
−0.675843 + 0.737046i $$0.736220\pi$$
$$368$$ 49.4153 + 28.9639i 0.134281 + 0.0787063i
$$369$$ 261.800 + 135.821i 0.709484 + 0.368078i
$$370$$ 28.3267 + 3.77656i 0.0765587 + 0.0102069i
$$371$$ −175.323 + 654.314i −0.472569 + 1.76365i
$$372$$ 300.398 + 165.815i 0.807522 + 0.445740i
$$373$$ 202.620 54.2918i 0.543217 0.145554i 0.0232321 0.999730i $$-0.492604\pi$$
0.519985 + 0.854176i $$0.325938\pi$$
$$374$$ 1079.83 140.360i 2.88723 0.375294i
$$375$$ 66.8032 1.50423i 0.178142 0.00401127i
$$376$$ 309.559 39.2055i 0.823297 0.104270i
$$377$$ −255.061 −0.676554
$$378$$ −88.2321 442.531i −0.233418 1.17072i
$$379$$ 346.957 + 346.957i 0.915453 + 0.915453i 0.996694 0.0812412i $$-0.0258884\pi$$
−0.0812412 + 0.996694i $$0.525888\pi$$
$$380$$ 4.40837 1.16573i 0.0116010 0.00306772i
$$381$$ 139.095 145.503i 0.365079 0.381899i
$$382$$ −319.198 245.762i −0.835598 0.643357i
$$383$$ −44.9048 25.9258i −0.117245 0.0676914i 0.440231 0.897885i $$-0.354897\pi$$
−0.557476 + 0.830193i $$0.688230\pi$$
$$384$$ 150.855 + 353.127i 0.392851 + 0.919602i
$$385$$ 39.1354 + 67.7844i 0.101650 + 0.176063i
$$386$$ 154.677 + 20.6218i 0.400717 + 0.0534243i
$$387$$ 137.982 + 30.3882i 0.356543 + 0.0785225i
$$388$$ 126.466 + 34.3317i 0.325944 + 0.0884837i
$$389$$ −300.911 80.6288i −0.773549 0.207272i −0.149610 0.988745i $$-0.547802\pi$$
−0.623939 + 0.781473i $$0.714469\pi$$
$$390$$ −13.2608 + 2.02822i −0.0340020 + 0.00520057i
$$391$$ 80.5999 + 46.5344i 0.206138 + 0.119014i
$$392$$ 132.690 100.783i 0.338496 0.257100i
$$393$$ −187.947 + 343.148i −0.478236 + 0.873151i
$$394$$ −98.0745 40.8124i −0.248920 0.103585i
$$395$$ −18.8688 + 18.8688i −0.0477691 + 0.0477691i
$$396$$ −403.884 636.619i −1.01991 1.60762i
$$397$$ 470.741 470.741i 1.18574 1.18574i 0.207512 0.978232i $$-0.433463\pi$$
0.978232 0.207512i $$-0.0665367\pi$$
$$398$$ −58.4405 + 24.0946i −0.146835 + 0.0605392i
$$399$$ 33.1857 + 54.6025i 0.0831722 + 0.136848i
$$400$$ −196.141 344.933i −0.490352 0.862332i
$$401$$ 529.827 + 305.896i 1.32126 + 0.762832i 0.983930 0.178553i $$-0.0571417\pi$$
0.337333 + 0.941385i $$0.390475\pi$$
$$402$$ −31.2933 + 283.267i −0.0778441 + 0.704645i
$$403$$ 138.069 + 36.9954i 0.342602 + 0.0918000i
$$404$$ 24.6077 14.0998i 0.0609102 0.0349006i
$$405$$ 12.4855 + 34.0083i 0.0308283 + 0.0839712i
$$406$$ −677.360 + 517.993i −1.66837 + 1.27585i
$$407$$ 334.528 + 579.419i 0.821936 + 1.42363i
$$408$$ 248.877 + 572.160i 0.609992 + 1.40235i
$$409$$ −310.635 179.345i −0.759499 0.438497i 0.0696165 0.997574i $$-0.477822\pi$$
−0.829116 + 0.559077i $$0.811156\pi$$
$$410$$ −3.77852 29.0691i −0.00921590 0.0709003i
$$411$$ 128.425 + 31.3304i 0.312468 + 0.0762298i
$$412$$ 577.749 152.778i 1.40230 0.370819i
$$413$$ −264.801 264.801i −0.641164 0.641164i
$$414$$ 5.63197 64.1913i 0.0136038 0.155051i
$$415$$ 21.6315 0.0521242
$$416$$ 96.3380 + 127.705i 0.231582 + 0.306984i
$$417$$ −308.812 + 563.821i −0.740556 + 1.35209i
$$418$$ 84.5892 + 65.1283i 0.202366 + 0.155809i
