Properties

Label 144.3.w.a.5.16
Level $144$
Weight $3$
Character 144.5
Analytic conductor $3.924$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 144.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.92371580679\)
Analytic rank: \(0\)
Dimension: \(184\)
Relative dimension: \(46\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 5.16
Character \(\chi\) \(=\) 144.5
Dual form 144.3.w.a.29.16

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.08605 - 1.67944i) q^{2} +(1.99667 - 2.23905i) q^{3} +(-1.64101 + 3.64789i) q^{4} +(1.20857 + 4.51043i) q^{5} +(-5.92880 - 0.921569i) q^{6} +(7.69955 - 4.44534i) q^{7} +(7.90861 - 1.20579i) q^{8} +(-1.02665 - 8.94125i) q^{9} +O(q^{10})\) \(q+(-1.08605 - 1.67944i) q^{2} +(1.99667 - 2.23905i) q^{3} +(-1.64101 + 3.64789i) q^{4} +(1.20857 + 4.51043i) q^{5} +(-5.92880 - 0.921569i) q^{6} +(7.69955 - 4.44534i) q^{7} +(7.90861 - 1.20579i) q^{8} +(-1.02665 - 8.94125i) q^{9} +(6.26242 - 6.92824i) q^{10} +(9.59821 + 2.57183i) q^{11} +(4.89123 + 10.9579i) q^{12} +(-5.52790 - 20.6304i) q^{13} +(-15.8277 - 8.10307i) q^{14} +(12.5122 + 6.29978i) q^{15} +(-10.6142 - 11.9725i) q^{16} +16.2606i q^{17} +(-13.9013 + 11.4348i) q^{18} +(-12.7191 + 12.7191i) q^{19} +(-18.4368 - 2.99296i) q^{20} +(5.42012 - 26.1155i) q^{21} +(-6.10486 - 18.9127i) q^{22} +(-3.20182 + 5.54571i) q^{23} +(13.0910 - 20.1153i) q^{24} +(2.76731 - 1.59771i) q^{25} +(-28.6439 + 31.6893i) q^{26} +(-22.0697 - 15.5540i) q^{27} +(3.58103 + 35.3819i) q^{28} +(3.23789 - 12.0840i) q^{29} +(-3.00868 - 27.8552i) q^{30} +(22.0027 - 38.1098i) q^{31} +(-8.57952 + 30.8284i) q^{32} +(24.9229 - 16.3557i) q^{33} +(27.3086 - 17.6597i) q^{34} +(29.3558 + 29.3558i) q^{35} +(34.3014 + 10.9276i) q^{36} +(29.7857 + 29.7857i) q^{37} +(35.1745 + 7.54742i) q^{38} +(-57.2298 - 28.8148i) q^{39} +(14.9967 + 34.2139i) q^{40} +(-0.584432 + 1.01227i) q^{41} +(-49.7458 + 19.2599i) q^{42} +(-9.91228 + 36.9931i) q^{43} +(-25.1325 + 30.7928i) q^{44} +(39.0881 - 15.4367i) q^{45} +(12.7910 - 0.645643i) q^{46} +(-54.6786 + 31.5687i) q^{47} +(-47.9998 - 0.139414i) q^{48} +(15.0221 - 26.0190i) q^{49} +(-5.68868 - 2.91234i) q^{50} +(36.4081 + 32.4669i) q^{51} +(84.3288 + 13.6896i) q^{52} +(-12.4936 + 12.4936i) q^{53} +(-2.15318 + 53.9571i) q^{54} +46.4003i q^{55} +(55.5326 - 44.4405i) q^{56} +(3.08285 + 53.8745i) q^{57} +(-23.8108 + 7.68591i) q^{58} +(7.14507 + 26.6658i) q^{59} +(-43.5135 + 35.3049i) q^{60} +(-105.639 - 28.3060i) q^{61} +(-87.8989 + 4.43682i) q^{62} +(-47.6516 - 64.2798i) q^{63} +(61.0921 - 19.0723i) q^{64} +(86.3711 - 49.8664i) q^{65} +(-54.5358 - 24.0933i) q^{66} +(34.4781 + 128.674i) q^{67} +(-59.3167 - 26.6838i) q^{68} +(6.02413 + 18.2419i) q^{69} +(17.4195 - 81.1829i) q^{70} +16.9880 q^{71} +(-18.9007 - 69.4749i) q^{72} -12.4974i q^{73} +(17.6746 - 82.3718i) q^{74} +(1.94806 - 9.38623i) q^{75} +(-25.5257 - 67.2702i) q^{76} +(85.3346 - 22.8653i) q^{77} +(13.7615 + 127.408i) q^{78} +(13.6564 + 23.6535i) q^{79} +(41.1730 - 62.3439i) q^{80} +(-78.8920 + 18.3591i) q^{81} +(2.33476 - 0.117850i) q^{82} +(-20.0789 + 74.9354i) q^{83} +(86.3719 + 62.6278i) q^{84} +(-73.3421 + 19.6519i) q^{85} +(72.8928 - 23.5292i) q^{86} +(-20.5916 - 31.3775i) q^{87} +(79.0096 + 8.76615i) q^{88} +158.598 q^{89} +(-68.3764 - 48.8810i) q^{90} +(-134.272 - 134.272i) q^{91} +(-14.9759 - 20.7804i) q^{92} +(-41.3975 - 125.358i) q^{93} +(112.401 + 57.5442i) q^{94} +(-72.7406 - 41.9968i) q^{95} +(51.8958 + 80.7640i) q^{96} +(-56.3634 - 97.6244i) q^{97} +(-60.0119 + 3.02918i) q^{98} +(13.1414 - 88.4604i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} + O(q^{10}) \) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} - 8q^{10} - 6q^{11} - 64q^{12} - 2q^{13} - 6q^{14} - 8q^{15} - 2q^{16} + 54q^{18} - 8q^{19} + 120q^{20} - 22q^{21} - 2q^{22} - 160q^{24} + 44q^{27} - 72q^{28} - 6q^{29} - 90q^{30} - 4q^{31} - 6q^{32} - 8q^{33} + 6q^{34} - 202q^{36} - 8q^{37} - 6q^{38} - 2q^{40} + 44q^{42} - 2q^{43} + 46q^{45} - 160q^{46} - 12q^{47} - 118q^{48} + 472q^{49} + 228q^{50} - 48q^{51} - 2q^{52} + 206q^{54} - 300q^{56} - 92q^{58} - 438q^{59} - 90q^{60} - 2q^{61} - 204q^{63} + 244q^{64} - 12q^{65} - 508q^{66} - 2q^{67} - 144q^{68} + 14q^{69} + 96q^{70} + 6q^{72} + 246q^{74} + 152q^{75} - 158q^{76} - 6q^{77} + 304q^{78} - 4q^{79} - 8q^{81} - 388q^{82} - 726q^{83} + 542q^{84} + 48q^{85} + 894q^{86} + 22q^{88} - 528q^{90} - 204q^{91} - 348q^{92} + 62q^{93} - 18q^{94} - 12q^{95} + 262q^{96} - 4q^{97} + 286q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.08605 1.67944i −0.543023 0.839718i
\(3\) 1.99667 2.23905i 0.665555 0.746348i
\(4\) −1.64101 + 3.64789i −0.410253 + 0.911972i
\(5\) 1.20857 + 4.51043i 0.241713 + 0.902085i 0.975007 + 0.222174i \(0.0713152\pi\)
−0.733294 + 0.679912i \(0.762018\pi\)
\(6\) −5.92880 0.921569i −0.988134 0.153595i
\(7\) 7.69955 4.44534i 1.09994 0.635048i 0.163732 0.986505i \(-0.447647\pi\)
0.936204 + 0.351457i \(0.114313\pi\)
\(8\) 7.90861 1.20579i 0.988576 0.150724i
\(9\) −1.02665 8.94125i −0.114072 0.993472i
\(10\) 6.26242 6.92824i 0.626242 0.692824i
\(11\) 9.59821 + 2.57183i 0.872565 + 0.233803i 0.667196 0.744882i \(-0.267494\pi\)
0.205368 + 0.978685i \(0.434161\pi\)
\(12\) 4.89123 + 10.9579i 0.407603 + 0.913159i
\(13\) −5.52790 20.6304i −0.425223 1.58695i −0.763435 0.645885i \(-0.776489\pi\)
0.338212 0.941070i \(-0.390178\pi\)
\(14\) −15.8277 8.10307i −1.13055 0.578791i
\(15\) 12.5122 + 6.29978i 0.834144 + 0.419986i
\(16\) −10.6142 11.9725i −0.663385 0.748278i
\(17\) 16.2606i 0.956504i 0.878223 + 0.478252i \(0.158729\pi\)
−0.878223 + 0.478252i \(0.841271\pi\)
\(18\) −13.9013 + 11.4348i −0.772293 + 0.635266i
\(19\) −12.7191 + 12.7191i −0.669428 + 0.669428i −0.957584 0.288156i \(-0.906958\pi\)
0.288156 + 0.957584i \(0.406958\pi\)
\(20\) −18.4368 2.99296i −0.921840 0.149648i
\(21\) 5.42012 26.1155i 0.258101 1.24360i
\(22\) −6.10486 18.9127i −0.277494 0.859669i
\(23\) −3.20182 + 5.54571i −0.139209 + 0.241118i −0.927198 0.374573i \(-0.877789\pi\)
0.787988 + 0.615690i \(0.211123\pi\)
\(24\) 13.0910 20.1153i 0.545459 0.838137i
\(25\) 2.76731 1.59771i 0.110692 0.0639083i
\(26\) −28.6439 + 31.6893i −1.10169 + 1.21882i
\(27\) −22.0697 15.5540i −0.817398 0.576073i
\(28\) 3.58103 + 35.3819i 0.127894 + 1.26364i