$$419$$ 224.900 60.2617i 0.536754 0.143823i 0.0197486 0.999805i $$-0.493713\pi$$
0.517005 + 0.855982i $$0.327047\pi$$
$$420$$ −31.0973 + 32.3171i −0.0740412 + 0.0769455i
$$421$$ 169.109 631.122i 0.401683 1.49910i −0.408409 0.912799i $$-0.633916\pi$$
0.810092 0.586303i $$-0.199417\pi$$
$$422$$ −483.750 + 369.935i −1.14633 + 0.876623i
$$423$$ −189.024 295.798i −0.446866 0.699286i
$$424$$ −600.360 + 245.223i −1.41594 + 0.578356i
$$425$$ −322.371 558.363i −0.758520 1.31379i
$$426$$ −148.021 57.7232i −0.347468 0.135500i
$$427$$ 592.106 158.654i 1.38666 0.371556i
$$428$$ 0.654012 199.346i 0.00152806 0.465763i
$$429$$ −227.026 217.027i −0.529199 0.505892i
$$430$$ −5.35263 12.9826i −0.0124480 0.0301921i
$$431$$ 480.071i 1.11385i 0.830562 + 0.556927i $$0.188020\pi$$
−0.830562 + 0.556927i $$0.811980\pi$$
$$432$$ 286.287 323.518i 0.662701 0.748884i
$$433$$ −317.055 −0.732228 −0.366114 0.930570i $$-0.619312\pi$$
−0.366114 + 0.930570i $$0.619312\pi$$
$$434$$ 441.799 182.151i 1.01797 0.419702i
$$435$$ 47.3068 49.4863i 0.108751 0.113762i
$$436$$ −1.50523 + 458.802i −0.00345236 + 1.05230i
$$437$$ 2.36159 + 8.81356i 0.00540409 + 0.0201683i
$$438$$ 84.2462 216.035i 0.192343 0.493231i
$$439$$ 157.780 91.0945i 0.359409 0.207505i −0.309413 0.950928i $$-0.600132\pi$$
0.668821 + 0.743423i $$0.266799\pi$$
$$440$$ −29.0160 + 69.0872i −0.0659455 + 0.157016i
$$441$$ −166.394 86.3246i −0.377310 0.195747i
$$442$$ 157.893 + 206.471i 0.357225 + 0.467129i
$$443$$ 183.948 + 49.2888i 0.415233 + 0.111261i 0.460386 0.887719i $$-0.347711\pi$$
−0.0451531 + 0.998980i $$0.514378\pi$$
$$444$$ −265.819 + 276.246i −0.598691 + 0.622175i
$$445$$ −9.18543 34.2805i −0.0206414 0.0770348i
$$446$$ −21.1691 + 27.4946i −0.0474644 + 0.0616471i
$$447$$ −674.289 369.316i −1.50848 0.826211i
$$448$$ 515.194 + 143.495i 1.14999 + 0.320302i
$$449$$ 22.5026i 0.0501172i 0.999686 + 0.0250586i $$0.00797724\pi$$
−0.999686 + 0.0250586i $$0.992023\pi$$
$$450$$ −256.134 + 365.606i −0.569187 + 0.812457i
$$451$$ 485.283 485.283i 1.07602 1.07602i
$$452$$ −238.126 + 62.9692i −0.526828 + 0.139312i
$$453$$ 91.0723 373.308i 0.201043 0.824080i
$$454$$ −726.468 + 94.4293i −1.60015 + 0.207994i
$$455$$ −9.34167 + 16.1802i −0.0205311 + 0.0355610i
$$456$$ −22.4116 + 56.9183i −0.0491481 + 0.124821i
$$457$$ −8.03399 + 4.63842i −0.0175798 + 0.0101497i −0.508764 0.860906i $$-0.669897\pi$$
0.491184 + 0.871056i $$0.336564\pi$$
$$458$$ −89.5540 117.106i −0.195533 0.255691i
$$459$$ 461.715 528.711i 1.00592 1.15188i
$$460$$ −5.55694 + 3.18404i −0.0120803 + 0.00692183i
$$461$$ 163.564 610.429i 0.354803 1.32414i −0.525930 0.850528i $$-0.676283\pi$$
0.880733 0.473614i $$-0.157051\pi$$
$$462$$ −1043.66 115.296i −2.25901 0.249559i
$$463$$ 119.643 207.227i 0.258407 0.447574i −0.707408 0.706805i $$-0.750136\pi$$
0.965815 + 0.259231i $$0.0834691\pi$$
$$464$$ −787.140 216.459i −1.69642 0.466506i
$$465$$ −32.7857 + 19.9262i −0.0705070 + 0.0428519i
$$466$$ −269.811 654.415i −0.578993 1.40432i
$$467$$ −465.534 465.534i −0.996860 0.996860i 0.00313466 0.999995i $$-0.499002\pi$$
−0.999995 + 0.00313466i $$0.999002\pi$$
$$468$$ 83.3991 159.473i 0.178203 0.340753i
$$469$$ 280.659 + 280.659i 0.598421 + 0.598421i
$$470$$ −13.4045 + 32.2119i −0.0285203 + 0.0685359i
$$471$$ 253.807 + 139.013i 0.538868 + 0.295144i
$$472$$ 48.5444 355.214i 0.102848 0.752572i
$$473$$ 164.385 284.723i 0.347537 0.601952i
$$474$$ −54.1226 353.860i −0.114183 0.746541i
$$475$$ 16.3601 61.0567i 0.0344423 0.128540i
$$476$$ 838.628 + 227.661i 1.76182 + 0.478280i
$$477$$ 538.585 + 492.143i 1.12911 + 1.03175i
$$478$$ 71.4056 535.589i 0.149384 1.12048i
$$479$$ −272.785 + 157.493i −0.569489 + 0.328794i −0.756945 0.653478i $$-0.773309\pi$$
0.187456 + 0.982273i $$0.439976\pi$$
$$480$$ −42.6452 4.99457i −0.0888441 0.0104054i
$$481$$ −79.8523 + 138.308i −0.166013 + 0.287543i
$$482$$ 324.472 421.426i 0.673178 0.874329i
$$483$$ −64.8711 62.0140i −0.134309 0.128393i
$$484$$ −1228.13 + 324.761i −2.53745 + 0.670994i
$$485$$ −10.3609 + 10.3609i −0.0213627 + 0.0213627i
$$486$$ −466.834 135.136i −0.960564 0.278058i
$$487$$ 473.337i 0.971945i −0.873974 0.485973i $$-0.838465\pi$$
0.873974 0.485973i $$-0.161535\pi$$
$$488$$ 463.819 + 359.541i 0.950449 + 0.736764i
$$489$$ 8.07664 + 358.686i 0.0165166 + 0.733510i
$$490$$ 2.40154 + 18.4757i 0.00490110 + 0.0377054i
$$491$$ −49.4303 184.476i −0.100673 0.375716i 0.897146 0.441735i $$-0.145637\pi$$
−0.997818 + 0.0660193i $$0.978970\pi$$
$$492$$ 344.279 + 190.037i 0.699755 + 0.386254i
$$493$$ −1281.27 343.315i −2.59892 0.696379i
$$494$$ −3.36764 + 25.2595i −0.00681709 + 0.0511326i
$$495$$ 84.2143 3.79448i 0.170130 0.00766562i
$$496$$ 394.696 + 231.344i 0.795757 + 0.466419i
$$497$$ −191.628 + 110.636i −0.385569 + 0.222609i
$$498$$ −171.813 + 233.860i −0.345005 + 0.469598i
$$499$$ 63.0138 + 235.171i 0.126280 + 0.471284i 0.999882 0.0153574i $$-0.00488860\pi$$
−0.873602 + 0.486641i $$0.838222\pi$$
$$500$$ 89.0930 + 0.292294i 0.178186 + 0.000584589i
$$501$$ 32.7576 + 112.095i 0.0653844 + 0.223743i
$$502$$ −455.961 189.742i −0.908288 0.377972i
$$503$$ −653.388 −1.29898 −0.649491 0.760369i $$-0.725018\pi$$
−0.649491 + 0.760369i $$0.725018\pi$$
$$504$$ −102.386 592.880i −0.203146 1.17635i
$$505$$ 3.17116i 0.00627952i
$$506$$ −138.435 57.6079i −0.273587 0.113850i
$$507$$ −102.395 + 419.721i −0.201963 + 0.827851i
$$508$$ 190.402 189.157i 0.374807 0.372356i
$$509$$ −8.19536 + 2.19594i −0.0161009 + 0.00431422i −0.266861 0.963735i $$-0.585986\pi$$
0.250760 + 0.968049i $$0.419320\pi$$
$$510$$ −69.3440 7.66062i −0.135969 0.0150208i
$$511$$ −161.473 279.679i −0.315993 0.547316i
$$512$$ 188.929 + 475.867i 0.369003 + 0.929428i
$$513$$ 68.6612 4.64447i 0.133842 0.00905355i
$$514$$ −22.5472 + 169.119i −0.0438662 + 0.329025i
$$515$$ −17.2945 + 64.5441i −0.0335816 + 0.125328i
$$516$$ 182.870 + 45.2491i 0.354399 + 0.0876921i
$$517$$ −789.006 + 211.414i −1.52612 + 0.408924i
$$518$$ 68.8228 + 529.471i 0.132863 + 1.02214i