\(29\) 3.23789 12.0840i 0.111651 0.416689i −0.887363 0.461071i \(-0.847465\pi\)
0.999015 + 0.0443823i \(0.0141320\pi\)
\(30\) −3.00868 27.8552i −0.100289 0.928507i
\(31\) 22.0027 38.1098i 0.709765 1.22935i −0.255180 0.966894i \(-0.582135\pi\)
0.964944 0.262455i \(-0.0845320\pi\)
\(32\) −8.57952 + 30.8284i −0.268110 + 0.963388i
\(33\) 24.9229 16.3557i 0.755239 0.495628i
\(34\) 27.3086 17.6597i 0.803193 0.519403i
\(35\) 29.3558 + 29.3558i 0.838737 + 0.838737i
\(36\) 34.3014 + 10.9276i 0.952817 + 0.303545i
\(37\) 29.7857 + 29.7857i 0.805019 + 0.805019i 0.983875 0.178856i \(-0.0572396\pi\)
−0.178856 + 0.983875i \(0.557240\pi\)
\(38\) 35.1745 + 7.54742i 0.925645 + 0.198616i
\(39\) −57.2298 28.8148i −1.46743 0.738841i
\(40\) 14.9967 + 34.2139i 0.374918 + 0.855348i
\(41\) −0.584432 + 1.01227i −0.0142544 + 0.0246894i −0.873065 0.487604i \(-0.837871\pi\)
0.858810 + 0.512294i \(0.171204\pi\)
\(42\) −49.7458 + 19.2599i −1.18442 + 0.458568i
\(43\) −9.91228 + 36.9931i −0.230518 + 0.860306i 0.749600 + 0.661891i \(0.230246\pi\)
−0.980118 + 0.198415i \(0.936421\pi\)
\(44\) −25.1325 + 30.7928i −0.571194 + 0.699836i
\(45\) 39.0881 15.4367i 0.868624 0.343038i
\(46\) 12.7910 0.645643i 0.278065 0.0140357i
\(47\) −54.6786 + 31.5687i −1.16337 + 0.671675i −0.952110 0.305754i \(-0.901091\pi\)
−0.211264 + 0.977429i \(0.567758\pi\)
\(48\) −47.9998 0.139414i −0.999996 0.00290446i
\(49\) 15.0221 26.0190i 0.306573 0.531000i
\(50\) −5.68868 2.91234i −0.113774 0.0582468i
\(51\) 36.4081 + 32.4669i 0.713885 + 0.636606i
\(52\) 84.3288 + 13.6896i 1.62171 + 0.263261i
\(53\) −12.4936 + 12.4936i −0.235729 + 0.235729i −0.815079 0.579350i \(-0.803307\pi\)
0.579350 + 0.815079i \(0.303307\pi\)
\(54\) −2.15318 + 53.9571i −0.0398738 + 0.999205i
\(55\) 46.4003i 0.843641i
\(56\) 55.5326 44.4405i 0.991653 0.793580i
\(57\) 3.08285 + 53.8745i 0.0540851 + 0.945168i
\(58\) −23.8108 + 7.68591i −0.410530 + 0.132516i
\(59\) 7.14507 + 26.6658i 0.121103 + 0.451962i 0.999671 0.0256553i \(-0.00816724\pi\)
−0.878568 + 0.477617i \(0.841501\pi\)
\(60\) −43.5135 + 35.3049i −0.725225 + 0.588415i
\(61\) −105.639 28.3060i −1.73179 0.464032i −0.751197 0.660078i \(-0.770523\pi\)
−0.980595 + 0.196046i \(0.937190\pi\)
\(62\) −87.8989 + 4.43682i −1.41772 + 0.0715616i
\(63\) −47.6516 64.2798i −0.756375 1.02031i
\(64\) 61.0921 19.0723i 0.954564 0.298005i
\(65\) 86.3711 49.8664i 1.32879 0.767175i
\(66\) −54.5358 24.0933i −0.826300 0.365050i
\(67\) 34.4781 + 128.674i 0.514599 + 1.92051i 0.361815 + 0.932250i \(0.382157\pi\)
0.152784 + 0.988260i \(0.451176\pi\)
\(68\) −59.3167 26.6838i −0.872304 0.392409i
\(69\) 6.02413 + 18.2419i 0.0873063 + 0.264376i
\(70\) 17.4195 81.1829i 0.248850 1.15976i
\(71\) 16.9880 0.239268 0.119634 0.992818i \(-0.461828\pi\)
0.119634 + 0.992818i \(0.461828\pi\)
\(72\) −18.9007 69.4749i −0.262509 0.964929i
\(73\) 12.4974i 0.171198i −0.996330 0.0855989i \(-0.972720\pi\)
0.996330 0.0855989i \(-0.0272804\pi\)
\(74\) 17.6746 82.3718i 0.238846 1.11313i
\(75\) 1.94806 9.38623i 0.0259741 0.125150i
\(76\) −25.5257 67.2702i −0.335864 0.885134i
\(77\) 85.3346 22.8653i 1.10824 0.296952i
\(78\) 13.7615 + 127.408i 0.176429 + 1.63344i
\(79\) 13.6564 + 23.6535i 0.172866 + 0.299412i 0.939421 0.342767i \(-0.111364\pi\)
−0.766555 + 0.642179i \(0.778031\pi\)
\(80\) 41.1730 62.3439i 0.514662 0.779298i
\(81\) −78.8920 + 18.3591i −0.973975 + 0.226655i
\(82\) 2.33476 0.117850i 0.0284726 0.00143720i
\(83\) −20.0789 + 74.9354i −0.241914 + 0.902836i 0.732995 + 0.680234i \(0.238122\pi\)
−0.974909 + 0.222602i \(0.928545\pi\)
\(84\) 86.3719 + 62.6278i 1.02824 + 0.745570i
\(85\) −73.3421 + 19.6519i −0.862848 + 0.231199i
\(86\) 72.8928 23.5292i 0.847591 0.273595i
\(87\) −20.5916 31.3775i −0.236685 0.360660i
\(88\) 79.0096 + 8.76615i 0.897836 + 0.0996154i
\(89\) 158.598 1.78200 0.891000 0.454004i \(-0.150005\pi\)
0.891000 + 0.454004i \(0.150005\pi\)
\(90\) −68.3764 48.8810i −0.759738 0.543122i
\(91\) −134.272 134.272i −1.47551 1.47551i
\(92\) −14.9759 20.7804i −0.162781 0.225874i
\(93\) −41.3975 125.358i −0.445135 1.34793i
\(94\) 112.401 + 57.5442i 1.19576 + 0.612172i
\(95\) −72.7406 41.9968i −0.765690 0.442072i
\(96\) 51.8958 + 80.7640i 0.540581 + 0.841292i
\(97\) −56.3634 97.6244i −0.581066 1.00644i −0.995353 0.0962903i \(-0.969302\pi\)
0.414287 0.910146i \(-0.364031\pi\)
\(98\) −60.0119 + 3.02918i −0.612366 + 0.0309100i
\(99\) 13.1414 88.4604i 0.132742 0.893539i
\(100\) 1.28707 + 12.7167i 0.0128707 + 0.127167i
\(101\) −104.739 28.0647i −1.03702 0.277868i −0.300142 0.953895i \(-0.597034\pi\)
−0.736878 + 0.676026i \(0.763701\pi\)
\(102\) 14.9852 96.4057i 0.146914 0.945154i
\(103\) −18.2870 10.5580i −0.177544 0.102505i 0.408594 0.912716i \(-0.366019\pi\)
−0.586138 + 0.810211i \(0.699352\pi\)
\(104\) −68.5940 156.492i −0.659558 1.50473i
\(105\) 124.343 7.11524i 1.18422 0.0677641i
\(106\) 34.5509 + 7.41362i 0.325952 + 0.0699398i
\(107\) −107.994 + 107.994i −1.00929 + 1.00929i −0.00933781 + 0.999956i \(0.502972\pi\)
−0.999956 + 0.00933781i \(0.997028\pi\)
\(108\) 92.9559 54.9837i 0.860703 0.509108i
\(109\) −93.8919 + 93.8919i −0.861393 + 0.861393i −0.991500 0.130107i \(-0.958468\pi\)
0.130107 + 0.991500i \(0.458468\pi\)
\(110\) 77.9263 50.3928i 0.708421 0.458116i
\(111\) 126.164 7.21944i 1.13661 0.0650400i
\(112\) −134.946 44.9990i −1.20487 0.401777i
\(113\) −96.8308 55.9053i −0.856910 0.494737i 0.00606644 0.999982i \(-0.498069\pi\)
−0.862976 + 0.505244i \(0.831402\pi\)
\(114\) 87.1308 63.6876i 0.764305 0.558664i
\(115\) −28.8831 7.73921i −0.251158 0.0672975i
\(116\) 38.7676 + 31.6414i 0.334203 + 0.272771i
\(117\) −178.786 + 70.6065i −1.52809 + 0.603475i
\(118\) 37.0236 40.9599i 0.313759 0.347118i
\(119\) 72.2837 + 125.199i 0.607426 + 1.05209i
\(120\) 106.550 + 34.7354i 0.887916 + 0.289462i
\(121\) −19.2777 11.1300i −0.159320 0.0919835i
\(122\) 67.1910 + 208.156i 0.550746 + 1.70620i
\(123\) 1.09959 + 3.32973i 0.00893979 + 0.0270710i
\(124\) 102.914 + 142.802i 0.829948 + 1.15163i
\(125\) 93.0974 + 93.0974i 0.744779 + 0.744779i
\(126\) −56.2021 + 149.839i −0.446048 + 1.18920i
\(127\) 90.1123 0.709546 0.354773 0.934952i \(-0.384558\pi\)
0.354773 + 0.934952i \(0.384558\pi\)
\(128\) −98.3795 81.8869i −0.768590 0.639742i
\(129\) 63.0378 + 96.0570i 0.488665 + 0.744628i
\(130\) −177.550 90.8977i −1.36577 0.699213i