$$519$$ −333.462 548.666i −0.642509 1.05716i
$$520$$ −17.7449 + 2.24738i −0.0341248 + 0.00432188i
$$521$$ 513.662 0.985916 0.492958 0.870053i $$-0.335916\pi$$
0.492958 + 0.870053i $$0.335916\pi$$
$$522$$ 159.256 + 904.492i 0.305089 + 1.73274i
$$523$$ −531.117 531.117i −1.01552 1.01552i −0.999878 0.0156428i $$-0.995021\pi$$
−0.0156428 0.999878i $$-0.504979\pi$$
$$524$$ −262.312 + 450.916i −0.500596 + 0.860526i
$$525$$ 174.388 + 596.751i 0.332168 + 1.13667i
$$526$$ 540.909 702.537i 1.02834 1.33562i
$$527$$ 643.776 + 371.684i 1.22159 + 0.705283i
$$528$$ −516.441 862.432i −0.978108 1.63339i
$$529$$ 258.092 + 447.029i 0.487887 + 0.845045i
$$530$$ 9.58273 71.8767i 0.0180806 0.135616i
$$531$$ −384.494 + 121.820i −0.724094 + 0.229416i
$$532$$ 42.3552 + 73.9204i 0.0796150 + 0.138948i
$$533$$ 158.237 + 42.3996i 0.296881 + 0.0795490i
$$534$$ 443.565 + 172.975i 0.830647 + 0.323923i
$$535$$ 19.3036 + 11.1449i 0.0360815 + 0.0208317i
$$536$$ −51.4517 + 376.488i −0.0959919 + 0.702403i
$$537$$ −126.562 + 2.84982i −0.235683 + 0.00530693i
$$538$$ −142.715 + 342.952i −0.265269 + 0.637456i
$$539$$ −308.435 + 308.435i −0.572235 + 0.572235i
$$540$$ 15.4723 + 45.7587i 0.0286524 + 0.0847383i
$$541$$ 491.796 491.796i 0.909049 0.909049i −0.0871462 0.996196i $$-0.527775\pi$$
0.996196 + 0.0871462i $$0.0277747\pi$$
$$542$$ 318.498 + 772.504i 0.587635 + 1.42528i
$$543$$ 701.494 15.7957i 1.29189 0.0290898i
$$544$$ 312.050 + 771.185i 0.573621 + 1.41762i
$$545$$ −44.4278 25.6504i −0.0815190 0.0470650i
$$546$$ −100.728 229.508i −0.184483 0.420344i
$$547$$ 278.723 + 74.6837i 0.509549 + 0.136533i 0.504428 0.863454i $$-0.331703\pi$$
0.00512086 + 0.999987i $$0.498370\pi$$
$$548$$ 170.098 + 46.1764i 0.310398 + 0.0842634i
$$549$$ 141.997 644.760i 0.258647 1.17443i
$$550$$ 630.994 + 825.126i 1.14726 + 1.50023i
$$551$$ −65.0235 112.624i −0.118010 0.204399i
$$552$$ 9.71424 85.3663i 0.0175983 0.154649i
$$553$$ −431.766 249.280i −0.780770 0.450778i
$$554$$ 592.581 77.0261i 1.06964 0.139036i
$$555$$ −12.0238 41.1452i −0.0216646 0.0741354i
$$556$$ −431.001 + 740.892i −0.775182 + 1.33254i
$$557$$ 560.781 + 560.781i 1.00679 + 1.00679i 0.999977 + 0.00681189i $$0.00216831\pi$$
0.00681189 + 0.999977i $$0.497832\pi$$
$$558$$ 44.9843 512.716i 0.0806169 0.918846i
$$559$$ 78.4779 0.140390
$$560$$ −42.5606 + 42.0058i −0.0760012 + 0.0750103i
$$561$$ −848.319 1395.79i −1.51215 2.48804i
$$562$$ 128.902 167.419i 0.229364 0.297899i
$$563$$ −62.7879 + 16.8240i −0.111524 + 0.0298827i −0.314149 0.949374i $$-0.601719\pi$$
0.202626 + 0.979256i $$0.435053\pi$$
$$564$$ −241.776 400.766i −0.428681 0.710578i
$$565$$ 7.12816 26.6027i 0.0126162 0.0470844i
$$566$$ −277.289 362.600i −0.489909 0.640635i
$$567$$ −553.369 + 389.776i −0.975959 + 0.687436i
$$568$$ −195.311 82.0289i −0.343857 0.144417i
$$569$$ −376.781 652.605i −0.662182 1.14693i −0.980041 0.198795i $$-0.936297\pi$$
0.317859 0.948138i $$-0.397036\pi$$
$$570$$ −4.27619 5.33833i −0.00750209 0.00936549i