\(131\) −95.6847 + 25.6386i −0.730418 + 0.195715i −0.604815 0.796366i \(-0.706753\pi\)
−0.125602 + 0.992081i \(0.540086\pi\)
\(132\) 18.7651 + 117.756i 0.142160 + 0.892089i
\(133\) −41.3908 + 154.472i −0.311209 + 1.16145i
\(134\) 178.655 197.650i 1.33325 1.47500i
\(135\) 43.4824 118.342i 0.322092 0.876607i
\(136\) 19.6069 + 128.598i 0.144168 + 0.945576i
\(137\) −13.0908 22.6739i −0.0955533 0.165503i 0.814286 0.580464i \(-0.197129\pi\)
−0.909839 + 0.414961i \(0.863795\pi\)
\(138\) 24.0937 29.9287i 0.174592 0.216875i
\(139\) 83.3543 22.3347i 0.599671 0.160681i 0.0538016 0.998552i \(-0.482866\pi\)
0.545869 + 0.837870i \(0.316199\pi\)
\(140\) −155.260 + 58.9134i −1.10900 + 0.420810i
\(141\) −38.4911 + 185.460i −0.272987 + 1.31532i
\(142\) −18.4498 28.5303i −0.129928 0.200918i
\(143\) 212.232i 1.48414i
\(144\) −96.1517 + 107.195i −0.667720 + 0.744412i
\(145\) 58.4171 0.402877
\(146\) −20.9887 + 13.5728i −0.143758 + 0.0929643i
\(147\) −28.2636 85.5863i −0.192270 0.582220i
\(148\) −157.534 + 59.7762i −1.06442 + 0.403893i
\(149\) −30.6516 114.393i −0.205715 0.767739i −0.989230 0.146367i \(-0.953242\pi\)
0.783515 0.621373i \(-0.213425\pi\)
\(150\) −17.8792 + 6.92223i −0.119195 + 0.0461482i
\(151\) 89.2008 51.5001i 0.590734 0.341060i −0.174654 0.984630i \(-0.555881\pi\)
0.765388 + 0.643569i \(0.222547\pi\)
\(152\) −85.2539 + 115.927i −0.560881 + 0.762679i
\(153\) 145.390 16.6939i 0.950260 0.109110i
\(154\) −131.078 118.481i −0.851156 0.769359i
\(155\) 198.483 + 53.1834i 1.28054 + 0.343119i
\(156\) 199.028 161.482i 1.27582 1.03514i
\(157\) 16.6183 + 62.0202i 0.105849 + 0.395033i 0.998440 0.0558335i \(-0.0177816\pi\)
−0.892591 + 0.450867i \(0.851115\pi\)
\(158\) 24.8932 48.6238i 0.157552 0.307746i
\(159\) 3.02820 + 52.9195i 0.0190453 + 0.332827i
\(160\) −149.418 1.43914i −0.933864 0.00899463i
\(161\) 56.9326i 0.353619i
\(162\) 116.513 + 112.555i 0.719217 + 0.694786i
\(163\) 99.9028 99.9028i 0.612901 0.612901i −0.330800 0.943701i \(-0.607319\pi\)
0.943701 + 0.330800i \(0.107319\pi\)
\(164\) −2.73357 3.79308i −0.0166681 0.0231286i
\(165\) 103.892 + 92.6458i 0.629650 + 0.561490i
\(166\) 147.656 47.6620i 0.889493 0.287121i
\(167\) 10.8859 18.8549i 0.0651848 0.112903i −0.831591 0.555388i \(-0.812570\pi\)
0.896776 + 0.442485i \(0.145903\pi\)
\(168\) 11.3757 213.073i 0.0677124 1.26829i
\(169\) −248.698 + 143.586i −1.47158 + 0.849620i
\(170\) 112.657 + 101.830i 0.662688 + 0.599003i
\(171\) 126.783 + 100.667i 0.741421 + 0.588695i
\(172\) −118.681 96.8651i −0.690004 0.563169i
\(173\) 65.2154 243.387i 0.376968 1.40686i −0.473481 0.880804i \(-0.657003\pi\)
0.850449 0.526058i \(-0.176331\pi\)
\(174\) −30.3330 + 68.6596i −0.174328 + 0.394595i
\(175\) 14.2047 24.6033i 0.0811698 0.140590i
\(176\) −71.0858 142.212i −0.403896 0.808023i
\(177\) 73.9721 + 37.2445i 0.417922 + 0.210421i
\(178\) −172.245 266.355i −0.967666 1.49638i
\(179\) 67.5246 + 67.5246i 0.377232 + 0.377232i 0.870103 0.492870i \(-0.164052\pi\)
−0.492870 + 0.870103i \(0.664052\pi\)
\(180\) −7.83267 + 167.921i −0.0435148 + 0.932893i
\(181\) −113.951 113.951i −0.629565 0.629565i 0.318393 0.947959i \(-0.396857\pi\)
−0.947959 + 0.318393i \(0.896857\pi\)
\(182\) −79.6755 + 371.325i −0.437778 + 2.04025i
\(183\) −274.305 + 180.014i −1.49893 + 0.983681i
\(184\) −18.6349 + 47.7196i −0.101277 + 0.259345i
\(185\) −98.3483 + 170.344i −0.531612 + 0.920780i
\(186\) −165.571 + 205.668i −0.890164 + 1.10574i
\(187\) −41.8194 + 156.072i −0.223633 + 0.834611i
\(188\) −25.4308 251.266i −0.135270 1.33652i
\(189\) −239.070 21.6512i −1.26492 0.114557i
\(190\) 8.46861 + 167.774i 0.0445716 + 0.883019i
\(191\) 213.217 123.101i 1.11632 0.644508i 0.175861 0.984415i \(-0.443729\pi\)
0.940459 + 0.339907i \(0.110396\pi\)
\(192\) 79.2768 174.869i 0.412900 0.910776i
\(193\) 28.2180 48.8751i 0.146207 0.253239i −0.783615 0.621246i \(-0.786627\pi\)
0.929823 + 0.368008i \(0.119960\pi\)
\(194\) −102.741 + 200.683i −0.529591 + 1.03445i
\(195\) 60.8012 292.955i 0.311801 1.50234i
\(196\) 70.2629 + 97.4963i 0.358484 + 0.497430i
\(197\) 36.9038 36.9038i 0.187329 0.187329i −0.607211 0.794540i \(-0.707712\pi\)
0.794540 + 0.607211i \(0.207712\pi\)
\(198\) −162.836 + 74.0018i −0.822403 + 0.373747i
\(199\) 62.7806i 0.315480i −0.987481 0.157740i \(-0.949579\pi\)
0.987481 0.157740i \(-0.0504208\pi\)
\(200\) 19.9591 15.9725i 0.0997954 0.0798623i
\(201\) 356.949 + 179.721i 1.77586 + 0.894135i
\(202\) 66.6183 + 206.382i 0.329794 + 1.02169i
\(203\) −28.7870 107.435i −0.141808 0.529235i
\(204\) −178.182 + 79.5342i −0.873440 + 0.389873i
\(205\) −5.27208 1.41265i −0.0257175 0.00689097i
\(206\) 2.12901 + 42.1783i 0.0103350 + 0.204749i
\(207\) 52.8727 + 22.9347i 0.255424 + 0.110796i
\(208\) −188.323 + 285.157i −0.905397 + 1.37095i
\(209\) −154.792 + 89.3694i −0.740633 + 0.427605i
\(210\) −146.991 201.098i −0.699959 0.957610i
\(211\) 22.5178 + 84.0376i 0.106719 + 0.398283i 0.998535 0.0541176i \(-0.0172346\pi\)
−0.891815 + 0.452400i \(0.850568\pi\)
\(212\) −25.0732 66.0776i −0.118270 0.311687i
\(213\) 33.9194 38.0370i 0.159246 0.178577i
\(214\) 298.657 + 64.0830i 1.39559 + 0.299453i
\(215\) −178.835 −0.831789
\(216\) −193.296 96.3988i −0.894888 0.446291i
\(217\) 391.238i 1.80294i
\(218\) 259.656 + 55.7146i 1.19108 + 0.255572i
\(219\) −27.9823 24.9532i −0.127773 0.113942i
\(220\) −169.263 76.1434i −0.769377 0.346106i
\(221\) 335.462 89.8868i 1.51793 0.406728i
\(222\) −149.144 204.043i −0.671820 0.919114i
\(223\) −11.5556 20.0149i −0.0518190 0.0897531i 0.838952 0.544205i \(-0.183169\pi\)
−0.890771 + 0.454452i \(0.849835\pi\)
\(224\) 70.9843 + 275.504i 0.316894 + 1.22993i
\(225\) −17.1266 23.1030i −0.0761181 0.102680i
\(226\) 11.2732 + 223.337i 0.0498816 + 0.988216i
\(227\) 23.5744 87.9808i 0.103852 0.387581i −0.894360 0.447347i \(-0.852369\pi\)
0.998212 + 0.0597663i \(0.0190356\pi\)
\(228\) −201.587 77.1629i −0.884155 0.338434i
\(229\) 304.617 81.6219i 1.33021 0.356427i 0.477414 0.878679i \(-0.341574\pi\)
0.852792 + 0.522251i \(0.174908\pi\)
\(230\) 18.3709 + 56.9125i 0.0798733 + 0.247446i
\(231\) 119.188 236.722i 0.515966 1.02477i
\(232\) 11.0364 99.4716i 0.0475708 0.428757i
\(233\) −248.144 −1.06500 −0.532498 0.846431i \(-0.678747\pi\)
−0.532498 + 0.846431i \(0.678747\pi\)
\(234\) 312.749 + 223.579i 1.33654 + 0.955464i
\(235\) −208.471 208.471i −0.887111 0.887111i
\(236\) −108.999 17.6944i −0.461859 0.0749764i
\(237\) 80.2286 + 16.6510i 0.338517 + 0.0702573i
\(238\) 131.760 257.368i 0.553615 1.08138i
\(239\) −258.238 149.094i −1.08050 0.623824i −0.149465 0.988767i \(-0.547755\pi\)
−0.931030 + 0.364943i \(0.881089\pi\)
\(240\) −57.3821 216.668i −0.239092 0.902784i
\(241\) 105.364 + 182.495i 0.437194 + 0.757241i 0.997472 0.0710630i \(-0.0226391\pi\)
−0.560278 + 0.828304i \(0.689306\pi\)
\(242\) 2.24435 + 44.4634i 0.00927419 + 0.183733i
\(243\) −116.414 + 213.300i −0.479071 + 0.877776i
\(244\) 276.612 338.910i 1.13366 1.38897i
\(245\) 135.512 + 36.3103i 0.553110 + 0.148205i
\(246\) 4.39786 5.46293i 0.0178775 0.0222070i
\(247\) 332.711 + 192.091i 1.34701 + 0.777695i
\(248\) 128.058 327.926i 0.516364 1.32228i
\(249\) 127.693 + 194.579i 0.512823 + 0.781440i
\(250\) 55.2432 257.459i 0.220973 1.02984i
\(251\) −278.376 + 278.376i −1.10907 + 1.10907i −0.115792 + 0.993273i \(0.536941\pi\)
−0.993273 + 0.115792i \(0.963059\pi\)
\(252\) 312.682 68.3437i 1.24080 0.271205i
\(253\) −44.9943 + 44.9943i −0.177843 + 0.177843i
\(254\) −97.8661 151.338i −0.385299 0.595819i
\(255\) −102.438 + 203.455i −0.401718 + 0.797861i
\(256\) −30.6793 + 254.155i −0.119841 + 0.992793i
\(257\) 165.293 + 95.4322i 0.643165 + 0.371332i 0.785833 0.618439i \(-0.212235\pi\)
−0.142668 + 0.989771i \(0.545568\pi\)
\(258\) 92.8597 210.190i 0.359921 0.814691i
\(259\) 361.744 + 96.9291i 1.39670 + 0.374244i
\(260\) 40.1709 + 396.903i 0.154503 + 1.52655i
\(261\) −111.370 16.5448i −0.426705 0.0633901i
\(262\) 146.976 + 132.852i 0.560979 + 0.507067i
\(263\) −124.627 215.860i −0.473866 0.820759i 0.525687 0.850678i \(-0.323808\pi\)
−0.999552 + 0.0299188i \(0.990475\pi\)
\(264\) 177.384 159.403i 0.671907 0.603799i
\(265\) −71.4511 41.2523i −0.269627 0.155669i
\(266\) 304.379 98.2508i 1.14428 0.369364i
\(267\) 316.667 355.108i 1.18602 1.32999i
\(268\) −525.968 85.3835i −1.96257 0.318595i
\(269\) −6.17571 6.17571i −0.0229580 0.0229580i 0.695535 0.718493i \(-0.255168\pi\)
−0.718493 + 0.695535i \(0.755168\pi\)
\(270\) −245.972 + 55.4988i −0.911006 + 0.205551i
\(271\) 469.985 1.73426 0.867131 0.498080i \(-0.165962\pi\)
0.867131 + 0.498080i \(0.165962\pi\)
\(272\) 194.679 172.592i 0.715731 0.634530i
\(273\) −568.735 + 32.5446i −2.08328 + 0.119211i
\(274\) −23.8622 + 46.6101i −0.0870884 + 0.170110i
\(275\) 30.6703 8.21808i 0.111528 0.0298839i
\(276\) −76.4302 7.95988i −0.276921 0.0288402i
\(277\) 7.91698 29.5466i 0.0285811 0.106666i −0.950162 0.311757i \(-0.899082\pi\)
0.978743 + 0.205091i \(0.0657491\pi\)
\(278\) −128.036 115.732i −0.460562 0.416301i
\(279\) −363.338 157.606i −1.30229 0.564897i
\(280\) 267.560 + 196.766i 0.955573 + 0.702737i
\(281\) −265.967 460.669i −0.946503 1.63939i −0.752713 0.658349i \(-0.771255\pi\)
−0.193790 0.981043i \(-0.562078\pi\)
\(282\) 353.271 136.775i 1.25274 0.485016i
\(283\) 159.323 42.6905i 0.562980 0.150850i 0.0339048 0.999425i \(-0.489206\pi\)
0.529075 + 0.848575i \(0.322539\pi\)
\(284\) −27.8776 + 61.9704i −0.0981605 + 0.218206i
\(285\) −239.271 + 79.0159i −0.839549 + 0.277249i
\(286\) −356.430 + 230.493i −1.24626 + 0.805921i
\(287\) 10.3920i 0.0362090i
\(288\) 284.453 + 45.0617i 0.987684 + 0.156464i
\(289\) 24.5942 0.0851009
\(290\) −63.4436 98.1078i −0.218771 0.338303i
\(291\) −331.124 68.7229i −1.13788 0.236161i
\(292\) 45.5893 + 20.5085i 0.156128 + 0.0702345i
\(293\) 55.5680 + 207.382i 0.189652 + 0.707790i 0.993587 + 0.113073i \(0.0360693\pi\)
−0.803935 + 0.594717i \(0.797264\pi\)
\(294\) −113.041 + 140.418i −0.384494 + 0.477611i
\(295\) −111.639 + 64.4546i −0.378436 + 0.218490i
\(296\) 271.479 + 199.648i 0.917159 + 0.674487i
\(297\) −171.828 206.050i −0.578545 0.693771i
\(298\) −158.827 + 175.713i −0.532977 + 0.589642i
\(299\) 132.110 + 35.3986i 0.441838 + 0.118390i
\(300\) 31.0431 + 22.5092i 0.103477 + 0.0750307i
\(301\) 88.1269 + 328.894i 0.292780 + 1.09267i
\(302\) −183.367 93.8757i −0.607177 0.310847i
\(303\) −271.967 + 178.479i −0.897580 + 0.589041i
\(304\) 287.282 + 17.2764i 0.945006 + 0.0568301i
\(305\) 510.688i 1.67439i
\(306\) −185.936 226.043i −0.607635 0.738701i
\(307\) −23.4220 + 23.4220i −0.0762931 + 0.0762931i −0.744224 0.667931i \(-0.767180\pi\)
0.667931 + 0.744224i \(0.267180\pi\)
\(308\) −56.6250 + 348.813i −0.183847 + 1.13251i
\(309\) −60.1529 + 19.8646i −0.194670 + 0.0642868i
\(310\) −126.244 391.099i −0.407237 1.26161i
\(311\) 28.1457 48.7497i 0.0905005 0.156752i −0.817221 0.576324i \(-0.804487\pi\)
0.907722 + 0.419572i \(0.137820\pi\)
\(312\) −487.353 158.878i −1.56203 0.509223i
\(313\) 327.449 189.053i 1.04616 0.604003i 0.124591 0.992208i \(-0.460238\pi\)
0.921573 + 0.388205i \(0.126905\pi\)
\(314\) 86.1108 95.2661i 0.274238 0.303395i
\(315\) 232.339 292.616i 0.737585 0.928938i
\(316\) −108.696 + 11.0012i −0.343974 + 0.0348138i
\(317\) −105.022 + 391.947i −0.331299 + 1.23643i 0.576527 + 0.817078i \(0.304408\pi\)
−0.907826 + 0.419347i \(0.862259\pi\)
\(318\) 85.5861 62.5586i 0.269139 0.196725i
\(319\) 62.1559 107.657i 0.194846 0.337484i
\(320\) 159.858 + 252.501i 0.499556 + 0.789067i
\(321\) 26.1756 + 457.433i 0.0815440 + 1.42503i
\(322\) 95.6147 61.8314i 0.296940 0.192023i
\(323\) −206.820 206.820i −0.640310 0.640310i
\(324\) 62.4910 317.916i 0.192873 0.981224i
\(325\) −48.2588 48.2588i −0.148489 0.148489i
\(326\) −276.279 59.2814i −0.847483 0.181845i
\(327\) 22.7574 + 397.699i 0.0695946 + 1.21620i
\(328\) −3.40146 + 8.71032i −0.0103703 + 0.0265559i
\(329\) −280.667 + 486.130i −0.853092 + 1.47760i
\(330\) 42.7611 275.098i 0.129579 0.833630i
\(331\) 52.4111 195.601i 0.158342 0.590939i −0.840454 0.541882i \(-0.817712\pi\)
0.998796 0.0490567i \(-0.0156215\pi\)
\(332\) −240.406 196.215i −0.724115 0.591010i
\(333\) 235.742 296.901i 0.707934 0.891595i
\(334\) −43.4880 + 2.19512i −0.130204 + 0.00657222i
\(335\) −538.706 + 311.022i −1.60808 + 0.928424i
\(336\) −370.197 + 212.302i −1.10178 + 0.631851i
\(337\) 105.669 183.024i 0.313557 0.543097i −0.665573 0.746333i \(-0.731813\pi\)
0.979130 + 0.203236i \(0.0651460\pi\)
\(338\) 511.240 + 261.732i 1.51254 + 0.774354i
\(339\) −318.513 + 105.184i −0.939567 + 0.310278i
\(340\) 48.6672 299.793i 0.143139 0.881743i
\(341\) 309.199 309.199i 0.906741 0.906741i