$$571$$ −191.951 + 51.4330i −0.336166 + 0.0900753i −0.422953 0.906152i $$-0.639007\pi$$
0.0867876 + 0.996227i $$0.472340\pi$$
$$572$$ −295.138 297.081i −0.515975 0.519372i
$$573$$ −143.218 + 587.055i −0.249944 + 1.02453i
$$574$$ 506.335 208.759i 0.882117 0.363691i
$$575$$ 88.7810i 0.154402i
$$576$$ 392.714 421.369i 0.681795 0.731543i
$$577$$ 321.494 0.557181 0.278591 0.960410i $$-0.410133\pi$$
0.278591 + 0.960410i $$0.410133\pi$$
$$578$$ 294.932 + 715.345i 0.510263 + 1.23762i
$$579$$ −65.6557 224.672i −0.113395 0.388034i
$$580$$ 64.7565 64.3330i 0.111649 0.110919i
$$581$$ 104.603 + 390.382i 0.180039 + 0.671914i
$$582$$ −29.7189 194.306i −0.0510633 0.333859i
$$583$$ 1470.23 848.837i 2.52183 1.45598i
$$584$$ 119.720 285.054i 0.205000 0.488106i
$$585$$ 10.8354 + 16.9560i 0.0185221 + 0.0289847i
$$586$$ 402.835 308.057i 0.687431 0.525695i
$$587$$ 519.522 + 139.206i 0.885046 + 0.237147i 0.672583 0.740022i $$-0.265185\pi$$
0.212463 + 0.977169i $$0.431851\pi$$
$$588$$ −218.816 120.783i −0.372136 0.205414i
$$589$$ 18.8627 + 70.3966i 0.0320250 + 0.119519i
$$590$$ 31.7632 + 24.4557i 0.0538360 + 0.0414503i
$$591$$ 3.58702 + 159.301i 0.00606941 + 0.269544i
$$592$$ −363.807 + 359.064i −0.614539 + 0.606527i
$$593$$ 150.500i 0.253795i −0.991916 0.126897i $$-0.959498\pi$$
0.991916 0.126897i $$-0.0405019\pi$$
$$594$$ −627.866 + 940.585i −1.05701 + 1.58348i
$$595$$ −68.7056 + 68.7056i −0.115472 + 0.115472i
$$596$$ −886.052 515.446i −1.48666 0.864842i
$$597$$ 68.5395 + 65.5208i 0.114806 + 0.109750i
$$598$$ −4.61353 35.4930i −0.00771493 0.0593529i
$$599$$ −447.647 + 775.348i −0.747325 + 1.29440i 0.201776 + 0.979432i $$0.435329\pi$$
−0.949101 + 0.314972i $$0.898005\pi$$
$$600$$ −353.971 + 478.504i −0.589952 + 0.797507i
$$601$$ 864.629 499.194i 1.43865 0.830605i 0.440894 0.897559i $$-0.354661\pi$$
0.997756 + 0.0669538i $$0.0213280\pi$$
$$602$$ 208.412 159.378i 0.346199 0.264747i
$$603$$ 407.521 129.116i 0.675822 0.214122i
$$604$$ 134.227 494.447i 0.222230 0.818621i
$$605$$ 36.7632 137.202i 0.0607657 0.226781i
$$606$$ −34.2836 25.1875i −0.0565736 0.0415636i
$$607$$ 378.819 656.133i 0.624084 1.08094i −0.364634 0.931151i $$-0.618806\pi$$
0.988717 0.149794i $$-0.0478609\pi$$
$$608$$ −31.8295 + 75.0951i −0.0523511 + 0.123512i
$$609$$ 1121.83 + 614.442i 1.84209 + 1.00894i
$$610$$ −60.6648 + 25.0117i −0.0994505 + 0.0410027i
$$611$$ −137.872 137.872i −0.225650 0.225650i
$$612$$ 633.597 688.836i 1.03529 1.12555i
$$613$$ 325.410 + 325.410i 0.530849 + 0.530849i 0.920825 0.389976i $$-0.127517\pi$$
−0.389976 + 0.920825i $$0.627517\pi$$
$$614$$ 259.388 + 107.941i 0.422457 + 0.175800i
$$615$$ −37.5750 + 22.8369i −0.0610975 + 0.0371332i
$$616$$ −1387.12 189.567i −2.25182 0.307739i
$$617$$ −167.571 + 290.242i −0.271590 + 0.470408i −0.969269 0.246002i $$-0.920883\pi$$
0.697679 + 0.716411i $$0.254216\pi$$
$$618$$ −560.425 699.627i −0.906837 1.13208i
$$619$$ −127.580 + 476.135i −0.206107 + 0.769201i 0.783003 + 0.622018i $$0.213687\pi$$