\(342\) 31.3715 322.253i 0.0917295 0.942259i
\(343\) 168.530i 0.491342i
\(344\) −33.7862 + 304.516i −0.0982158 + 0.885222i
\(345\) −74.9984 + 49.2180i −0.217387 + 0.142661i
\(346\) −479.580 + 154.804i −1.38607 + 0.447411i
\(347\) 169.114 + 631.141i 0.487359 + 1.81885i 0.569194 + 0.822203i \(0.307255\pi\)
−0.0818345 + 0.996646i \(0.526078\pi\)
\(348\) 148.252 23.6250i 0.426013 0.0678879i
\(349\) −404.054 108.266i −1.15775 0.310218i −0.371682 0.928360i \(-0.621219\pi\)
−0.786066 + 0.618142i \(0.787886\pi\)
\(350\) −56.7466 + 2.86436i −0.162133 + 0.00818390i
\(351\) −198.886 + 541.289i −0.566626 + 1.54213i
\(352\) −161.634 + 273.833i −0.459186 + 0.777934i
\(353\) −104.140 + 60.1252i −0.295014 + 0.170326i −0.640201 0.768208i \(-0.721149\pi\)
0.345187 + 0.938534i \(0.387815\pi\)
\(354\) −17.7874 164.681i −0.0502468 0.465200i
\(355\) 20.5311 + 76.6233i 0.0578342 + 0.215840i
\(356\) −260.261 + 578.547i −0.731071 + 1.62513i
\(357\) 424.653 + 88.1342i 1.18950 + 0.246874i
\(358\) 40.0685 186.738i 0.111923 0.521614i
\(359\) 230.419 0.641836 0.320918 0.947107i \(-0.396009\pi\)
0.320918 + 0.947107i \(0.396009\pi\)
\(360\) 290.519 169.215i 0.806997 0.470042i
\(361\) 37.4477i 0.103733i
\(362\) −67.6177 + 315.130i −0.186789 + 0.870525i
\(363\) −63.4118 + 20.9408i −0.174688 + 0.0576882i
\(364\) 710.149 269.466i 1.95096 0.740291i
\(365\) 56.3688 15.1040i 0.154435 0.0413808i
\(366\) 600.229 + 265.174i 1.63997 + 0.724520i
\(367\) 133.404 + 231.062i 0.363499 + 0.629598i 0.988534 0.150998i \(-0.0482488\pi\)
−0.625035 + 0.780596i \(0.714915\pi\)
\(368\) 100.380 20.5294i 0.272773 0.0557865i
\(369\) 9.65093 + 4.18631i 0.0261543 + 0.0113450i
\(370\) 392.893 19.8318i 1.06187 0.0535995i
\(371\) −40.6570 + 151.734i −0.109588 + 0.408986i
\(372\) 525.224 + 54.6999i 1.41189 + 0.147043i
\(373\) 307.403 82.3684i 0.824137 0.220827i 0.177983 0.984034i \(-0.443043\pi\)
0.646154 + 0.763207i \(0.276376\pi\)
\(374\) 307.531 99.2685i 0.822276 0.265424i
\(375\) 394.334 22.5649i 1.05156 0.0601730i
\(376\) −394.366 + 315.596i −1.04885 + 0.839350i
\(377\) −267.196 −0.708743
\(378\) 223.279 + 425.017i 0.590685 + 1.12438i
\(379\) −225.622 225.622i −0.595310 0.595310i 0.343751 0.939061i \(-0.388302\pi\)
−0.939061 + 0.343751i \(0.888302\pi\)
\(380\) 272.568 196.432i 0.717284 0.516927i
\(381\) 179.924 201.766i 0.472242 0.529569i
\(382\) −438.304 224.391i −1.14739 0.587412i
\(383\) −166.640 96.2096i −0.435091 0.251200i 0.266422 0.963856i \(-0.414159\pi\)
−0.701513 + 0.712657i \(0.747492\pi\)
\(384\) −379.780 + 56.7753i −0.989009 + 0.147852i
\(385\) 206.265 + 357.261i 0.535753 + 0.927951i
\(386\) −112.729 + 5.69014i −0.292043 + 0.0147413i
\(387\) 340.942 + 50.6493i 0.880986 + 0.130877i
\(388\) 448.616 45.4047i 1.15623 0.117022i
\(389\) −440.463 118.022i −1.13230 0.303398i −0.356446 0.934316i \(-0.616012\pi\)
−0.775849 + 0.630918i \(0.782678\pi\)
\(390\) −558.033 + 216.051i −1.43085 + 0.553977i
\(391\) −90.1763 52.0633i −0.230630 0.133154i
\(392\) 87.4301 223.887i 0.223036 0.571141i
\(393\) −133.644 + 265.434i −0.340062 + 0.675405i
\(394\) −102.057 21.8984i −0.259028 0.0555797i
\(395\) −90.1830 + 90.1830i −0.228311 + 0.228311i
\(396\) 301.128 + 193.103i 0.760425 + 0.487634i
\(397\) 235.247 235.247i 0.592561 0.592561i −0.345762 0.938322i \(-0.612379\pi\)
0.938322 + 0.345762i \(0.112379\pi\)
\(398\) −105.436 + 68.1825i −0.264914 + 0.171313i
\(399\) 263.227 + 401.106i 0.659717 + 1.00528i
\(400\) −48.5012 16.1732i −0.121253 0.0404330i
\(401\) −13.6229 7.86516i −0.0339722 0.0196139i 0.482918 0.875666i \(-0.339577\pi\)
−0.516890 + 0.856052i \(0.672910\pi\)
\(402\) −85.8319 794.658i −0.213512 1.97676i
\(403\) −907.849 243.258i −2.25273 0.603617i
\(404\) 274.255 336.021i 0.678849 0.831736i
\(405\) −178.153 333.648i −0.439885 0.823823i
\(406\) −149.166 + 165.025i −0.367403 + 0.406465i
\(407\) 209.286 + 362.493i 0.514215 + 0.890647i
\(408\) 327.086 + 212.867i 0.801681 + 0.521734i
\(409\) −538.004 310.617i −1.31541 0.759454i −0.332426 0.943129i \(-0.607867\pi\)
−0.982987 + 0.183675i \(0.941200\pi\)
\(410\) 3.35326 + 10.3883i 0.00817868 + 0.0253374i
\(411\) −76.9060 15.9614i −0.187119 0.0388355i
\(412\) 68.5236 49.3831i 0.166319 0.119862i
\(413\) 173.552 + 173.552i 0.420223 + 0.420223i
\(414\) −18.9047 113.705i −0.0456635 0.274649i
\(415\) −362.257 −0.872909
\(416\) 683.430 + 6.58254i 1.64286 + 0.0158234i
\(417\) 116.422 231.229i 0.279190 0.554506i
\(418\) 318.202 + 162.905i 0.761248 + 0.389724i
\(419\) 626.017 167.741i 1.49407 0.400336i 0.582964 0.812498i \(-0.301893\pi\)
0.911111 + 0.412162i \(0.135226\pi\)
\(420\) −178.092 + 465.264i −0.424029 + 1.10777i
\(421\) 27.8013 103.756i 0.0660364 0.246451i −0.925015 0.379930i \(-0.875948\pi\)
0.991052 + 0.133479i \(0.0426148\pi\)
\(422\) 116.680 129.086i 0.276494 0.305891i
\(423\) 338.399 + 456.485i 0.799999 + 1.07916i
\(424\) −83.7426 + 113.872i −0.197506 + 0.268566i
\(425\) 25.9796 + 44.9980i 0.0611286 + 0.105878i
\(426\) −100.719 15.6556i −0.236429 0.0367503i
\(427\) −939.205 + 251.659i −2.19954 + 0.589366i
\(428\) −216.731 571.172i −0.506382 1.33451i
\(429\) −475.197 423.756i −1.10768 0.987777i
\(430\) 194.222 + 300.341i 0.451680 + 0.698468i
\(431\) 62.8664i 0.145862i 0.997337 + 0.0729309i \(0.0232353\pi\)
−0.997337 + 0.0729309i \(0.976765\pi\)
\(432\) 48.0324 + 429.321i 0.111186 + 0.993800i
\(433\) −246.671 −0.569679 −0.284840 0.958575i \(-0.591940\pi\)
−0.284840 + 0.958575i \(0.591940\pi\)
\(434\) −657.059 + 424.902i −1.51396 + 0.979037i
\(435\) 116.639 130.799i 0.268137 0.300686i
\(436\) −188.429 496.585i −0.432177 1.13896i
\(437\) −29.8123 111.261i −0.0682203 0.254601i
\(438\) −11.5173 + 74.0949i −0.0262951 + 0.169166i
\(439\) 273.335 157.810i 0.622632 0.359477i −0.155261 0.987873i \(-0.549622\pi\)
0.777893 + 0.628397i \(0.216289\pi\)
\(440\) 55.9492 + 366.961i 0.127157 + 0.834003i
\(441\) −248.065 107.604i −0.562505 0.243999i
\(442\) −515.286 465.766i −1.16581 1.05377i
\(443\) 452.814 + 121.331i 1.02215 + 0.273885i 0.730699 0.682699i \(-0.239194\pi\)
0.291455 + 0.956585i \(0.405861\pi\)
\(444\) −180.700 + 472.078i −0.406983 + 1.06324i
\(445\) 191.676 + 715.344i 0.430733 + 1.60752i
\(446\) −21.0639 + 41.1441i −0.0472284 + 0.0922513i
\(447\) −317.332 159.775i −0.709916 0.357438i
\(448\) 385.599 418.423i 0.860712 0.933981i
\(449\) 227.625i 0.506959i 0.967341 + 0.253480i \(0.0815751\pi\)
−0.967341 + 0.253480i \(0.918425\pi\)
\(450\) −20.1997 + 53.8538i −0.0448882 + 0.119675i
\(451\) −8.21288 + 8.21288i −0.0182104 + 0.0182104i
\(452\) 362.837 261.487i 0.802736 0.578510i
\(453\) 62.7932 302.553i 0.138616 0.667888i
\(454\) −173.361 + 55.9595i −0.381853 + 0.123259i
\(455\) 443.346 767.898i 0.974387 1.68769i
\(456\) 89.3427 + 422.355i 0.195927 + 0.926218i
\(457\) 113.790 65.6968i 0.248994 0.143757i −0.370310 0.928908i \(-0.620748\pi\)
0.619303 + 0.785152i \(0.287415\pi\)
\(458\) −467.907 422.940i −1.02163 0.923449i
\(459\) 252.916 358.866i 0.551016 0.781844i
\(460\) 75.6293 92.6622i 0.164412 0.201440i
\(461\) 156.559 584.287i 0.339608 1.26743i −0.559179 0.829047i \(-0.688883\pi\)
0.898787 0.438386i \(-0.144450\pi\)
\(462\) −527.004 + 56.9223i −1.14070 + 0.123209i
\(463\) −150.505 + 260.683i −0.325066 + 0.563030i −0.981526 0.191331i \(-0.938720\pi\)
0.656460 + 0.754361i \(0.272053\pi\)
\(464\) −179.042 + 89.4957i −0.385867 + 0.192879i
\(465\) 515.385 338.223i 1.10835 0.727362i
\(466\) 269.496 + 416.742i 0.578317 + 0.894296i
\(467\) −604.827 604.827i −1.29513 1.29513i −0.931570 0.363563i \(-0.881560\pi\)
−0.363563 0.931570i \(-0.618440\pi\)
\(468\) 35.8261 768.059i 0.0765515 1.64115i
\(469\) 837.466 + 837.466i 1.78564 + 1.78564i
\(470\) −123.705 + 576.523i −0.263202 + 1.22664i
\(471\) 172.047 + 86.6246i 0.365281 + 0.183916i
\(472\) 88.6609 + 202.273i 0.187841 + 0.428545i
\(473\) −190.280 + 329.575i −0.402284 + 0.696777i
\(474\) −59.1676 152.823i −0.124826 0.322410i
\(475\) −14.8763 + 55.5192i −0.0313186 + 0.116883i
\(476\) −575.330 + 58.2296i −1.20868 + 0.122331i
\(477\) 124.535 + 98.8823i 0.261081 + 0.207300i
\(478\) 30.0646 + 595.618i 0.0628967 + 1.24606i
\(479\) −303.519 + 175.237i −0.633652 + 0.365839i −0.782165 0.623071i \(-0.785885\pi\)
0.148513 + 0.988910i \(0.452551\pi\)
\(480\) −301.561 + 331.681i −0.628251 + 0.691002i
\(481\) 449.839 779.144i 0.935216 1.61984i
\(482\) 192.059 375.150i 0.398463 0.778318i
\(483\) 127.475 + 113.675i 0.263923 + 0.235353i
\(484\) 72.2360 52.0585i 0.149248 0.107559i
\(485\) 372.209 372.209i 0.767440 0.767440i
\(486\) 484.654 36.1428i 0.997231 0.0743679i
\(487\) 276.365i 0.567485i 0.958901 + 0.283742i \(0.0915760\pi\)
−0.958901 + 0.283742i \(0.908424\pi\)
\(488\) −869.591 96.4815i −1.78195 0.197708i
\(489\) −24.2144 423.159i −0.0495181 0.865357i
\(490\) −86.1912 267.018i −0.175900 0.544935i
\(491\) −236.459 882.478i −0.481587 1.79731i −0.594960 0.803755i \(-0.702832\pi\)
0.113373 0.993553i \(-0.463835\pi\)
\(492\) −13.9509 1.45293i −0.0283555 0.00295311i
\(493\) 196.492 + 52.6499i 0.398564 + 0.106795i
\(494\) −38.7349 767.386i −0.0784107 1.55341i
\(495\) 414.876 47.6368i 0.838134 0.0962359i
\(496\) −689.808 + 141.077i −1.39074 + 0.284429i
\(497\) 130.800 75.5176i 0.263180 0.151947i
\(498\) 188.102 425.773i 0.377715 0.854966i
\(499\) −59.0884 220.521i −0.118414 0.441926i 0.881106 0.472919i \(-0.156800\pi\)
−0.999520 + 0.0309932i \(0.990133\pi\)
\(500\) −492.383 + 186.835i −0.984765 + 0.373669i
\(501\) −20.4815 62.0208i −0.0408811 0.123794i
\(502\) 769.842 + 165.186i 1.53355 + 0.329055i
\(503\) −270.076 −0.536931 −0.268465 0.963289i \(-0.586517\pi\)
−0.268465 + 0.963289i \(0.586517\pi\)
\(504\) −454.366 450.906i −0.901520 0.894655i
\(505\) 506.335i 1.00264i
\(506\) 124.431 + 26.6992i 0.245911 + 0.0527653i
\(507\) −175.071 + 843.539i −0.345309 + 1.66378i
\(508\) −147.875 + 328.720i −0.291093 + 0.647086i
\(509\) −291.942 + 78.2256i −0.573560 + 0.153685i −0.533929 0.845530i \(-0.679285\pi\)
−0.0396309 + 0.999214i \(0.512618\pi\)
\(510\) 452.941 48.9227i 0.888120 0.0959269i
\(511\) −55.5554 96.2247i −0.108719 0.188307i
\(512\) 460.156 224.500i 0.898743 0.438476i
\(513\) 478.541 82.8748i 0.932828 0.161549i
\(514\) −19.2438 381.243i −0.0374393 0.741719i
\(515\) 25.5201 95.2422i 0.0495535 0.184936i
\(516\) −453.851 + 72.3241i −0.879556 + 0.140163i
\(517\) −606.006 + 162.379i −1.17216 + 0.314079i
\(518\) −230.084 712.796i −0.444178 1.37605i
\(519\) −414.742 631.983i −0.799117 1.21769i
\(520\) 622.947 498.519i 1.19797 0.958691i
\(521\) 919.602 1.76507 0.882536 0.470245i \(-0.155835\pi\)
0.882536 + 0.470245i \(0.155835\pi\)
\(522\) 93.1670 + 205.007i 0.178481 + 0.392734i
\(523\) −14.6806 14.6806i −0.0280699 0.0280699i 0.692933 0.721002i \(-0.256318\pi\)
−0.721002 + 0.692933i \(0.756318\pi\)
\(524\) 63.4929 391.120i 0.121170 0.746413i
\(525\) −26.7258 80.9295i −0.0509063 0.154151i
\(526\) −227.172 + 443.736i −0.431887 + 0.843605i
\(527\) 619.687 + 357.776i 1.17588 + 0.678892i
\(528\) −460.354 124.786i −0.871882 0.236336i
\(529\) 243.997 + 422.615i 0.461241 + 0.798894i
\(530\) 8.31848 + 164.799i 0.0156952 + 0.310942i
\(531\) 231.090 91.2622i 0.435197 0.171869i
\(532\) −495.575 404.480i −0.931532 0.760301i
\(533\) 24.1142 + 6.46137i 0.0452423 + 0.0121226i
\(534\) −940.296 146.159i −1.76085 0.273706i
\(535\) −617.620 356.583i −1.15443 0.666510i
\(536\) 427.828 + 976.060i 0.798187 + 1.82101i
\(537\) 286.015 16.3666i 0.532616 0.0304778i
\(538\) −3.66461 + 17.0788i −0.00681155 + 0.0317450i
\(539\) 211.101 211.101i 0.391654 0.391654i
\(540\) 360.343 + 352.819i 0.667302 + 0.653369i
\(541\) −72.9591 + 72.9591i −0.134860 + 0.134860i −0.771314 0.636455i \(-0.780400\pi\)
0.636455 + 0.771314i \(0.280400\pi\)
\(542\) −510.425 789.310i −0.941743 1.45629i
\(543\) −482.665 + 27.6194i −0.888885 + 0.0508645i
\(544\) −501.287 139.508i −0.921484 0.256448i
\(545\) −536.967 310.018i −0.985260 0.568840i
\(546\) 672.329 + 919.810i 1.23137 + 1.68463i
\(547\) −494.391 132.472i −0.903823 0.242179i −0.223166 0.974781i \(-0.571639\pi\)
−0.680657 + 0.732602i \(0.738306\pi\)
\(548\) 104.194 10.5456i 0.190135 0.0192437i
\(549\) −144.636 + 973.608i −0.263454 + 1.77342i
\(550\) −47.1111 42.5836i −0.0856565 0.0774247i
\(551\) 112.514 + 194.881i 0.204200 + 0.353686i
\(552\) 69.6385 + 137.004i 0.126157 + 0.248196i
\(553\) 210.296 + 121.414i 0.380282 + 0.219556i
\(554\) −58.2198 + 18.7928i −0.105090 + 0.0339221i
\(555\) 185.040 + 560.327i 0.333405 + 1.00960i
\(556\) −55.3109 + 340.718i −0.0994800 + 0.612803i
\(557\) 318.126 + 318.126i 0.571142 + 0.571142i 0.932448 0.361305i \(-0.117669\pi\)
−0.361305 + 0.932448i \(0.617669\pi\)