−0.989109 + 0.147183i $$0.952980\pi$$
$$620$$ −44.3850 + 25.4319i −0.0715887 + 0.0410192i
$$621$$ −91.4621 + 31.2606i −0.147282 + 0.0503391i
$$622$$ −786.230 104.822i −1.26404 0.168523i
$$623$$ 574.239 331.537i 0.921731 0.532162i
$$624$$ 116.646 209.691i 0.186932 0.336044i
$$625$$ 305.019 528.308i 0.488030 0.845292i
$$626$$ 882.780 + 679.684i 1.41019 + 1.08576i
$$627$$ 37.9535 155.573i 0.0605319 0.248122i
$$628$$ 333.516 + 194.017i 0.531076 + 0.308944i
$$629$$ −587.293 + 587.293i −0.933693 + 0.933693i
$$630$$ 63.2108 + 23.0245i 0.100335 + 0.0365469i
$$631$$ 298.987i 0.473830i 0.971530 + 0.236915i $$0.0761362\pi$$
−0.971530 + 0.236915i $$0.923864\pi$$
$$632$$ −59.9707 473.518i −0.0948904 0.749238i
$$633$$ 801.179 + 438.816i 1.26569 + 0.693232i
$$634$$ 519.242 67.4932i 0.818994 0.106456i
$$635$$ 7.76711 + 28.9872i 0.0122317 + 0.0456492i
$$636$$ 700.951 + 674.494i 1.10212 + 1.06053i
$$637$$ −100.572 26.9482i −0.157884 0.0423049i
$$638$$ 2118.33 + 282.419i 3.32026 + 0.442663i
$$639$$ 10.7271 + 238.076i 0.0167873 + 0.372575i
$$640$$ −56.6695 8.12372i −0.0885462 0.0126933i
$$641$$ −360.071 + 207.887i −0.561734 + 0.324317i −0.753841 0.657057i $$-0.771801\pi$$
0.192107 + 0.981374i $$0.438468\pi$$
$$642$$ −273.811 + 120.172i −0.426497 + 0.187183i
$$643$$ −47.0412 175.560i −0.0731589 0.273033i 0.919651 0.392738i $$-0.128472\pi$$
−0.992810 + 0.119705i $$0.961805\pi$$
$$644$$ −84.3334 84.8886i −0.130953 0.131815i
$$645$$ −14.5555 + 15.2261i −0.0225667 + 0.0236064i
$$646$$ −50.9165 + 122.355i −0.0788182 + 0.189405i
$$647$$ 56.1947 0.0868543 0.0434272 0.999057i $$-0.486172\pi$$
0.0434272 + 0.999057i $$0.486172\pi$$
$$648$$ −617.591 196.176i −0.953073 0.302740i
$$649$$ 938.525i 1.44611i
$$650$$ −95.2618 + 228.920i −0.146557 + 0.352184i
$$651$$ −518.145 495.325i −0.795922 0.760867i
$$652$$ −1.56942 + 478.367i −0.00240708 + 0.733692i
$$653$$ −93.3761 + 25.0200i −0.142995 + 0.0383155i −0.329607 0.944118i $$-0.606916\pi$$
0.186611 + 0.982434i $$0.440250\pi$$
$$654$$ 630.185 276.578i 0.963585 0.422903i
$$655$$ −29.1647 50.5147i −0.0445262 0.0771217i
$$656$$ 452.352 + 265.138i 0.689560 + 0.404174i
$$657$$ −347.468 + 15.6560i −0.528871 + 0.0238296i
$$658$$ −646.144 86.1449i −0.981981 0.130919i
$$659$$ 77.0858 287.688i 0.116974 0.436552i −0.882453 0.470400i $$-0.844110\pi$$
0.999427 + 0.0338479i $$0.0107762\pi$$
$$660$$ 112.379 2.16162i 0.170271 0.00327518i
$$661$$ −435.687 + 116.742i −0.659133 + 0.176614i −0.572855 0.819657i $$-0.694164\pi$$
−0.0862784 + 0.996271i $$0.527497\pi$$
$$662$$ −538.615 + 70.0114i −0.813618 + 0.105757i
$$663$$ 187.293 341.955i 0.282493 0.515769i
$$664$$ −237.050 + 305.801i −0.357002 + 0.460544i
$$665$$ −9.52601 −0.0143248
$$666$$ 540.324 + 196.813i 0.811298 + 0.295515i
$$667$$ 129.156 + 129.156i 0.193638 + 0.193638i
$$668$$ 39.8075 + 150.537i 0.0595920 + 0.225355i
$$669$$ 50.5669 + 12.3363i 0.0755858 + 0.0184399i
$$670$$ −33.6655 25.9203i −0.0502470 0.0386870i