\(558\) 129.912 + 781.371i 0.232817 + 1.40031i
\(559\) 817.978 1.46329
\(560\) 39.8739 663.048i 0.0712034 1.18401i
\(561\) 265.954 + 405.260i 0.474070 + 0.722388i
\(562\) −484.812 + 946.983i −0.862654 + 1.68502i
\(563\) 891.989 239.008i 1.58435 0.424525i 0.644080 0.764958i \(-0.277240\pi\)
0.940269 + 0.340433i \(0.110574\pi\)
\(564\) −613.373 444.754i −1.08754 0.788570i
\(565\) 135.130 504.314i 0.239169 0.892590i
\(566\) −244.728 221.209i −0.432382 0.390829i
\(567\) −525.821 + 492.058i −0.927373 + 0.867827i
\(568\) 134.352 20.4841i 0.236535 0.0360635i
\(569\) 490.590 + 849.727i 0.862197 + 1.49337i 0.869803 + 0.493399i \(0.164246\pi\)
−0.00760600 + 0.999971i \(0.502421\pi\)
\(570\) 392.562 + 316.026i 0.688705 + 0.554432i
\(571\) 830.286 222.475i 1.45409 0.389623i 0.556647 0.830749i \(-0.312088\pi\)
0.897445 + 0.441127i \(0.145421\pi\)
\(572\) 774.198 + 348.275i 1.35349 + 0.608873i
\(573\) 150.095 723.195i 0.261946 1.26212i
\(574\) 17.4527 11.2862i 0.0304054 0.0196623i
\(575\) 20.4623i 0.0355866i
\(576\) −233.250 526.660i −0.404949 0.914339i
\(577\) −944.713 −1.63728 −0.818642 0.574304i \(-0.805273\pi\)
−0.818642 + 0.574304i \(0.805273\pi\)
\(578\) −26.7104 41.3043i −0.0462117 0.0714608i
\(579\) −53.0915 160.769i −0.0916952 0.277666i
\(580\) −95.8632 + 213.099i −0.165281 + 0.367412i
\(581\) 178.515 + 666.227i 0.307255 + 1.14669i
\(582\) 244.200 + 630.738i 0.419588 + 1.08374i
\(583\) −152.048 + 87.7851i −0.260803 + 0.150575i
\(584\) −15.0693 98.8374i −0.0258037 0.169242i
\(585\) −534.541 721.071i −0.913745 1.23260i
\(586\) 287.936 318.550i 0.491359 0.543600i
\(587\) −527.453 141.331i −0.898557 0.240768i −0.220161 0.975464i \(-0.570658\pi\)
−0.678396 + 0.734696i \(0.737325\pi\)
\(588\) 358.590 + 37.3457i 0.609847 + 0.0635130i
\(589\) 204.868 + 764.578i 0.347824 + 1.29810i
\(590\) 229.492 + 117.489i 0.388970 + 0.199135i
\(591\) −8.94473 156.314i −0.0151349 0.264491i
\(592\) 40.4579 672.758i 0.0683410 1.13642i
\(593\) 500.144i 0.843413i −0.906732 0.421707i \(-0.861431\pi\)
0.906732 0.421707i \(-0.138569\pi\)
\(594\) −159.435 + 512.354i −0.268410 + 0.862548i
\(595\) −477.342 + 477.342i −0.802255 + 0.802255i
\(596\) 467.593 + 75.9072i 0.784552 + 0.127361i
\(597\) −140.569 125.352i −0.235458 0.209970i
\(598\) −84.0271 260.314i −0.140514 0.435308i
\(599\) 184.227 319.090i 0.307557 0.532704i −0.670270 0.742117i \(-0.733822\pi\)
0.977827 + 0.209413i \(0.0671552\pi\)
\(600\) 4.08856 76.5809i 0.00681426 0.127635i
\(601\) 144.684 83.5331i 0.240738 0.138990i −0.374778 0.927115i \(-0.622281\pi\)
0.615516 + 0.788124i \(0.288948\pi\)
\(602\) 456.647 505.197i 0.758550 0.839198i
\(603\) 1115.11 440.381i 1.84927 0.730316i
\(604\) 41.4870 + 409.907i 0.0686870 + 0.678654i
\(605\) 26.9027 100.402i 0.0444672 0.165954i
\(606\) 595.113 + 262.914i 0.982035 + 0.433852i
\(607\) 267.871 463.966i 0.441303 0.764359i −0.556484 0.830859i \(-0.687850\pi\)
0.997786 + 0.0664995i \(0.0211831\pi\)
\(608\) −282.987 501.235i −0.465438 0.824399i
\(609\) −298.029 150.056i −0.489375 0.246397i
\(610\) −857.668 + 554.630i −1.40601 + 0.909230i
\(611\) 953.533 + 953.533i 1.56061 + 1.56061i
\(612\) −177.689 + 557.760i −0.290342 + 0.911373i
\(613\) −438.390 438.390i −0.715155 0.715155i 0.252454 0.967609i \(-0.418762\pi\)
−0.967609 + 0.252454i \(0.918762\pi\)
\(614\) 64.7731 + 13.8984i 0.105494 + 0.0226358i
\(615\) −13.6896 + 8.98383i −0.0222595 + 0.0146079i
\(616\) 647.307 283.729i 1.05082 0.460599i
\(617\) −290.931 + 503.907i −0.471525 + 0.816706i −0.999469 0.0325735i \(-0.989630\pi\)
0.527944 + 0.849279i \(0.322963\pi\)
\(618\) 98.6901 + 79.4491i 0.159693 + 0.128558i
\(619\) −90.7444 + 338.663i −0.146598 + 0.547113i 0.853081 + 0.521779i \(0.174731\pi\)
−0.999679 + 0.0253336i \(0.991935\pi\)
\(620\) −519.720 + 636.770i −0.838259 + 1.02705i
\(621\) 156.921 72.5914i 0.252691 0.116894i
\(622\) −112.440 + 5.67554i −0.180771 + 0.00912467i
\(623\) 1221.13 705.022i 1.96009 1.13166i
\(624\) 262.462 + 991.026i 0.420612 + 1.58818i
\(625\) −267.452 + 463.240i −0.427923 + 0.741185i
\(626\) −673.127 344.610i −1.07528 0.550496i
\(627\) −108.966 + 525.028i −0.173790 + 0.837365i
\(628\) −253.514 41.1544i −0.403684 0.0655325i
\(629\) −484.332 + 484.332i −0.770004 + 0.770004i
\(630\) −743.760 72.4055i −1.18057 0.114929i
\(631\) 1149.26i 1.82134i 0.413140 + 0.910668i \(0.364432\pi\)
−0.413140 + 0.910668i \(0.635568\pi\)
\(632\) 136.524 + 170.600i 0.216019 + 0.269936i
\(633\) 233.125 + 117.377i 0.368285 + 0.185429i
\(634\) 772.308 249.294i 1.21815 0.393209i
\(635\) 108.907 + 406.445i 0.171507 + 0.640071i
\(636\) −198.014 75.7950i −0.311342 0.119175i
\(637\) −619.823 166.081i −0.973034 0.260724i
\(638\) −248.308 + 12.5337i −0.389197 + 0.0196453i
\(639\) −17.4407 151.894i −0.0272938 0.237706i
\(640\) 250.447 542.699i 0.391324 0.847968i
\(641\) −680.483 + 392.877i −1.06160 + 0.612912i −0.925873 0.377835i \(-0.876669\pi\)
−0.135722 + 0.990747i \(0.543335\pi\)
\(642\) 739.802 540.754i 1.15234 0.842295i
\(643\) −55.1072 205.663i −0.0857033 0.319849i 0.909743 0.415172i \(-0.136278\pi\)
−0.995446 + 0.0953224i \(0.969612\pi\)
\(644\) −207.684 93.4271i −0.322490 0.145073i
\(645\) −357.073 + 400.419i −0.553601 + 0.620804i
\(646\) −122.725 + 571.957i −0.189977 + 0.885383i
\(647\) 36.6439 0.0566366 0.0283183 0.999599i \(-0.490985\pi\)
0.0283183 + 0.999599i \(0.490985\pi\)
\(648\) −601.788 + 240.322i −0.928686 + 0.370867i
\(649\) 274.319i 0.422680i
\(650\) −28.6364 + 133.459i −0.0440559 + 0.205321i
\(651\) −875.999 781.171i −1.34562 1.19996i
\(652\) 200.492 + 528.376i 0.307504 + 0.810392i
\(653\) −729.681 + 195.517i −1.11743 + 0.299414i −0.769842 0.638234i \(-0.779665\pi\)
−0.347586 + 0.937648i \(0.612999\pi\)
\(654\) 643.194 470.139i 0.983478 0.718866i
\(655\) −231.282 400.593i −0.353103 0.611592i
\(656\) 18.3226 3.74727i 0.0279307 0.00571229i
\(657\) −111.743 + 12.8305i −0.170080 + 0.0195289i
\(658\) 1121.24 56.5962i 1.70401 0.0860125i
\(659\) −3.19047 + 11.9070i −0.00484138 + 0.0180683i −0.968304 0.249774i \(-0.919644\pi\)
0.963463 + 0.267842i \(0.0863105\pi\)
\(660\) −508.450 + 226.954i −0.770379 + 0.343870i
\(661\) −669.383 + 179.361i −1.01268 + 0.271347i −0.726750 0.686902i \(-0.758970\pi\)
−0.285933 + 0.958250i \(0.592303\pi\)
\(662\) −385.420 + 124.410i −0.582205 + 0.187931i