$$671$$ −1330.45 768.135i −1.98278 1.14476i
$$672$$ −116.081 793.764i −0.172739 1.18120i
$$673$$ −64.0278 110.899i −0.0951379 0.164784i 0.814528 0.580124i $$-0.196996\pi$$
−0.909666 + 0.415340i $$0.863663\pi$$
$$674$$ −835.608 111.405i −1.23977 0.165289i
$$675$$ 657.004 + 129.259i 0.973340 + 0.191495i
$$676$$ −150.915 + 555.920i −0.223247 + 0.822367i
$$677$$ −717.129 192.154i −1.05927 0.283832i −0.313195 0.949689i $$-0.601399\pi$$
−0.746079 + 0.665857i $$0.768066\pi$$
$$678$$ 230.986 + 288.360i 0.340688 + 0.425309i
$$679$$ −237.084 136.880i −0.349166 0.201591i
$$680$$ −92.1644 12.5954i −0.135536 0.0185226i
$$681$$ 570.719 + 939.039i 0.838060 + 1.37891i
$$682$$ −1105.72 460.132i −1.62129 0.674680i
$$683$$ −413.911 + 413.911i −0.606019 + 0.606019i −0.941903 0.335885i $$-0.890965\pi$$
0.335885 + 0.941903i $$0.390965\pi$$
$$684$$ 91.6775 3.82941i 0.134031 0.00559855i
$$685$$ −13.9355 + 13.9355i −0.0203438 + 0.0203438i
$$686$$ 435.281 179.463i 0.634521 0.261609i
$$687$$ −106.229 + 193.950i −0.154627 + 0.282314i
$$688$$ 242.189 + 66.6007i 0.352019 + 0.0968033i
$$689$$ 350.946 + 202.619i 0.509356 + 0.294077i
$$690$$ 7.74196 + 5.68788i 0.0112202 + 0.00824330i
$$691$$ 481.009 + 128.886i 0.696105 + 0.186521i 0.589485 0.807779i $$-0.299331\pi$$
0.106620 + 0.994300i $$0.465997\pi$$
$$692$$ −425.600 742.779i −0.615030 1.07338i
$$693$$ 475.710 + 1501.46i 0.686450 + 2.16661i
$$694$$ −287.307 + 219.711i −0.413987 + 0.316586i
$$695$$ −47.9200 82.9999i −0.0689497 0.119424i
$$696$$ 181.167 + 1211.06i 0.260297 + 1.74003i
$$697$$ 737.817 + 425.979i 1.05856 + 0.611160i
$$698$$ −15.4168 118.605i −0.0220871 0.169921i
$$699$$ −733.701 + 767.504i −1.04964 + 1.09800i
$$700$$ 211.919 + 801.400i 0.302741 + 1.14486i
$$701$$ −270.798 270.798i −0.386303 0.386303i 0.487064 0.873367i $$-0.338068\pi$$
−0.873367 + 0.487064i $$0.838068\pi$$
$$702$$ −269.375 17.5340i −0.383726 0.0249772i
$$703$$ −81.4280 −0.115829
$$704$$ −658.701 1167.29i −0.935655 1.65808i
$$705$$ 52.3212 1.17813i 0.0742144 0.00167111i
$$706$$ 13.5710 + 10.4488i 0.0192224 + 0.0148000i
$$707$$ −57.2296 + 15.3346i −0.0809470 + 0.0216897i
$$708$$ −516.677 + 149.150i −0.729770 + 0.210664i
$$709$$ −110.232 + 411.392i −0.155475 + 0.580242i 0.843589 + 0.536990i $$0.180439\pi$$
−0.999064 + 0.0432524i $$0.986228\pi$$
$$710$$ 18.8153 14.3885i 0.0265005 0.0202656i
$$711$$ −452.468 + 289.141i −0.636382 + 0.406668i
$$712$$ 585.275 + 245.810i 0.822016 + 0.345239i
$$713$$ −51.1810 88.6480i −0.0717825 0.124331i
$$714$$ −197.073 1288.49i −0.276012 1.80460i
$$715$$ 45.2283 12.1189i 0.0632563 0.0169495i
$$716$$ −168.791 0.553765i −0.235741 0.000773415i
$$717$$ −777.954 + 227.341i −1.08501 + 0.317073i
$$718$$ 184.937 + 448.557i 0.257572 + 0.624731i
$$719$$ 1018.72i 1.41685i −0.705784 0.708427i $$-0.749405\pi$$
0.705784 0.708427i $$-0.250595\pi$$
$$720$$ 19.0493 + 61.5234i 0.0264573 + 0.0854491i
$$721$$ −1248.45 −1.73155
$$722$$ 655.481 270.250i 0.907869 0.374308i
$$723$$ −775.068 189.086i −1.07202 0.261529i