\(663\) 468.545 930.589i 0.706705 1.40360i
\(664\) −68.4393 + 616.846i −0.103071 + 0.928985i
\(665\) −746.760 −1.12295
\(666\) −754.653 73.4659i −1.13311 0.110309i
\(667\) 56.6471 + 56.6471i 0.0849281 + 0.0849281i
\(668\) 50.9165 + 70.6514i 0.0762224 + 0.105766i
\(669\) −67.8871 14.0896i −0.101475 0.0210606i
\(670\) 1107.40 + 566.939i 1.65284 + 0.846177i
\(671\) −941.150 543.373i −1.40261 0.809796i
\(672\) 758.598 + 391.152i 1.12887 + 0.582072i
\(673\) 300.181 + 519.928i 0.446034 + 0.772553i 0.998124 0.0612314i \(-0.0195028\pi\)
−0.552090 + 0.833785i \(0.686169\pi\)
\(674\) −422.137 + 21.3080i −0.626317 + 0.0316142i
\(675\) −85.9246 7.78171i −0.127296 0.0115285i
\(676\) −115.668 1142.85i −0.171107 1.69060i
\(677\) −307.335 82.3501i −0.453966 0.121640i 0.0245887 0.999698i \(-0.492172\pi\)
−0.478554 + 0.878058i \(0.658839\pi\)
\(678\) 522.570 + 420.688i 0.770753 + 0.620483i
\(679\) −867.947 501.109i −1.27827 0.738011i
\(680\) −556.337 + 243.855i −0.818143 + 0.358610i
\(681\) −149.923 228.452i −0.220151 0.335466i
\(682\) −855.083 183.476i −1.25379 0.269026i
\(683\) −160.877 + 160.877i −0.235545 + 0.235545i −0.815003 0.579457i \(-0.803265\pi\)
0.579457 + 0.815003i \(0.303265\pi\)
\(684\) −575.274 + 297.294i −0.841043 + 0.434641i
\(685\) 86.4481 86.4481i 0.126202 0.126202i
\(686\) 283.036 183.032i 0.412589 0.266810i
\(687\) 425.463 845.023i 0.619306 1.23002i
\(688\) 548.109 273.977i 0.796671 0.398222i
\(689\) 326.813 + 188.685i 0.474329 + 0.273854i
\(690\) 164.110 + 72.5020i 0.237841 + 0.105075i
\(691\) 285.527 + 76.5069i 0.413209 + 0.110719i 0.459434 0.888212i \(-0.348052\pi\)
−0.0462247 + 0.998931i \(0.514719\pi\)
\(692\) 780.830 + 637.300i 1.12837 + 0.920953i
\(693\) −292.053 739.523i −0.421433 1.06713i
\(694\) 876.296 969.463i 1.26267 1.39692i
\(695\) 201.478 + 348.970i 0.289897 + 0.502116i
\(696\) −200.685 223.323i −0.288341 0.320866i
\(697\) −16.4600 9.50320i −0.0236155 0.0136344i
\(698\) 256.995 + 796.165i 0.368188 + 1.14064i
\(699\) −495.461 + 555.606i −0.708814 + 0.794858i
\(700\) 66.4399 + 92.1915i 0.0949141 + 0.131702i
\(701\) 397.627 + 397.627i 0.567228 + 0.567228i 0.931351 0.364123i \(-0.118631\pi\)
−0.364123 + 0.931351i \(0.618631\pi\)
\(702\) 1125.06 253.848i 1.60265 0.361607i
\(703\) −757.696 −1.07780
\(704\) 635.426 25.9412i 0.902594 0.0368483i
\(705\) −883.023 + 50.5291i −1.25251 + 0.0716724i
\(706\) 214.077 + 109.598i 0.303225 + 0.155237i
\(707\) −931.200 + 249.514i −1.31711 + 0.352920i
\(708\) −257.253 + 208.723i −0.363351 + 0.294807i
\(709\) 238.924 891.677i 0.336987 1.25765i −0.564711 0.825289i \(-0.691012\pi\)
0.901698 0.432366i \(-0.142321\pi\)
\(710\) 106.386 117.697i 0.149840 0.165771i
\(711\) 197.472 146.389i 0.277738 0.205892i
\(712\) 1254.29 191.236i 1.76164 0.268590i
\(713\) 140.897 + 244.041i 0.197612 + 0.342274i
\(714\) −313.176 808.895i −0.438622 1.13291i
\(715\) 957.256 256.496i 1.33882 0.358736i
\(716\) −357.131 + 135.513i −0.498786 + 0.189264i
\(717\) −849.444 + 280.516i −1.18472 + 0.391236i
\(718\) −250.246 386.974i −0.348532 0.538962i
\(719\) 22.8952i 0.0318431i 0.999873 + 0.0159215i \(0.00506820\pi\)
−0.999873 + 0.0159215i \(0.994932\pi\)
\(720\) −599.703 304.133i −0.832920 0.422407i
\(721\) −187.736 −0.260382
\(722\) 62.8910 40.6699i 0.0871066 0.0563295i
\(723\) 618.991 + 128.468i 0.856142 + 0.177687i
\(724\) 602.677 228.686i 0.832427 0.315865i
\(725\) −10.3464 38.6133i −0.0142709 0.0532598i
\(726\) 104.037 + 83.7534i 0.143301 + 0.115363i
\(727\) −799.813 + 461.772i −1.10015 + 0.635175i −0.936262 0.351303i \(-0.885739\pi\)
−0.163893 + 0.986478i \(0.552405\pi\)
\(728\) −1223.80 899.997i −1.68105 1.23626i
\(729\) 245.147 + 686.545i 0.336279 + 0.941762i
\(730\) −86.5852 78.2642i −0.118610 0.107211i
\(731\) −601.529 161.179i −0.822886 0.220492i
\(732\) −206.532 1296.04i −0.282147 1.77054i
\(733\) −177.694 663.162i −0.242420 0.904724i −0.974663 0.223680i \(-0.928193\pi\)
0.732243 0.681044i \(-0.238474\pi\)
\(734\) 243.172 474.988i 0.331297 0.647122i
\(735\) 351.872 230.918i 0.478738 0.314174i
\(736\) −143.495 146.286i −0.194967 0.198759i
\(737\) 1323.71i 1.79608i
\(738\) −3.45070 20.7547i −0.00467575 0.0281228i
\(739\) 608.238 608.238i 0.823055 0.823055i −0.163490 0.986545i \(-0.552275\pi\)
0.986545 + 0.163490i \(0.0522751\pi\)
\(740\) −460.006 638.301i −0.621630 0.862568i
\(741\) 1094.41 361.414i 1.47694 0.487738i
\(742\) 298.983 96.5091i 0.402942 0.130066i
\(743\) 328.331 568.686i 0.441899 0.765392i −0.555931 0.831228i \(-0.687638\pi\)
0.997830 + 0.0658362i \(0.0209715\pi\)
\(744\) −478.552 941.487i −0.643215 1.26544i
\(745\) 478.918 276.503i 0.642842 0.371145i
\(746\) −472.186 426.808i −0.632957 0.572129i
\(747\) 690.630 + 102.598i 0.924539 + 0.137347i
\(748\) −500.708 408.669i −0.669396 0.546349i
\(749\) −351.437 + 1311.58i −0.469208 + 1.75111i
\(750\) −466.160 637.752i −0.621547 0.850336i
\(751\) 151.781 262.893i 0.202106 0.350057i −0.747101 0.664710i \(-0.768555\pi\)
0.949207 + 0.314653i \(0.101888\pi\)
\(752\) 958.322 + 319.562i 1.27436 + 0.424949i
\(753\) 67.4725 + 1179.12i 0.0896049 + 1.56589i
\(754\) 290.187 + 448.739i 0.384863 + 0.595144i
\(755\) 340.093 + 340.093i 0.450454 + 0.450454i
\(756\) 471.298 836.570i 0.623410 1.10657i
\(757\) 465.613 + 465.613i 0.615077 + 0.615077i 0.944264 0.329188i \(-0.106775\pi\)
−0.329188 + 0.944264i \(0.606775\pi\)
\(758\) −133.882 + 623.954i −0.176626 + 0.823159i
\(759\) 10.9057 + 190.583i 0.0143685 + 0.251098i
\(760\) −625.916 244.426i −0.823574 0.321613i
\(761\) 624.864 1082.30i 0.821109 1.42220i −0.0837482 0.996487i \(-0.526689\pi\)
0.904857 0.425715i \(-0.139978\pi\)
\(762\) −534.258 83.0448i −0.701126 0.108983i
\(763\) −305.544 + 1140.31i −0.400451 + 1.49450i
\(764\) 99.1665 + 979.802i 0.129799 + 1.28246i
\(765\) 251.010 + 635.594i 0.328117 + 0.830842i
\(766\) 19.4006 + 384.349i 0.0253271 + 0.501761i
\(767\) 510.628 294.811i 0.665747 0.384369i
\(768\) 507.808 + 576.155i 0.661209 + 0.750202i
\(769\) 254.390 440.616i 0.330806 0.572973i −0.651864 0.758336i \(-0.726013\pi\)
0.982670 + 0.185363i \(0.0593460\pi\)
\(770\) 375.985 734.410i 0.488292 0.953780i
\(771\) 543.713 179.553i 0.705205 0.232884i
\(772\) 131.985 + 183.141i 0.170964 + 0.237229i
\(773\) 448.856 448.856i 0.580667 0.580667i −0.354419 0.935087i \(-0.615321\pi\)