$$724$$ 935.557 + 3.06936i 1.29221 + 0.00423944i
$$725$$ −327.498 1222.24i −0.451722 1.68585i
$$726$$ 1191.30 + 1487.20i 1.64091 + 2.04849i
$$727$$ −409.462 + 236.403i −0.563221 + 0.325176i −0.754437 0.656372i $$-0.772090\pi$$
0.191216 + 0.981548i $$0.438757\pi$$
$$728$$ −126.366 309.373i −0.173580 0.424963i
$$729$$ 98.1748 + 722.359i 0.134670 + 0.990890i
$$730$$ 20.9999 + 27.4608i 0.0287670 + 0.0376175i
$$731$$ 394.224 + 105.632i 0.539295 + 0.144504i
$$732$$ 211.439 854.511i 0.288851 1.16736i
$$733$$ 227.404 + 848.684i 0.310238 + 1.15782i 0.928342 + 0.371727i $$0.121234\pi$$
−0.618104 + 0.786096i $$0.712099\pi$$
$$734$$ 269.011 349.394i 0.366500 0.476013i
$$735$$ 23.8818 14.5146i 0.0324922 0.0197478i
$$736$$ 15.8836 113.450i 0.0215810 0.154144i
$$737$$ 994.733i 1.34971i
$$738$$ 51.5554 587.612i 0.0698583 0.796222i
$$739$$ 48.3289 48.3289i 0.0653977 0.0653977i −0.673651 0.739049i $$-0.735275\pi$$
0.739049 + 0.673651i $$0.235275\pi$$
$$740$$ −14.6115 55.2554i −0.0197453 0.0746695i
$$741$$ 36.6900 10.7219i 0.0495142 0.0144695i
$$742$$ 1343.49 174.632i 1.81063 0.235353i
$$743$$ 171.049 296.266i 0.230214 0.398743i −0.727657 0.685941i $$-0.759391\pi$$
0.957871 + 0.287199i $$0.0927240\pi$$
$$744$$ 77.5906 681.847i 0.104288 0.916461i
$$745$$ 99.2618 57.3088i 0.133237 0.0769246i
$$746$$ −254.850 333.258i −0.341622 0.446726i
$$747$$ 425.097 + 93.6204i 0.569073 + 0.125329i
$$748$$ −1082.72 1889.61i −1.44748 2.52622i
$$749$$ −107.786 + 402.263i −0.143907 + 0.537067i
$$750$$ −53.7077 122.373i −0.0716103 0.163164i
$$751$$ −583.913 + 1011.37i −0.777514 + 1.34669i 0.155857 + 0.987780i $$0.450186\pi$$
−0.933371 + 0.358914i $$0.883147\pi$$
$$752$$ −308.479 542.492i −0.410212 0.721398i
$$753$$ 16.6765 + 740.609i 0.0221467 + 0.983544i
$$754$$ 194.442 + 471.611i 0.257880 + 0.625479i
$$755$$ 40.5081 + 40.5081i 0.0536532 + 0.0536532i
$$756$$ −750.984 + 500.499i −0.993364 + 0.662036i
$$757$$ −885.032 885.032i −1.16913 1.16913i −0.982414 0.186716i $$-0.940215\pi$$
−0.186716 0.982414i $$-0.559785\pi$$
$$758$$ 377.030 906.025i 0.497401 1.19528i
$$759$$ 5.06318 + 224.857i 0.00667086 + 0.296255i
$$760$$ −5.51611 7.26246i −0.00725804 0.00955587i
$$761$$ −222.498 + 385.378i −0.292376 + 0.506410i −0.974371 0.224947i $$-0.927779\pi$$
0.681995 + 0.731357i $$0.261113\pi$$
$$762$$ −375.075 146.266i −0.492224 0.191950i
$$763$$ 248.073 925.820i 0.325128 1.21339i
$$764$$ −211.082 + 777.555i −0.276285 + 1.01774i
$$765$$ 31.6076 + 99.7613i 0.0413171 + 0.130407i
$$766$$ −13.7046 + 102.794i −0.0178912 + 0.134195i
$$767$$ −194.013 + 112.014i −0.252951 + 0.146041i
$$768$$ 537.935 548.134i 0.700436 0.713716i
$$769$$ 27.2858 47.2604i 0.0354822 0.0614569i −0.847739 0.530414i $$-0.822037\pi$$
0.883221 + 0.468957i $$0.155370\pi$$
$$770$$ 95.5000 124.036i 0.124026 0.161086i
$$771$$ 245.649 71.7859i 0.318611 0.0931075i
$$772$$ −79.7857 301.720i −0.103349 0.390829i
$$773$$ 125.828 125.828i 0.162779 0.162779i −0.621018